Powertrain Blockset™

Reference

MATLAB® SIMULINK®

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales and services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

T

Phone: 508-647-7000

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

Powertrain Blockset™ Reference

© COPYRIGHT 2016-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

October 2016	Online only	New for Version 1.0 (Release 2016b+)
March 2017	Online only	Revised for Version 1.1 (Release 2017a)
September 2017	Online only	Revised for Version 1.2 (Release 2017b)
March 2018	Online only	Revised for Version 1.3 (Release 2018a)
September 2018	Online only	Revised for Version 1.4 (Release 2018b)

Contents

_	Drivetrain Blocks — Alphabetical List
1	
Ve	hicle Dynamics Blocks — Alphabetical List
'	
3	Energy Storage Blocks — Alphabetical List
1	Propulsion Blocks — Alphabetical List
4	
Sco	enario Creation Blocks — Alphabetical List
	Transmission Blocks — Alphabetical List
6	
7	Functions

Drivetrain Blocks — Alphabetical List

Rotational Inertia

Ideal mechanical rotational inertia

Library: Powertrain Blockset / Drivetrain / Couplings

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings

Description

The Rotational Inertia block implements an ideal mechanical rotational inertia.

Ports

Input

RTrq — Input torque

scalar

Applied input drive shaft torque, in $N \cdot m$.

Dependencies

To create this port, for \boldsymbol{Port} $\boldsymbol{Configuration},$ select $\boldsymbol{Simulink}.$

CTrq — Load torque

scalar

Load drive shaft torque, in $N {\cdot} m.$

Dependencies

To create this port, for **Port Configuration**, select Simulink.

R — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in $N \cdot m$.

To create this port, for **Port Configuration**, select Two-way connection.

Inertia - Input

scalar

Additional inertia input, in kg·m^2.

Dependencies

To create this port, select the **External inertia input** parameter.

Output

Spd — Drive shaft speed

scalar

Angular drive shaft speed, in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

C — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Specifying Simulink creates these ports:

- RTrq
- CTrq
- Spd

Specifying Two-way connection creates these ports:

- R
- C

Rotational inertia, J — Inertia

scalar

Rotational inertia, in kg·m^2.

Torsional damping, b — Damping

scalar

Torsional damping, in $N \cdot m \cdot s/rad$.

Initial velocity, omega_o — Angular

scalar

Initial angular velocity, in rad/s.

External inertia input — Input inertia

off (default) | on

Select to create an input port for additional inertia.

See Also

Split Torsional Compliance | Torsional Compliance

Introduced in R2017a

Split Torsional Compliance

Split torsional coupler

Library: Powertrain Blockset / Drivetrain / Couplings

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings

Description

The Split Torsional Compliance block implements parallel spring-damper coupling between shafts. You can specify the type of coupling by selecting one of the **Coupling Configuration** parameters:

- Shaft split Single input shaft coupled to two output shafts
- Shaft merge Two input shafts coupled to a single output shaft

In fuel economy and emissions studies, you can use the Split Torsional Compliance block to model mechanical rotational compliance between common driveline elements such as motors, planetary gears, and clutches. For example, use the Shaft split configuration to couple a motor and two planetary gear sets. Use the Shaft merge configuration to couple a dual clutch transmission to an output shaft.

Shaft Split

For the Shaft split configuration, the block implements this schematic and equations.

$$\begin{split} T_{in} &= -(\omega_{in} - \omega_{lout})b_1 - (\omega_{in} - \omega_{2out})b_2 - \theta_l k_1 - \theta_2 k_2 \\ T_{lout} &= (\omega_{in} - \omega_{lout})b_1 + \theta_l k_1 \\ T_{2out} &= (\omega_{in} - \omega_{2out})b_2 + \theta_2 k_2 \end{split}$$

$$\dot{\theta}_{l} = (\omega_{in} - \omega_{lout})$$

$$\dot{\theta}_{2} = (\omega_{in} - \omega_{2out})$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

T_{in}	Resulting applied input reaction torque	
ω_{in}	Input shaft rotational velocity	
T_{1out}	Resulting applied torque to first output shaft	
ω_{1out}	First output shaft rotational velocity	
T_{2out}	Resulting applied torque to second output shaft	
ω_{2out}	Second output shaft rotational velocity	
b_1 , b_2	First, second shaft viscous damping	

 k_1, k_2 First, second shaft torsional stiffness

Shaft Merge

For the Shaft merge configuration, the block implements this schematic and equations.

$$\begin{split} T_{out} &= (-\omega_{out} + \omega_{lin})b_1 + (-\omega_{out} + \omega_{2in})b_2 + \theta_1 k_1 + \theta_2 k_2 \\ T_{lout} &= (\omega_{out} - \omega_{lin})b_1 - \theta_1 k_1 \\ T_{2out} &= (\omega_{out} - \omega_{2in})b_2 - \theta_2 k_2 \end{split}$$

$$\dot{\theta}_{l} = (\omega_{lin} - \omega_{out})$$

$$\dot{\theta}_{2} = (\omega_{2in} - \omega_{out})$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

 T_{out} Resulting applied output torque ω_{out} Output shaft rotational velocity

T_{1in}	Resulting reaction torque to first input shaft
ω_{1in}	First input shaft rotational velocity
T_{2in}	Resulting reaction torque to second input shaft
ω_{2in}	Second input shaft rotational velocity
b_1, b_2	First, second shaft viscous damping
k_1, k_2	First, second shaft torsional stiffness

Ports

Input

RSpd — Input shaft speed

scalar

Input shaft rotational velocity, ω_{in} , in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Spd — First output shaft speed

scalar

First output shaft rotational velocity, $\omega_{\textit{1out}}$, in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C2Spd — Second output shaft speed

scalar

Second output shaft rotational velocity, ω_{2out} , in rad/s.

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

CSpd — Input speed

scalar

Output shaft rotational velocity, ω_{out} , in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R1Spd — First input shaft speed

scalar

First input shaft rotational velocity, ω_{1in} , in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R2Spd — Second input shaft speed

scalar

Second input shaft rotational velocity, $\omega_{2\text{in}}$, in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R — Input shaft angular velocity and torque

two-way connector port

Input shaft angular velocity, ω_{in} , in rad/s and torque, T_{in} , in N·m.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

R1 — First input shaft angular velocity and torque

two-way connector port

First input shaft angular velocity, ω_{1in} , in rad/s and torque, T_{1in} , in N·m.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

R2 — Second input shaft angular velocity and torque

two-way connector port

Second input shaft angular velocity, ω_{2in} , in rad/s and torque, T_{2in} , in N·m.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

Output

RTrq — Input shaft torque

scalar

Input shaft torque, T_{in} , in N·m.

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Trq — First output shaft torque

scalar

First output shaft torque, T_{1out} , in N·m.

Dependencies

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

C2Trq — Second output shaft torque scalar

Second output shaft torque, T_{2out} , in N·m.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

CTrq — Output shaft torque

scalar

Output shaft torque, T_{out} , in N·m.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R1Trq — First input shaft torque

scalar

First input shaft torque, T_{1in} , in N·m.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R2Trq — Second input shaft torque

scalar

Second input shaft torque, T_{2in} , in N·m.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

C1 — First output shaft angular velocity and torque

two-way connector port

First output shaft angular velocity, $\omega_{\textit{1out}}$, in rad/s and torque, $T_{\textit{1out}}$, in N·m.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

C2 — Second output shaft angular velocity and torque

two-way connector port

Second output shaft angular velocity, ω_{2out} , in rad/s and torque, T_{2out} , in N·m.

Dependencies

To create this port, select:

- **Port Configuration**>Two-way connection
- Coupling Configuration>Shaft split

C — Output shaft angular velocity and torque

two-way connector port

Output shaft angular velocity, ω_{out} , in rad/s and torque, T_{out} , in N·m.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Coupling Configuration — Specify configuration

Shaft split (default) | Shaft merge

Specify the coupling type.

Coupling 1

Torsional stiffness, k1 — Stiffness

scalar

Rotational inertia, k_1 , in N·m/rad.

Torsional damping, b1 — Damping

scalar

Torsional damping, b_1 , in N·m· s/rad.

Damping cutoff frequency, omegal_c — Frequency scalar

Damping cutoff frequency, in rad/s.

Coupling 2

Torsional stiffness, k2 — Stiffness

scalar

Rotational inertia, k_2 , in N·m/rad.

Torsional damping, b2 — Damping

scalar

Torsional damping, b_2 , in N·m· s/rad.

Damping cutoff frequency, omega2_c — Frequency

scalar

Damping cutoff frequency, in rad/s.

See Also

Rotational Inertia | Torsional Compliance

Introduced in R2017b

Torsional Compliance

Parallel spring-damper

Library: Powertrain Blockset / Drivetrain / Couplings

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings

Description

The Torsional Compliance block implements a parallel spring-damper.

Ports

Input

RSpd — Input angular velocity

scalar

Input angular velocity, in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

CSpd — Load torque angular velocity

scalar

Input angular velocity due to load torque, in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

R — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in $N \cdot m$.

To create this port, for **Port Configuration**, select Two-way connection.

Output

RTrq — Input torque

scalar

Applied input drive shaft torque, in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

CTrq — Load torque

scalar

Load drive shaft torque, in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

C — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Specifying Simulink creates these ports:

- RSpd
- CSpd
- RTrq
- CTrq

Specifying Two-way connection creates these ports:

- R
- C

Torsional stiffness, k — Inertia

scalar

Torsional stiffness, in N·m/rad.

Torsional damping, b — Damping

scalar

Torsional damping, in $N \cdot m \cdot s/rad$.

Initial deflection, theta_o — Angular

scalar

Initial deflection, in rad.

${\bf Initial\ velocity\ difference,\ domega_o-Angular}$

scalar

Initial velocity difference, in rad/s.

Damping cut-off frequency, omega_c — Frequency

scalar

Damping cut-off frequency, in rad/s.

See Also

Rotational Inertia | Split Torsional Compliance

Introduced in R2017a

Limited Slip Differential

Limited differential as a planetary bevel gear

Library: Powertrain Blockset / Drivetrain / Final Drive Unit

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Final Drive Unit

Description

The Limited Slip Differential block implements a differential as a planetary bevel gear train. The block matches the drive shaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-drive shaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier
- · Type of slip coupling

Use the block in system-level driveline analysis to account for the power transfer from the transmission to the wheels. The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

In a limited slip differential, to prevent one of the wheels from slipping, the differential splits the torque applied to the left and right axles. With different torque applied to the axles, the wheels can move at different angular velocities, preventing slip. The block implements three methods for coupling the different torques applied to the axes:

- Pre-loaded ideal clutch
- Slip speed-dependent torque data
- Input torque dependent torque data

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.

Equations

The Limited Slip Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical Dynamic Response	Differential Equation
Crown Gear	$\dot{\omega}_d J_d = T_d - \omega_d b_d - T_i$
Left Axle	$\omega_I J_I = T_I - \omega_I b_I - T_{iI}$
Right Axle	$\omega_2 J_2 = T_2 - \omega_2 b_2 - T_{i2}$

The block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$T_1 = T_2 = \frac{N}{2}T_i + T_c$$

$$\omega_d = \frac{N}{2}(\omega_1 + \omega_2)$$

The equations use these variables.

N	Carrier-to-drive shaft gear ratio		
J_d	Rotational inertia of the crown gear assembly		
b_d	Crown gear linear viscous damping		
ω_d	Driveshaft angular speed		
σ	Slip speed		
J_1	Axle 1 rotational inertia		
b_1	Axle 1 linear viscous damping		
ω_1	Axle 1 speed		
J_2	Axle 2 rotational inertia		
b_2	Axle 2 linear viscous damping		
ω_2	Axle 2 angular speed		
T_d	Driveshaft torque		
T_1	Axle 1 torque		
T_2	Axle 2 torque		
T_i	Axle internal resistance torque		
T_{i1}	Axle 1 internal resistance torque		
T_{i2}	Axle 2 internal resistance torque		
μ	Coefficient of friction		
R	Effective clutch radius		
$R_{e\!f\!f}$ R_o	Annular disk outer radius		

 R_i Annular disk inner radius

 F_c Clutch force T_c Clutch torque

μ Coefficient of friction

Table blocks in the Limited Slip Differential have these parameter settings:

- Interpolation method Linear
- Extrapolation method Clip

The ideal clutch coupling model uses the axle slip speed and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

$$T_c = F_c N \mu(|\varpi|) R_{eff} \tanh(4|\varpi|)$$

The disc radii determine the effective clutch radius over which the clutch force acts.

$$R_{e\!f\!f} = \frac{2(R_o^{\ 3} - R_i^{\ 3})}{3(R_o^{\ 2} - R_i^{\ 2})}$$

The angular velocities of the axles determine the slip speed.

$$\varpi = \omega_1 - \omega_2$$

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed. The angular velocities of the axles determine the slip speed.

$$\overline{\omega} = \omega_1 - \omega_2$$

To calculate the clutch torque, the input torque coupling model uses torque data that is a function of input torque.

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$T_1 = T_2 = \frac{N}{2}T_i$$

$$\omega_{d=} = \frac{N}{2}(\omega_1 + \omega_2)$$

Ports

Inputs

DriveshftTrq — Torque

scalar

Applied input torque, typically from the engine crankshaft, in $N \cdot m$.

Axl1Trq — Torque

scalar

Axle 1 torque, T_1 , in N·m.

Axl2Trq — Torque

scalar

Axle 2 torque, T_2 , in N·m.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Units
Driveshft	DriveshftTrq	Drive shaft torque	N·m
	DriveshftSpd	Drive shaft speed	rad/s
Axl1	Axl1Trq	Axle 1 torque	N·m

Signal		Description	Units
	Axl1Spd	Axle 1 speed	rad/s
Axl2	Axl2Trq	Axle 2 torque	N·m
	Axl2Spd	Axle 2 speed	rad/s
Cplng	CplngTrq	Torque coupling	N·m
	CplngSlipSpd	Slip speed	rad/s

DriveshftSpd — Angular speed

scalar

Drive shaft angular speed, ω_d , in rad/s.

Axl1Spd — Angular speed

scalar

Axle 1 angular speed, ω_1 , in rad/s.

Axl2Spd — Angular speed

scalar

Axle 2 angular speed, ω_2 , in rad/s.

Parameters

Open Differential

Crown wheel (ring gear) located — Specify crown wheel connection To the left of center-line (default) | To the right of center-line

Specify the crown wheel connection to the drive shaft.

Carrier to drive shaft ratio, NC/ND — Ratio scalar

Carrier-to-drive shaft gear ratio, N.

Carrier inertia, Jd — Inertia scalar

Rotational inertia of the crown gear assembly, J_d , in kg·m². You can include the drive shaft inertia.

Carrier damping, bd — Damping

scalar

Crown gear linear viscous damping, b_d , in N·m·s/rad.

Driveshaft 1 inertia, Jw1 — Inertia

scalar

Driveshaft 1 rotational inertia, J_1 , in kg·m².

Driveshaft 1 damping, bw1 — Damping

scalar

Driveshaft 1 linear viscous damping, b_1 , in N·m·s/rad.

Driveshaft 2 inertia, Jw2 - Inertia

scalar

Driveshaft 2 rotational inertia, J_2 , in kg·m².

Driveshaft 2 damping, bw2 — Damping

scalar

Driveshaft 2 linear viscous damping, b_2 , in N·m·s/rad.

Driveshaft 1 initial velocity, omegawlo — Angular velocity

scalar

Driveshaft 1 initial velocity, ω_{o1} , in rad/s.

Driveshaft 2 initial velocity, omegaw2o — Angular velocity

scalar

Driveshaft 2 initial velocity, ω_{o2} , in rad/s.

Slip Coupling

Coupling type — Torque coupling

Ideal pre-loaded clutch (default) | Slip speed dependent torque data | Input torque dependent torque data

Specify the type of torque coupling.

Number of disks, Ndisks — Torque coupling scalar

Number of disks.

Dependencies

To enable the ideal clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

Effective radius, Reff — Radius

scalar

The effective radius, R_{eff} , used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$R_{eff} = \frac{2(R_o^{\ 3} - R_i^{\ 3})}{3(R_o^{\ 2} - R_i^{\ 2})}$$

The equation uses these variables.

 R_o Annular disk outer radius

Annular disk inner radius R_i

Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

Nominal preload force, Fc — Force

scalar

Nominal preload force, in N.

Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

Friction coefficient vector, mu — Friction

vector

Friction coefficient vector.

Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

Slip speed vector, dw — Angular velocity

vector

Slip speed vector, in rad/s.

Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

Torque - slip speed vector, Tdw — Torque

vector

Torque vector, in N·m.

Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the **Coupling type** parameter.

Slip speed vector, dwT — Angular velocity

vector

Slip speed vector, in rad/s.

Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the **Coupling type** parameter.

Torque - input torque vector, TTin — Torque

vector

Torque vector, in N·m.

To enable the input torque parameters, select Input torque dependent torque data for the **Coupling type** parameter.

Input torque vector, Tin - Torque

vector

Torque vector, in N·m.

Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the **Coupling type** parameter.

Coupling time constant, tauC — Constant

scalar

Coupling time constant, in s.

References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. "Modeling of Active Differential Dynamics." In ASME proceedings. *Transportation Systems*. Vol. 17, pp. 427-436.

See Also

Open Differential

Introduced in R2017a

Open Differential

Differential as a planetary bevel gear

Library: Powertrain Blockset / Drivetrain / Final Drive Unit

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Final Drive Unit

Description

The Open Differential block implements a differential as a planetary bevel gear train. The block matches the drive shaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-drive shaft ratio
- Crown wheel location
- · Viscous and damping coefficients for the axles and carrier

Use the Open Differential block to:

- Dynamically couple the post-transmission drive shaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.

Equations

The Open Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical Dynamic Response	Differential Equation
Crown Gear	$\omega_d J_d = T_d - \omega_d b_d - T_i$
Left Axle	$\omega_I J_I = T_1 - \omega_I b_1 - T_{i1}$
Right Axle	$\omega_2 J_2 = T_2 - \omega_2 b_2 - T_{i2}$

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$T_1 = T_2 = \frac{N}{2}T_i$$

$$\omega_{d=} = \frac{N}{2}(\omega_1 + \omega_2)$$

The equations use these variables.

N	Carrier-to-drive shaft gear ratio		
J_d	Rotational inertia of the crown gear assembly		
b_d	Crown gear linear viscous damping		
ω_d	Drive shaft angular speed		
J_1	Axle 1 rotational inertia		
b_1	Axle 1 linear viscous damping		
ω_1	Axle 1 speed		
J_2	Axle 2 rotational inertia		
b_2	Axle 2 linear viscous damping		
ω_2	Axle 2 angular speed		
T_d	Drive shaft torque		
T_1	Axle 1 torque		
T_2	Axle 2 torque		
T_i	Drive shaft internal resistance torque		
T_{i1}	Axle 1 internal resistance torque		
T_{i2}	Axle 2 internal resistance torque		

Ports

Inputs

DriveshftTrq — Torque

scalar

Applied input torque, typically from the engine crankshaft, in $N \cdot m$.

Axl1Trq — Torque

scalar

Axle 1 torque, T_1 , in N·m.

Axl2Trq — Torque

scalar

Axle 2 torque, T_2 , in N·m.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Units
Driveshft	DriveshftTrq	Drive shaft torque	N·m
	DriveshftSpd	Drive shaft speed	rad/s
Axl1	Axl1Trq	Axle 1 torque	N·m
	Axl1Spd	Axle 1 speed	rad/s
Axl2	Axl2Trq	Axle 2 torque	N·m
	Axl2Spd	Axle 2 speed	rad/s

DriveshftSpd — Angular speed

scalar

Drive shaft angular speed, ω_d , in rad/s.

Axl1Spd — Angular speed

scalar

Axle 1 angular speed, ω_1 , in rad/s.

Axl2Spd — Angular speed

scalar

Axle 2 angular speed, ω_2 , in rad/s.

Parameters

Crown wheel (ring gear) located — Specify crown wheel connection

To the left of center-line (default) | To the right of center-line

Specify the crown wheel connection to the drive shaft.

Carrier to drive shaft ratio, Ndiff — Ratio

scalar

Carrier-to-drive shaft gear ratio, N, dimensionless.

Carrier inertia, Jd — Inertia

scalar

Rotational inertia of the crown gear assembly, J_d , in kg·m². You can include the drive shaft inertia.

Carrier damping, bd — Damping

scalar

Crown gear linear viscous damping, b_d , in N·m·s/rad.

Axle 1 inertia, Jw1 — Inertia

scalar

Axle 1 rotational inertia, J_1 , in kg·m².

Axle 1 damping, bw1 — Damping

scalar

Axle 1 linear viscous damping, b_1 , in N·m·s/rad.

Axle 2 inertia, Jw2 — Inertia

scalar

Axle 2 rotational inertia, J_2 , in kg·m².

Axle 2 damping, bw2 — Damping

scalar

Axle 2 linear viscous damping, b_2 , in N·m·s/rad.

Axle 1 initial velocity, omegawlo — Angular velocity scalar

Axle 1 initial velocity, ω_{o1} , in rad/s.

Axle 2 initial velocity, omegaw2o — Angular velocity

scalar

Axle 2 initial velocity, ω_{o2} , in rad/s.

See Also

Limited Slip Differential

Introduced in R2017a

Longitudinal Wheel

Library: Powertrain Blockset / Drivetrain / Wheels
Vehicle Dynamics Blockset / Wheels and Tires

Description

The Longitudinal Wheel block implements the longitudinal behavior of an ideal wheel. You can specify the longitudinal force and rolling resistance calculation method, and brake type. Use the block in driveline and longitudinal vehicle simulations where low frequency tire-road and braking forces are required to determine vehicle acceleration, braking, and wheel-rolling resistance. For example, you can use the block to determine the torque and power requirements for a specified drive cycle or braking event. The block is not suitable for applications that require combined lateral slip.

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No Brake	None	None
Longitudinal Wheel - Disc Brake	Disc	Brake that converts the brake cylinder pressure into a braking force.
Longitudinal Wheel - Drum Brake	Drum	Simplex drum brake that converts the applied force and brake geometry into a net braking torque.

Block Name	Brake Type Setting	Brake Implementation	
Longitudinal Wheel - Mapped Brake	Mapped	Lookup table that is a function of the wheel speed and applied brake pressure.	

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these **Longitudinal Force** parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.
Magic Formula pure longitudinal slip	Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in <i>Tire and Vehicle Dynamics</i> .
Mapped force	Lookup table that is a function of the normal force and wheel slip ratio.

To calculate the rolling resistance torque, specify one of these ${\bf Rolling}$ ${\bf Resistance}$ parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.
Magic Formula	Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin axis longitudinal velocity.

To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.
, -	Vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Brake and drive torque
- Tire rolling resistance
- · Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$T_i = T_a - T_b + T_d$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$\dot{T}_d = \frac{\omega R_e}{L_e + \omega R_e} \left(F_x R_e + M_y \right)$$

To calculate the rolling resistance torque, you can specify one of these **Rolling Resistance** parameters.

Setting	Block Implementation	
None	Block sets rolling resistance, M_y , to zero.	

Setting	Block Implementation		
Pressure and velocity	Block uses the method in SAE Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity. Specifically, $M_y = R_e \{a+b \big V_x \big + c V_x^{\ 2} \} \{F_z^{\ \beta} \ p_i^{\ \alpha} \} \tanh \big(4 V_x \big)$ To implement a rolling resistance method that uses a constant rolling resistance coefficient, use this setting. Specifically, to implement ISO 28580 constant rolling resistance, use these parameter values.		
	Parameter	Variable	Value
	Velocity independent force coefficient, aMy	a	.01 for a passenger car
	Linear velocity force component, bMy	b	Θ
	Quadratic velocity force component, cMy	С	0
	α	0	
	Normal force exponent, betaMy	β	1
Magic Formula	Block calculates the rolling resistance, M_y , using the Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.		
Mapped torque	For the rolling resistance, M_y , the block uses a lookup table that is a function of the normal force and spin axis longitudinal velocity.		

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

If	Lock-Up Condition	Friction Model	Dynamic Model
	Unlocked		$\omega J = -\omega b + T_i + T_o$
$\omega \neq 0$			
or			
$T_S < T_i + T_f - \omega b$		$T_f = T_k$	
		where,	
		$T_k = F_c R_{eff} \mu_k \tanh[4(-\omega_d)]$	
	Locked		$\omega = 0$
$\omega = 0$		$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_o^2)}$	
and		$J(n_0 - n_i)$	

 $T_S \ge |T_f + T_f - \omega b|$ The equations use these variables.

ω	Wheel angular velocity
а	Velocity independent force component
b	Linear velocity force component
\boldsymbol{c}	Quadratic velocity force component
L_e	Tire relaxation length
J	Moment of inertia
M_y	Rolling resistance torque
T_a	Applied axle torque
T_b	Braking torque
T_d	Combined tire torque
T_f	Frictional torque
T_i	Net input torque
T_k	Kinetic frictional torque
T_o	Net output torque
T_s	Static frictional torque

F_c	Applied clutch force
F_{x}	Longitudinal force developed by the tire road interface due to slip
$R_{\it eff}$	Effective clutch radius
R_o	Annular disk outer radius
R_i	Annular disk inner radius
R_e	Effective tire radius while under load and for a given pressure
V_{x}	Longitudinal axle velocity
F_z	Vehicle normal force
α	Tire pressure exponent
β	Normal force exponent
p_i	Tire pressure
μ_s	Coefficient of static friction
μ_k	Coefficient of kinetic friction

Brakes

If you specify the ${\bf Brake\ Type}$ parameter ${\tt Disc}$, the block implements a disc brake. This figure shows the side and front views of a disc brake.

A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$T = \begin{cases} \frac{\mu P \pi B_a^{\ 2} R_m N_{pads}}{4} & \text{when } N \neq 0 \\ \frac{\mu_{static} P \pi B_a^{\ 2} R_m N_{pads}}{4} & \text{when } N = 0 \end{cases}$$

$$Rm = \frac{Ro + Ri}{2}$$

The equations use these variables.

T Brake torque

P Applied brake pressure

N Wheel speed

 N_{pads} Number of brake pads in disc brake assembly μ_{static} Disc pad-rotor coefficient of static friction Disc pad-rotor coefficient of kinetic friction

 B_a Brake actuator bore diameter

 R_m Mean radius of brake pad force application on brake rotor

If you specify the **Brake Type** parameter Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in *Fundamentals* of *Machine Elements*.

$$T_{rshoe} = \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1){B_a}^2}{2\mu(2r\Big(\cos\theta_2 - \cos\theta_1) + a\Big(\cos^2\theta_2 - \cos^2\theta_1\Big)\Big) + ar\big(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1\big)}\right) P$$

$$T_{lshoe} = \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1){B_a}^2}{-2\mu(2r\left(\cos\theta_2 - \cos\theta_1) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar\left(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1\right)}\right) P$$

$$T = \begin{cases} T_{rshoe} + T_{lshoe} & \text{when } N \neq 0 \\ (T_{rshoe} + T_{lshoe}) \frac{\mu_{static}}{\mu} & \text{when } N = 0 \end{cases}$$

The equations use these variables.

T Brake torque

P Applied brake pressure

N Wheel speed

 μ_{static} Disc pad-rotor coefficient of static friction μ Disc pad-rotor coefficient of kinetic friction

 T_{rshoe} Right shoe brake torque T_{lshoe} Left shoe brake torque

a Distance from drum center to shoe hinge pin center

С	Distance from shoe hinge pin center to brake actuator connection on brake shoe
r	Drum internal radius
B_a	Brake actuator bore diameter
Θ_1	Angle from shoe hinge pin center to start of brake pad material on shoe
Θ_2	Angle from shoe hinge pin center to end of brake pad material on shoe

If you specify the **Brake Type** parameter Mapped, the block uses a lookup table to determine the brake torque.

$$T = \begin{cases} f_{brake}(P, N) & \text{when } N \neq 0 \\ \left(\frac{\mu_{static}}{\mu}\right) f_{brake}(P, N) & \text{when } N = 0 \end{cases}$$

The equations use these variables.

T Brake torque

Brake torque lookup table

 $f_{brake}(P,N)$

P Applied brake pressure

N Wheel speed

 μ_{static} Friction coefficient of drum pad-face interface under static

conditions

 μ Friction coefficient of disc pad-rotor interface

The lookup table for the brake torque, $f_{brake}(P,N)$, is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- *P* is applied brake pressure, in bar.
- N is wheel speed, in rpm.

Longitudinal Force

To model the Longitudinal Wheel block longitudinal forces, you can use the Magic Formula. The model provides a steady-state tire characteristic function $F_x = f(\kappa, F_z)$, the longitudinal force F_x on the tire, based on:

- Vertical load F_z
- Wheel slip κ

The Magic Formula model uses these variables.

 Ω Wheel angular velocity

 $r_{\rm w}$ Wheel radius

 $V_{\rm x}$ Wheel hub longitudinal velocity $r_{\rm w}\Omega$ Tire tread longitudinal velocity

 $V_{\rm sx} = r_{\rm w} \Omega - V_{\rm x}$ Wheel slip velocity

 $\kappa = V_{\rm sx}/|V_{\rm x}|$ Wheel slip

 F_{zz} F_{z0} Vertical load and nominal vertical load on tire

 $F_{\rm x} = f(\kappa, F_{\rm z})$ Longitudinal force exerted on the tire at the contact point. Also a

characteristic function f of the tire.

If you set **Longitudinal Force** to Magic Formula constant value, the block implements the Magic Formula as a specific form of the tire characteristic function, characterized by four dimensionless coefficients (B, C, D, E), or stiffness, shape, peak, and curvature:

$$F_{x} = f(\kappa, F_{z}) = F_{z} D \sin(C \tan^{-1}[\{B\kappa - E[B\kappa - \tan^{-1}(B\kappa)]\}])$$

The slope of f at $\kappa = 0$ is $BCD \cdot F_z$.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

If you set **Longitudinal Force** to Magic Formula pure longitudinal slip, the block implements a more general Magic Formula using dimensionless coefficients that are functions of the tire load. The block implements the longitudinal force equations in Chapter 4 of *Tire and Vehicle Dynamics*, including 4.E9 through 4.E18:

$$F_{x0} = D_{x} \sin\left(C_{x} \tan^{-1}\left[\left\{B_{x} \kappa_{x} - E_{x}\left[B_{x} \kappa_{x} - \tan^{-1}\left(B_{x} \kappa_{x}\right)\right]\right\}\right]\right) + S_{vx}$$
 where:

$$\kappa_{x} = \kappa + S_{Hx}$$

$$C_{x} = p_{Cx} \lambda_{Cx}$$

$$D_{x} = \mu_{x} F_{z} \zeta_{1}$$

$$\mu_{x} = (p_{Dx1} + p_{Dx2} df_{z})(1 + p_{px3} dp_{i} + p_{px4} dp_{i}^{2})(1 - p_{Dx3} \gamma^{2}) \lambda_{\mu x}^{*}$$

$$E_{x} = (p_{Ex1} + p_{Ex2} df_{z} + p_{Ex3} df_{z}^{2})[1 \quad p_{Ex4} \operatorname{sgn}(\kappa_{x})] \lambda_{Ex}$$

$$K_{x\kappa} = F_{z}(p_{Kx1} + p_{Kx2} df_{z}) \exp(p_{Kx3} df_{z})(1 + p_{px1} dp_{i} + p_{px2} dp_{i}^{2})$$

$$B_{x} = K_{x\kappa} / (C_{x} D_{x} + \varepsilon_{x})$$

$$S_{Hx} = p_{Hx1} + p_{Hx2} df_{z}$$

$$S_{Vx} = F_{z} \bullet (p_{Vx1} + p_{Vx2} df_{z}) \lambda_{Vx} \lambda_{\mu x}^{*} \zeta_{1}$$

 S_{Hx} and S_{Vx} represent offsets to the slip and longitudinal force in the force-slip function, or horizontal and vertical offsets if the function is plotted as a curve. μ_x is the longitudinal load-dependent friction coefficient. ε_x is a small number inserted to prevent division by zero as F_z approaches zero.

Vertical Dynamics

If you select no vertical degrees-of-freedom by setting **Vertical Motion** to **None**, the block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.

If you set **Vertical Motion** to Mapped stiffness and damping, the vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

$$Fztire(z, \dot{z}, P_{tire}) = F_{zk}(z, P_{tire}) + F_{zb}(\dot{z}, P_{tire})$$

The block determines the vertical response using this differential equation.

$$\ddot{z}m = Fztire - F_z - mg$$

When you disable the vertical degree-of-freedom, the input normal force from the vehicle passes directly to the longitudinal and rolling force calculations.

$$\ddot{z} = \dot{z} = m = 0$$

$$Fztire = mg$$

The block uses the wheel-fixed frame to resolve the vertical forces.

The equations use these variables.

Fztire	Tire normal force along the wheel-fixed z -axis
m	Axle mass
F_{zk}	Tire normal force due to wheel stiffness along the wheel-fixed z -axis
F_{zb}	Tire normal force due to wheel damping along the wheel-fixed z -axis
F_z	Suspension or vehicle normal force along the wheel-fixed z -axis
P_{Tire}	Tire pressure
z,\dot{z},\ddot{z}	Tire displacement, velocity, and acceleration, respectively, along the wheel-fixed z -axis

Ports

Input

BrkPrs — **Brake** pressure

scalar

Brake pressure, in Pa.

Dependencies

To create this port, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

AxlTrq — Axle torque

scalar

Axle torque, T_a , about wheel spin axis, in N·m.

Vx — Velocity

scalar

Axle longitudinal velocity along vehicle(body)-fixed *x*-axis, in m/s.

Fz — Normal force

scalar

Absolute value of suspension or vehicle normal force along body-fixed z-axis, in N.

Gnd — **Ground displacement**

scalar

Ground displacement, Grndz, along negative wheel-fixed z-axis, in m.

To create Gnd:

- Set Vertical Motion to Mapped stiffness and damping.
- On the **Vertical** pane, select **Input ground displacement**.

lam_mux — Friction scaling factor scalar

Longitudinal friction scaling factor, dimensionless.

Dependencies

To create this port, select **Input friction scale factor**.

TirePrs — Tire pressure

scalar

Tire pressure, in Pa.

Dependencies

To create this port:

- Set one of these parameters:
 - Longitudinal Force to Magic Formula pure longitudinal slip.

- Rolling Resistance to Pressure and velocity or Magic Formula.
- Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, select Input tire pressure.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
AxlTrq	Axle torque about body-fixed <i>y</i> -axis	N·m
Omega	Wheel angular velocity about body-fixed y-axis	rad/s
Fx	Longitudinal vehicle force along body-fixed x-axis	N
Fz	Vertical vehicle force along body-fixed z -axis	N
Му	Rolling resistance torque about body-fixed <i>y</i> -axis	N·m
Карра	Slip ratio	NA
Vx	Vehicle longitudinal velocity along body-fixed x-axis	m/s
Re	Wheel effective radius along wheel-fixed z -axis	m
BrkTrq	Brake torque about body-fixed <i>y</i> -axis	N·m
BrkPrs	Brake pressure	Pa
z	Wheel vertical deflection along wheel-fixed z -axis	m
zdot	Wheel vertical velocity along wheel-fixed z-axis m/s	

Signal	Description	Units
Gndz	Ground displacement along negative of wheel-fixed <i>z</i> -axis (positive input produces wheel lift)	m
GndFz	Vertical wheel force on ground along negative of wheel-fixed z -axis	N
TirePrs	Tire pressure	Pa

Fx — Longitudinal axle force

scalar

Longitudinal force acting on axle, along body-fixed *x*-axis, in N. Positive force acts to move the vehicle forward.

Omega — Wheel angular velocity

scalar

Wheel angular velocity, about body-fixed y-axis, in rad/s.

z — Wheel vertical deflection

scalar

Wheel vertical deflection along wheel-fixed *z*-axis, in m.

Dependencies

To create this port, set **Vertical Motion** to Mapped stiffness and damping.

zdot — Wheel vertical velocity

scalar

Wheel vertical velocity along wheel-fixed z-axis, in m/s.

Dependencies

To create this port, set ${\bf Vertical\ Motion}$ to ${\bf Mapped\ stiffness\ and\ damping}.$

Parameters

Block Options

Longitudinal Force — Select type

Magic Formula constant value (default) | Magic Formula pure longitudinal slip | Mapped force

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these **Longitudinal Force** parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.
Magic Formula pure longitudinal slip	Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in <i>Tire and Vehicle Dynamics</i> .
Mapped force	Lookup table that is a function of the normal force and wheel slip ratio.

Dependencies

Selecting	Enables These Parameters
Magic Formula constant value	Pure longitudinal peak factor, Dx
	Pure longitudinal shape factor, Cx
	Pure longitudinal stiffness factor, Bx
	Pure longitudinal curvature factor, Ex

Selecting	Enables These Parameters
Magic Formula pure longitudinal slip	Cfx shape factor, PCX1
	Longitudinal friction at nominal normal load, PDX1
	Frictional variation with load, PDX2
	Frictional variation with camber, PDX3
	Longitudinal curvature at nominal normal load, PEX1
	Variation of curvature factor with load, PEX2
	Variation of curvature factor with square of load, PEX3
	Longitudinal curvature factor with slip, PEX4
	Longitudinal slip stiffness at nominal normal load, PKX1
	Variation of slip stiffness with load, PKX2
	Slip stiffness exponent factor, PKX3
	Horizontal shift in slip ratio at nominal normal load, PHX1
	Variation of horizontal slip ratio with load, PHX2
	Vertical shift in load at nominal normal load, PVX1
	Variation of vertical shift with load, PVX2
	Linear variation of longitudinal slip stiffness with tire pressure, PPX1
	Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2

Selecting	Enables These Parameters	
	Linear variation of peak longitudinal friction with tire pressure, PPX3	
	Quadratic variation of peak longitudinal friction with tire pressure, PPX4	
	Linear variation of longitudinal slip stiffness with tire pressure, PPX1	
	Slip speed decay function scaling factor, lam_muV	
	Brake slip stiffness scaling factor, lam_Kxkappa	
	Longitudinal shape scaling factor, lam_Cx Longitudinal curvature scaling factor, lam_Ex	
	Longitudinal horizontal shift scaling factor, lam_Hx	
	Longitudinal vertical shift scaling factor, lam_Vx	
Mapped force	Slip ratio breakpoints, kappaFx	
	Normal force breakpoints, FzFx	
	Longitudinal force map, FxMap	

Rolling Resistance — **Select type**

None (default) | Pressure and velocity | Magic Formula | Mapped torque

To calculate the rolling resistance torque, specify one of these ${f Rolling}$ ${f Resistance}$ parameters.

Setting	Block Implementation	
None	None	

Setting	Block Implementation
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.
Magic Formula	Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin axis longitudinal velocity.

Selecting	Enables These Parameters
Pressure and velocity	Velocity independent force coefficient, aMy
	Linear velocity force component, bMy
	Quadratic velocity force component, cMy
	Tire pressure exponent, alphaMy
	Normal force exponent, betaMy

Selecting	Enables These Parameters	
Magic Formula	Rolling resistance torque coefficient, QSY	
	Longitudinal force rolling resistance coefficient, QSY2	
	Linear rotational speed rolling resistance coefficient, QSY3	
	Quartic rotational speed rolling resistance coefficient, QSY4	
	Camber squared rolling resistance torque, QSY5	
	Load based camber squared rolling resistance torque, QSY6	
	Normal load rolling resistance coefficient, QSY7	
	Pressure load rolling resistance coefficient, QSY8	
	Rolling resistance scaling factor, lam_My	
Mapped torque	Spin axis velocity breakpoints, VxMy	
	Normal force breakpoints, FzMy	
	Rolling resistance torque map, MyMap	

Brake Type — Select type None | Disc | Drum | Mapped

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No Brake	None	None
Longitudinal Wheel - Disc Brake	Disc	Brake that converts the brake cylinder pressure into a braking force.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - Drum Brake	Drum	Simplex drum brake that converts the applied force and brake geometry into a net braking torque.
Longitudinal Wheel - Mapped Brake	Mapped	Lookup table that is a function of the wheel speed and applied brake pressure.

Vertical Motion — **Select type**

None (default) | Mapped stiffness and damping

To calculate vertical motion, specify one of these **Vertical Motion** parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

Selecting	Enables These Parameters	Creates These Output Ports
Mapped stiffness and damping	Wheel and unsprung mass, m	Z
and damping	Initial deflection, zo	zdot
	Initial velocity, zdoto	
	Gravitational acceleration, g	
	Vertical deflection breakpoints, zFz	
	Pressure breakpoints, pFz	
	Force due to deflection, Fzz	
	Vertical velocity breakpoints, zdotFz	
	Force due to velocity, Fzzdot	
	Ground displacement, Gndz	
	Input ground displacement	

$\label{longitudinal scaling factor, lam_x - Friction scaling factor} 1 \; (default)$

Longitudinal friction scaling factor, dimensionless.

Dependencies

To enable this parameter, clear ${\bf Input\ friction\ scale\ factor}.$

Input friction scale factor — Selection Off (default)

Create input port for longitudinal friction scaling factor.

Dependencies

Selecting this parameter:

- Creates Input port lam mux.
- Disables parameter **Longitudinal scaling factor**, lam_x.

Wheel Dynamics

Axle viscous damping coefficient, br — Damping scalar

Axle viscous damping coefficient, br, in N·m·s/rad.

Wheel inertia, Iyy — Inertia scalar

Wheel inertia, in Km*m^2.

Wheel initial angular velocity, omegao — Wheel speed scalar

Initial angular velocity of wheel, along body-fixed y-axis, in rad/s.

Relaxation length, Lrel — Relaxation length scalar

Wheel relaxation length, in m.

Loaded radius, Re — Loaded radius scalar

Loaded wheel radius, Re, in m.

Unloaded radius, UNLOADED_RADIUS — Unloaded radius scalar

Unloaded wheel radius, in m.

Dependencies

To create this parameter, set **Rolling Resistance** to Pressure and velocity or Magic Formula.

Nominal longitudinal speed, LONGVL — Speed scalar

Nominal longitudinal speed along body-fixed *x*-axis, in m/s.

Dependencies

To enable this parameter, set **Longitudinal Force** to Magic Formula pure longitudinal slip.

Nominal camber angle, gamma — Camber scalar

Nominal camber angle, in rad.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal pressure, NOMPRES — Pressure

scalar

Nominal pressure, in Pa.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Pressure, press - Pressure

scalar

Pressure, in Pa.

Dependencies

To enable this parameter:

- Set one of these:
 - Longitudinal Force to Magic Formula pure longitudinal slip.
 - Rolling Resistance to Pressure and velocity or Magic Formula.
 - Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, clear Input tire pressure.

Longitudinal

Magic Formula Constant Value

Pure longitudinal peak factor, Dx — Factor

scalar

Pure longitudinal peak factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

Pure longitudinal shape factor, Cx — Factor scalar

Pure longitudinal shape factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

Pure longitudinal stiffness factor, Bx — Factor scalar

Pure longitudinal stiffness factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

Pure longitudinal curvature factor, Ex — Factor scalar

Pure longitudinal curvature factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

Magic Formula Pure Longitudinal Slip

Cfx shape factor, PCX1 — Factor scalar

Cfx shape factor, PCX1, dimensionless.

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal friction at nominal normal load, PDX1 — Factor scalar

Longitudinal friction at nominal normal load, PDX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Frictional variation with load, PDX2 — Factor scalar

Frictional variation with load, PDX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Frictional variation with camber, PDX3 — Factor scalar

Frictional variation with camber, PDX3, 1/rad^2.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal curvature at nominal normal load, PEX1 — Factor scalar

Longitudinal curvature at nominal normal load, PEX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with load, PEX2 — Factor scalar

Variation of curvature factor with load, PEX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with square of load, PEX3 — Factor scalar

Variation of curvature factor with square of load, PEX3, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal curvature factor with slip, PEX4 — Factor scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal slip stiffness at nominal normal load, PKX1 — Factor scalar

Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of slip stiffness with load, PKX2 — Factor scalar

Variation of slip stiffness with load, PKX2, dimensionless.

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Slip stiffness exponent factor, PKX3 — Factor scalar

Slip stiffness exponent factor, PKX3, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Horizontal shift in slip ratio at nominal normal load, PHX1 — Factor scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of horizontal slip ratio with load, PHX2 — Factor scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Vertical shift in load at nominal normal load, PVX1 — Factor scalar

Vertical shift in load at nominal normal load, PVX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of vertical shift with load, PVX2 — Factor scalar

Variation of vertical shift with load, PVX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Linear variation of longitudinal slip stiffness with tire pressure, PPX1 — Factor

scalar

Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 — Factor

scalar

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Linear variation of peak longitudinal friction with tire pressure, PPX3 — Factor

scalar

Linear variation of peak longitudinal friction with tire pressure, PPX3, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Quadratic variation of peak longitudinal friction with tire pressure, PPX4 — Factor

scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Slip speed decay function scaling factor, lam_muV — Factor scalar

Slip speed decay function scaling factor, lam muV, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Brake slip stiffness scaling factor, lam_Kxkappa — Factor scalar

Brake slip stiffness scaling factor, lam_Kxkappa, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal shape scaling factor, lam_Cx — Factor scalar

Longitudinal shape scaling factor, lam_Cx, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal curvature scaling factor, lam_Ex — Factor scalar

Longitudinal curvature scaling factor, lam_Ex, dimensionless.

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal horizontal shift scaling factor, lam_Hx — Factor scalar

Longitudinal horizontal shift scaling factor, lam Hx, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal vertical shift scaling factor, lam_Vx — Factor scalar

Longitudinal vertical shift scaling factor, lam Vx, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Mapped Force

Slip ratio breakpoints, kappaFx — Breakpoints

vector

Slip ratio breakpoints, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

Normal force breakpoints, FzFx — Breakpoints

vector

Normal force breakpoints, N.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

Longitudinal force map, FxMap — Lookup table

array

Longitudinal force versus slip ratio and normal force, N.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

Rolling Resistance

Pressure and Velocity

Velocity independent force coefficient, aMy — Force coefficient scalar

Velocity independent force coefficient, *a*, in s/m.

To implement the rolling resistance calculation specified in ISO 28580, set the value to . 01 for a passenger car.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

Linear velocity force component, bMy — Force component scalar

Linear velocity force component, b, in s/m.

To implement the rolling resistance calculation specified in ISO 28580, set the value to θ .

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

Quadratic velocity force component, cMy — Force component scalar

Quadratic velocity force component, c, in s^2/m^2.

To implement the rolling resistance calculation specified in ISO 28580, set the value to θ .

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

Tire pressure exponent, alphaMy — Pressure exponent

scalar

Tire pressure exponent, α , dimensionless.

To implement the rolling resistance calculation specified in ISO 28580, set the value to 0.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

Normal force exponent, betaMy — Force exponent

scalar

Normal force exponent, β , dimensionless.

To implement the rolling resistance calculation specified in ISO 28580, set the value to 1.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

Magic Formula

Rolling resistance torque coefficient, QSY1 — Torque coefficient scalar

Rolling resistance torque coefficient, dimensionless.

Dependencies

To create this parameter, select the ${\bf Rolling}\ {\bf Resistance}\ {\it parameter}\ {\it Magic}\ {\it Formula}.$

Longitudinal force rolling resistance coefficient, QSY2 — Force resistance coefficient

scalar

Longitudinal force rolling resistance coefficient, dimensionless.

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Linear rotational speed rolling resistance coefficient, QSY3 — Linear speed coefficient

scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Quartic rotational speed rolling resistance coefficient, QSY4 — Quartic speed coefficient

scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.

Camber squared rolling resistance torque, QSY5 — Camber resistance torque

scalar

Camber squared rolling resistance torque, in 1/rad^2.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Load based camber squared rolling resistance torque, QSY6 — Load resistance torque

scalar

Load based camber squared rolling resistance torque, in 1/rad^2.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Normal load rolling resistance coefficient, QSY7 — Normal resistance coefficient

scalar

Normal load rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

$\label{eq:coefficient} \textbf{Pressure load rolling resistance coefficient, QSY8-Pressure resistance coefficient}$

scalar

Pressure load rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Rolling resistance scaling factor, lam_My — Scale scalar

Rolling resistance scaling factor, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Mapped

Spin axis velocity breakpoints, VxMy — Breakpoints vector

Spin axis velocity breakpoints, in m/s.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

Normal force breakpoints, FzMy — Breakpoints

vector

Normal force breakpoints, in N.

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

Rolling resistance torque map, MyMap — Lookup table scalar

Rolling resistance torque versus axle speed and normal force, in N·m.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

Brake

Static friction coefficient, mu_static — Static friction scalar

Static friction coefficient, dimensionless.

Dependencies

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

Kinetic friction coefficient, mu_kinetic — Kinetic friction scalar

Kinematic friction coefficient, dimensionless.

Dependencies

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

Disc

Disc brake actuator bore, disc_abore — Bore distance scalar

Disc brake actuator bore, in m.

Dependencies

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

Brake pad mean radius, Rm — Radius

scalar

Brake pad mean radius, in m.

Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.

Number of brake pads, $num_pads - Count$

scalar

Number of brake pads.

Dependencies

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

Drum

Drum brake actuator bore, disc_abore — Bore distance scalar

Drum brake actuator bore, in m.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Shoe pin to drum center distance, drum_a — Distance scalar

Shoe pin to drum center distance, in m.

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Shoe pin center to force application point distance, drum_c — Distance

scalar

Shoe pin center to force application point distance, in m.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

$\operatorname{Drum}_{\mathbf{q}}$ internal radius, $\operatorname{drum}_{\mathbf{q}} \operatorname{r} - \operatorname{Radius}_{\mathbf{q}}$

scalar

Drum internal radius, in m.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Shoe pin to pad start angle, drum_thetal — Angle scalar

Shoe pin to pad start angle, in deg.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Shoe pin to pad end angle, drum_theta2 — Angle scalar

Shoe pin to pad end angle, in deg.

Dependencies

To enable the drum brake parameters, select ${\tt Drum}$ for the ${\tt Brake}$ ${\tt Type}$ parameter.

Mapped

Brake actuator pressure breakpoints, brake_p_bpt — Breakpoints vector

Brake actuator pressure breakpoints, in bar.

Dependencies

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

Wheel speed breakpoints, brake_n_bpt — Breakpoints vector

Wheel speed breakpoints, in rpm.

Dependencies

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

The lookup table for the brake torque, $f_{brake}(P,N)$, is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- P is applied brake pressure, in bar.
- *N* is wheel speed, in rpm.

Dependencies

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

Vertical

Nominal normal force, FNOMIN — Force

scalar

Nominal rated wheel load along wheel-fixed *z*-axis, in N.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- **Rolling Resistance** to Magic Formula.

Nominal rated load scaling factor, lam_Fzo — Factor scalar

Nominal rated load scaling factor, dimensionless. Used to scale the normal for specific applications and load conditions.

Dependencies

To enable this parameter, set **Longitudinal Force** to Magic Formula pure longitudinal slip.

Wheel and unsprung mass, m — Mass

scalar

Wheel and unsprung mass, in kg. Used in the vertical motion calculations.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Initial deflection, zo — Deflection

scalar

Initial axle displacement along wheel-fixed z-axis, in m.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Initial velocity, zdoto — Velocity

scalar

Initial axle velocity along wheel-fixed *z*-axis, in m.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Gravitational acceleration, g — Gravity

scalar

Gravitational acceleration, in m/s^2.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Ground displacement, Gndz — Displacement

scalar

Ground displacement, Grndz, along negative wheel-fixed z-axis, in m.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Mapped Stiffness and Damping

Vertical deflection breakpoints, zFz — Breakpoints

vector

Vector of sidewall deflection breakpoints corresponding to the force table, in m.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Pressure breakpoints, pFz — Breakpoints

vector

Vector of pressure data points corresponding to the force table, in Pa.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Force due to deflection, Fzz — Force

vector

Force due to sidewall deflection and pressure along wheel-fixed *z*-axis, in N.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Vertical velocity breakpoints, zdotFz — Breakpoints

scalar

Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Force due to velocity, Fzzdot — Force

scalar

Force due to sidewall velocity and pressure along wheel-fixed z-axis, in N.

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Simulation Setup

Minimum normal force, FZMIN — Force scalar

Minimum normal force, in N. Used with all vertical force calculations.

Maximum normal force, FZMAX — Force scalar

Maximum normal force, in N. Used with all vertical force calculations.

Max allowable slip ratio (absolute), kappamax — Ratio scalar

Maximum allowable absolute slip ratio, dimensionless.

Velocity tolerance used to handle low velocity situations, VXLOW — Tolerance

scalar

Velocity tolerance used to handle low-velocity situations, in m/s.

References

- [1] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452_199906. Warrendale, PA: SAE International, June 1999.
- [2] Pacejka, H. B. *Tire and Vehicle Dynamics*. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
- [3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. "Chapter 18: Brakes and Clutches." *Fundamentals of Machine Elements, SI Version*. 3rd ed. Boca Raton, FL: CRC Press, 2014.
- [4] Shigley, Joseph E., and Larry Mitchel. *Mechanical Engineering Design*. 4th ed. New York, NY: McGraw Hill, 1983.

[5] ISO 28580:2009. Passenger car, truck and bus tyres -- Methods of measuring rolling resistance -- Single point test and correlation of measurement results. ISO (International Organization for Standardization), 2009.

See Also

Drive Cycle Source | Longitudinal Driver

Introduced in R2017a

Planetary Gear

Ideal planetary gear with sun, ring, and carrier **Library:** Powertrain Blockset / Drivetrain / Couplings

Description

The Planetary Gear block implements an ideal planetary gear coupling consisting of a rigidly coupled sun, ring, and carrier gears. The block calculates the dynamic response to the sun, carrier, and ring input torques.

In fuel economy and powertrain studies, you can use the Planetary Gear block as a power-split device by coupling it to common driveline elements such as transmissions, engines, clutches, and differentials.

These equations of motion represent the dynamic response of the planetary gear.

$$\begin{split} &\dot{\omega}_s J_s = \dot{\omega}_s b_s + T_s + T_{ps} \\ &\dot{\omega}_c J_c = \dot{\omega}_c b_c + T_c + T_{pc} \\ &\dot{\omega}_s J_r = \dot{\omega}_r b_r + T_r + T_{pr} \\ &\dot{\omega}_p J_p = \omega_p b_p + T_{rp} + T_{sp} + T_{cp} \end{split}$$

To reduce the equations of motion, the block uses these kinematic and geometric constraints.

$$\begin{aligned} \omega_c r_c &= r_s \omega_s + r_p \omega_p \\ \omega_r r_r &= r_c \omega_c + r_p \omega_p \\ r_c &= r_s + r_p \\ r_r &= r_c + r_p \end{aligned}$$

The equations use these variables.

ω_c , ω_p , ω_r , ω_s	Carrier, planet, ring, and sun gear angular speed
r_c , r_p , r_r , r_s	Carrier, planet, ring, and sun gear angular radius $% \left(1\right) =\left(1\right) \left(1\right) \left($
J_c , J_p , J_r , J_s	Carrier, planet, ring, and sun gear inertia
T_c , T_p , T_r , T_s	Applied carrier, planet, ring, and sun gear torque
T_{ps}	Torque applied from planet gear on sun gear
T_{pc}	Torque applied from planet gear on carrier gear
T_{pr}	Torque applied from planet gear on ring gear
T_{rp}	Torque applied from ring gear on planet gear
T_{sp}	Torque applied from sun gear on planet gear
T_{cp}	Torque applied from carrier gear on planet gear

Ports

Input

SunTrq — Sun gear applied torque scalar

Sun gear input torque, T_s , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

CarrTrq — Carrier gear applied torque

scalar

Carrier gear input torque, T_c , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

RingTrq — Ring gear applied torque

scalar

Ring gear applied torque, T_r , in N·m.

Dependencies

To create this port, for **Port Configuration**, select **Simulink**.

C — Carrier gear angular speed and torque

two-way connector port

Carrier gear angular speed, ω_c , in rad/s. Carrier gear applied torque, T_c , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Sun	SunTrq	Sun gear applied torque	T_s	N·m

Signal		Description	Variable	Units
	SunSpd	Sun gear angular speed	ω_s	rad/s
Carr	CarrTrq	Carrier gear applied torque	T_c	N·m
	CarrSpd	Carrier gear angular speed	ω_c	rad/s
Ring	RingTrq	Ring gear applied torque	T_r	N·m
	RingSpd	Ring gear angular speed	ω_r	rad/s

SunSpd — Sun gear angular speed

scalar

Sun gear angular speed, ω_s , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

CarrSpd — Carrier gear angular speed

scalar

Carrier gear angular speed, ω_c , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

${\bf RingSpd-Ring\ gear\ angular\ speed}$

scalar

Ring gear angular speed, ω_r , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

S — Sun gear angular speed and torque

two-way connector port

Sun gear angular speed, ω_s , in rad/s. Sun gear applied torque, T_s , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

R — Ring gear angular speed and torque

two-way connector port

Ring gear angular speed, ω_r , in rad/s. Ring gear applied torque, T_r , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- SunTrq
- CarrTrq
- RingTrq
- SunSpd
- CarrSpd
- RingSpd

Specifying Two-way connection creates these ports:

- C
- S
- R

Sun to planet ratio, Nsp — Ratio scalar

Sun-to-planet gear ratio, dimensionless.

Sun to ring ratio, Nsr — Ratio scalar

Sun-to-ring gear ratio, dimensionless.

Sun inertia, Js — Inertia scalar

Sun gear inertia, J_s , in kg·m².

Planet inertia, Jp — Inertia scalar

Planet gear inertia, J_{p} , in kg·m².

Ring inertia, Jr — Inertia scalar

Ring gear inertia, J_r , in kg·m².

Carrier inertia, Jc — Inertia scalar

Carrier gear inertia, J_c , in kg·m².

Sun viscous damping, bs — Damping scalar

Sun gear viscous damping, b_s , N·m·s/rad.

Ring viscous damping, br — Damping scalar

Ring gear viscous damping, b_r , N·m·s/rad.

Planet viscous damping, bp — Damping scalar

Planet gear viscous damping, b_p , N·m· s/rad.

Carrier viscous damping, bc — Damping scalar

Carrier gear viscous damping, b_c , N·m·s/rad.

Initial sun velocity, ws_o — Angular speed scalar

Initial sun gear angular speed, in rad/s.

Initial carrier velocity, wc_o — Angular speed scalar

Initial carrier gear angular speed, in rad/s.

See Also

Disc Clutch | Gearbox | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

Gearbox

Ideal rotational gearbox

Library:

Powertrain Blockset / Drivetrain / Couplings

Description

The Gearbox block implements an ideal rotational gearbox. The block uses the gear inertias and damping to calculate the velocity response to the base and follower gear pair input torques.

In fuel economy and powertrain efficiency studies, you can use the Gearbox block to model ideal gear coupling and the power transfer between common driveline elements such as transmissions, engines, clutches, and differentials.

The Gearbox block uses these equations to approximate the transmission dynamics.

$$\dot{\omega}_B J_B = \omega_B b_B + N T_F$$

$$\dot{\omega}_F J_F = \omega_F b_F + T_F$$

This constraint equation reduces the system to a 1 DOF system.

$$\omega_B = N \omega_F$$

To express the ideal torque transfer, the block uses this relationship.

$$NT_B + T_F = 0$$

The equations use these variables.

T_B	Base gear input torque
T_F	Follower gear output torque
$\omega_{\scriptscriptstyle B}$	Base gear angular velocity
ω_F	Follower gear angular velocity
J_B	Base gear rotational inertia
J_F	Follower gear rotational inertia
b_B	Base gear rotational viscous damping
b_F	Follower gear rotational viscous damping
N	Torque transmission gear ratio

Ports

Input

BTrq — Base gear input torque

scalar

Base gear input torque, T_B , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

FTrq — Follower gear output torque

scalar

Follower gear output torque, T_F , in N·m.

Dependencies

To create this port, for ${\bf Port\ Configuration},$ select ${\bf Simulink}.$

B — Base gear angular velocity and torque

two-way connector port

Base gear angular velocity, ω_B , in rad/s. Base gear torque, T_B , in N·m.

To create this port, for **Port Configuration**, select Two-way connection.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Base	BaseTrq	Base gear input torque	T_B	N·m
	BaseSpd	Base gear angular velocity	ω_B	rad/s
Flwr	FlwrTrq	Follower gear torque	T_F	N·m
	FlwrSpd	Follower gear angular velocity	ω_F	rad/s

BSpd — Base gear angular velocity

scalar

Base gear angular velocity, ω_B , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

FSpd — Follower gear angular velocity

scalar

Follower gear angular velocity, ω_F , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

F — Follower gear angular velocity and torque

two-way connector port

Follower gear angular velocity, ω_F , in rad/s. Follower gear torque, T_F , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:

- B
- F

Follower shaft rotates in same direction as input — Rotation off $(default) \mid on$

Select to specify that the output shaft rotates in the same direction as the input.

Follower to base gear ratio, N — Ratio scalar

Base-to-follower gear ratio, dimensionless.

Base shaft inertia, J1 — Inertia scalar

Base shaft inertia, in kg·m^2.

Follower shaft inertia, J2 — Inertia scalar

Follower shaft inertia, in kg·m^2.

Base viscous shaft damping, b1 — Damping scalar

Base viscous shaft damping, in N·m· s/rad.

Follower viscous shaft damping, b2 — Damping scalar

Follower viscous shaft damping, in N·m· s/rad.

Base shaft initial velocity, $w1_o - Initial velocity$ scalar

Base shaft initial velocity, in rad/s.

See Also

Disc Clutch | Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

Disc Clutch

Idealized disc clutch coupler

Library: Powertrain Blockset / Drivetrain / Couplings

Description

The Disc Clutch block implements an idealized disc clutch coupler. The block couples the rotary input and output shafts through an idealized friction model. To determine the output torque, the block uses friction parameters, relative slip velocity, and applied input pressure.

In fuel economy and powertrain efficiency studies, you can use the Disc Clutch block to model the mechanical power transfer between common driveline elements such as transmissions, engines, and differentials.

To approximate the torque response, the Disc Clutch block implements friction and dynamic models that depend on the clutch lockup condition. The block determines the locked or unlocked condition based on an idealized dry clutch friction model. This table summarizes the logic the block uses to determine the clutch condition.

Clutch Condition	When
Unlocked	
	$\omega_i \neq \omega_o$ or

$$T_{fmax} < \left| \frac{J_o T_i - (J_o b_i - J_i b_o) \omega_{i/o}}{J_o + J_i} \right|$$

Clutch Condition	When
Locked	
	$\omega_i = \omega_o$ and

This table summarizes the friction and dynamic and odels that the block uses for locked or unlocked clutch conditions.

Clutch Condition	Friction Model	Dynamic Model
Unlocked		
		$\dot{\omega}_i {J}_i = T_i - T_f - \omega_i b_i$
	$T_{fmax} = T_k$	$\dot{\omega}_o J_o = T_f + T_o - \omega_o b_o$
	where, $T_k = N_{disc} P_c A_{eff} R_{eff} \mu_k \tanh \left[4(\omega_i - \omega_i) \right]$	$[\omega_o]$
	$\operatorname{and}_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R^2 - R_i^2)}$	
Locked	$3(R_o^2 - R_i^2)$	
	$P_c = \max(P_c - P_{eng}, 0)$	$\dot{\omega}_{i}(J_{o}+J_{i})=T_{o}-\omega_{i}(b_{i}+b_{o})+T_{i}$
	$T_{fmax} = T_s$	$\omega_i = \omega_o$
	where,	
	$T_s = N_{disc} P_c A_{eff} R_{eff} \mu_s$	

The equations use these variables $3(R_o{}^3 \cdot R_i{}^3)$

ω_i	Input shaft angular speed
ω_o	Output shaft angular speed
b_i	Input shaft viscous damping
b_o	Output shaft viscous damping

J_i	Input shaft moment of inertia
J_o	Output shaft moment of inertia
T_f	Frictional torque
T_i	Net input torque
T_k	Kinetic frictional torque
T_o	Net output torque
T_s	Static frictional torque
T_{fmax}	Maximum frictional torque before slipping
P_c	Applied clutch pressure
P_{eng}	Engagement pressure
$A_{e\!f\!f}$	Effective area
N_{disc}	Number of frictional discs
$R_{\it eff}$	Effective clutch radius
R_o	Annular disk outer radius
R_i	Annular disk inner radius
R_e	Effective tire radius while under load and for a given pressure
μ_s	Coefficient of static friction
μ_k	Coefficient of kinetic friction

Ports

Input

Press — Applied clutch pressure

scalar

Base gear input torque, P_c , in N·m^2.

BTrq — Applied input torque

scalar

Applied input torque, T_i , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

To create this port, for **Port Configuration**, select Simulink.

FTrq — Applied load torque

scalar

Applied load torque, T_o , typically from the differential or drive shaft, in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

B — Applied drive shaft angular speed and torque

two-way connector port

Applied drive shaft angular speed, ω_i , in rad/s. Applied drive shaft torque, T_i , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Base	BTrq	Applied input torque, typically from the engine crankshaft or dual mass flywheel damper	T_i	N·m
	BSpd	Applied drive shaft angular speed input	ω_i	rad/s
Flwr	FTrq	Applied load torque, typically from the differential	T_o	N·m
	FSpd	Drive shaft angular speed output	ω_o	rad/s

Signal		Description	Variable	Units
Cltch	CltchFor ce	Applied clutch force	F_c	N
	CltchLoc ked	Clutch lock status	NA	NA
	CltchSpd Ratio	Clutch speed ratio	ω_o/ω_i	NA
	CltchEta	Clutch power transmission efficiency	η	NA

BSpd — **Angular speed**

scalar

Applied drive shaft angular speed input, ω_i , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select **Simulink**.

FSpd — Angular speed

scalar

Drive shaft angular speed output, ω_o , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

F — Output velocity and torque

two-way connector port

Output drive shaft angular speed, ω_{oi} , in rad/s. Output drive shaft torque, T_o , in N·m.

Dependencies

To create this port, for \boldsymbol{Port} $\boldsymbol{Configuration},$ select $\mathsf{Two}\text{-}\mathsf{way}$ $\;$ $\boldsymbol{connection}.$

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:

- B
- F

Clutch force equivalent net radius, Reff — Radius scalar

Clutch force equivalent net radius, in m.

Number of disks, Ndisk — Ratio scalar

Number of disks, dimensionless.

Effective applied pressure area, Aeff — Pressure area scalar

Effective applied pressure area, in m^2.

Engagement pressure threshold, Peng — Pressure threshold scalar

Pressure to engage clutch, in Pa.

Input shaft inertia, Jin — Inertia scalar

Input shaft inertia, in kg·m^2.

Output shaft inertia, Jout — Inertia scalar

Output shaft inertia, in kg·m^2.

Kinetic friction coefficient, muk — Coefficient scalar

Kinetic friction coefficient, dimensionless.

Static friction coefficient, mus — Coefficient scalar

Static friction coefficient, dimensionless.

Input shaft viscous damping, bin — Damping scalar

Input shaft viscous damping, in $N \cdot m \cdot s/rad$.

Output shaft viscous damping, bout — Damping scalar

Output shaft viscous damping, in N·m· s/rad.

Initial input shaft velocity, win_o — Initial velocity scalar

Input shaft initial velocity, in rad/s.

Initial output shaft velocity, wout_o — Initial velocity scalar

Input shaft initial velocity, in rad/s.

Clutch actuation time constant, tauC — Constant scalar

Clutch actuation time constant, in s.

Clutch initially locked — Select to initially lock clutch off (default)

Select to lock clutch initially.

See Also

Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

Vehicle Dynamics Blocks — Alphabetical List

Vehicle Body 1DOF Longitudinal

Two-axle vehicle in forward and reverse motion **Library:** Powertrain Blockset / Vehicle Dynamics

Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 1DOF Longitudinal block implements a one degree-of-freedom (1DOF) rigid vehicle body with constant mass undergoing longitudinal (that is, forward and reverse) motion. Use the block:

- In powertrain and fuel economy studies to represent the vehicle inertial and drag loads when weight transfer from vertical and pitch motions are negligible.
- To determine the engine torque and power required for the vehicle to follow a specified drive cycle.

Vehicle Body Model

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axlelongitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). The grade angle changes the direction of the resolved gravitational force acting on the vehicle CG. Similarly, the block resolves the resistive aerodynamic drag force on the vehicle CG.

The Vehicle Body 1DOF Longitudinal block implements these equations.

$$m\dot{V}_x = F_x - F_d - mg \cdot \sin \gamma$$

$$F_x = N_f F_{xf} + N_r F_{xr}$$

$$F_d = \frac{1}{2}C_d \rho A(V_x + V_w)^2 \cdot \operatorname{sgn}(V_x + V_w)$$

Zero normal acceleration and zero pitch torque determine the normal force on each front and rear wheel.

$$F_{zf} = \frac{-h(F_d + mg\sin\gamma + m\dot{V}_x) + b\cdot mg\cos\gamma}{N_f(a+b)}$$

$$F_{zr} = \frac{+h(F_d + mg\sin\gamma + m\dot{V}_x) + a\cdot mg\cos\gamma}{N_r(a+b)}$$

The wheel normal forces satisfy this equation.

$$N_f F_{zf} + N_r F_{zr} = mg \cos \gamma$$

The equations use these variables.

F_{xf} , F_{xr}	Longitudinal forces on each wheel at the front and rear ground contact points, respectively
F_{zf} , F_{zr}	Normal load forces on each wheel at the front and rear ground contact points, respectively
F_d	Aerodynamic drag force
$V_{\scriptscriptstyle X}$	Velocity of the vehicle. When $V_{\rm x}>0$, the vehicle moves forward. When $V_{\rm x}<0$, the vehicle moves backward.
V_w	Wind speed. When $V_{\rm w}$ > 0, the wind is headwind. When $V_{\rm w}$ < 0, the wind is tailwind.
N_f , N_r	Number of wheels on front and rear axle, respectively
γ	Angle of road grade, in degrees
m	Vehicle body mass
a,b	Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane
h	Height of vehicle CG above the axle plane
C_d	Frontal air drag coefficient
A	Frontal area
ho	Mass density of air
g	Gravitational acceleration

Limitations

The Vehicle Body 1DOF Longitudinal block lets you model only longitudinal dynamics, parallel to the ground and oriented along the direction of motion. The vehicle is assumed to be in pitch and normal equilibrium. The block does not model pitch or vertical movement. To model a vehicle with three degrees-of-freedom (DOF), use the Vehicle Body 3DOF Longitudinal.

Ports

Input

FwF — Total longitudinal force on front axle

scalar

Longitudinal force on the front axle, F_{xf} , along vehicle-fixed x-axis, in N.

FwR — Total longitudinal force on rear axle

scalar

Longitudinal force on the rear axle, Fw_R , along vehicle-fixed x-axis, in N.

Grade — Road grade angle

scalar

Road grade angle, γ , in deg.

WindX — Longitudinal wind speed

scalar

Longitudinal wind speed, V_w , along vehicle-fixed x-axis, in m/s.

Output

Info — Bus signal

bus

Bus signal containing these block values.

Signal			Description	Value	Units	
InertFr m	Cg	Disp	X	Vehicle CG displacement along earth-fixed X-axis	Compute d	m
			Υ	Vehicle CG displacement along earth-fixed Y-axis	0	m

Signal				Description	Value	Units
			Z	Vehicle CG displacement along earth-fixed Z-axis	Compute d	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Compute d	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y-axis	Θ	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Compute d	m/s
		Ang	phi	Rotation of vehicle-fixed frame about earth-fixed X-axis (roll)	0	rad
			theta	Rotation of vehicle-fixed frame about earth-fixed Y-axis (pitch)	Compute d (input - grade angle)	rad
			psi	Rotation of vehicle-fixed frame about earth-fixed Z-axis (yaw)	0	rad
	FrntAx l	Disp	Х	Front axle displacement along the earth-fixed X-axis	Compute d	m
			Υ	Front axle displacement along the earth-fixed Y-axis	0	m
			Z	Front axle displacement along the earth-fixed Z-axis	Compute d	m
		Vel	Xdot	Front axle velocity along the earth-fixed X-axis	Compute d	m/s
			Ydot	Front axle velocity along the earth-fixed Y-axis	Θ	m/s

Signal				Description	Value	Units
			Zdot	Front axle velocity along the earth-fixed Z-axis	Compute d	m/s
	RearAx l	Disp	X	Rear axle displacement along the earth-fixed X-axis	Compute d	m
			Υ	Rear axle displacement along the earth-fixed Y-axis	Θ	m
			Z	Rear axle displacement along the earth-fixed Z-axis	Compute d	m
		Vel	Xdot	Rear axle velocity along the earth-fixed X-axis	Compute d	m/s
			Ydot	Rear axle velocity along the earth-fixed Y-axis	0	m/s
			Zdot	Rear axle velocity along the earth-fixed Z-axis	Compute d	m/s
BdyFrm	Cg	Disp	х	Vehicle CG displacement along vehicle-fixed x-axis	Compute d	m
			У	Vehicle CG displacement along vehicle-fixed y-axis	Θ	m
			Z	Vehicle CG displacement along vehicle-fixed z-axis	Θ	m
		Vel	xdot	Vehicle CG velocity along vehicle-fixed x- axis	Compute d	m/s
			ydot	Vehicle CG velocity along vehicle-fixed y- axis	Θ	m/s

Signal				Description	Value	Units
			zdot	Vehicle CG velocity along vehicle-fixed z- axis	Θ	m/s
		AngVel	p	Vehicle angular velocity about the vehicle-fixed x-axis (roll rate)	0	rad/s
			q	Vehicle angular velocity about the vehicle-fixed y-axis (pitch rate)	0	rad/s
		Accel	r	Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate)	0	rad/s
			ax	Vehicle CG acceleration along vehicle-fixed x- axis	Compute d	gn
			ay	Vehicle CG acceleration along vehicle-fixed y-axis	0	gn
			az	Vehicle CG acceleration along vehicle-fixed z- axis	Θ	gn
	Forces Body	Body	Fx	Net force on vehicle CG along vehicle-fixed x- axis	Θ	N
			Fy	Net force on vehicle CG along vehicle-fixed y-axis	Θ	N
	_		Fz	Net force on vehicle CG along vehicle-fixed z- axis	Θ	N
		Ext	Fx	External force on vehicle CG along vehicle-fixed x-axis	0	N

Signal				Description	Value	Units
		Fy		External force on vehicle CG along vehicle-fixed y-axis	0	N
		Fz		External force on vehicle CG along vehicle-fixed z-axis	0	N
	FrntAx l	Fx		Longitudinal force on front axle, along the vehicle-fixed x-axis	0	N
		Fy		Lateral force on front axle, along the vehicle-fixed y-axis	0	N
		Fz		Normal force on front axle, along the vehicle-fixed z-axis	Compute d	N
	RearAx	Fx		Longitudinal force on rear axle, along the vehicle-fixed x-axis	0	N
		Fy		Lateral force on rear axle, along the vehicle-fixed y-axis	0	N
		Fz		Normal force on rear axle, along the vehicle-fixed z-axis	Compute d	N
	Tires	FrntTi re		Front tire force, along vehicle-fixed x-axis	0	N
			F y	Front tire force, along vehicle-fixed y-axis	0	N
			F z	Front tire force, along vehicle-fixed z-axis	Compute d	N
		RearTi re	F x	Rear tire force, along vehicle-fixed x-axis	0	N

Signal				Description	Value	Units	
				F y	Rear tire force, along vehicle-fixed y-axis	0	N
					Rear tire force, along vehicle-fixed z-axis	Compute d	N
		Drag	Fx		Drag force on vehicle CG along vehicle-fixed x-axis	Compute d	N
			Fy		Drag force on vehicle CG along vehicle-fixed y-axis	Compute d	N
			Fz		Drag force on vehicle CG along vehicle-fixed z-axis	Compute d	N
		Grvty	Fx		Gravity force on vehicle CG along vehicle-fixed x-axis	Compute d	N
			Fy		Gravity force on vehicle CG along vehicle-fixed y-axis	0	N
			Fz		Gravity force on vehicle CG along vehicle-fixed z-axis	Compute d	N
	FrntAx l		х		Front axle displacement along the vehicle-fixed x-axis	Compute d	m
			У		Front axle displacement along the vehicle-fixed y-axis	0	m
			Z		Front axle displacement along the vehicle-fixed z-axis	Compute d	m
		Vel	xdot		Front axle velocity along the vehicle-fixed x-axis	Compute d	m/s

Signal				Description	Value	Units
			ydot	Front axle velocity along the vehicle-fixed y-axis	Θ	m/s
			zdot	Front axle velocity along the vehicle-fixed z-axis	Compute d	m/s
	RearAx l	Disp	X	Rear axle displacement along the vehicle-fixed x-axis	Compute d	m
		Vel	У	Rear axle displacement along the vehicle-fixed y-axis	Θ	m
			Z	Rear axle displacement along the vehicle-fixed z-axis	Compute d	m
			xdot	Rear axle velocity along the vehicle-fixed x-axis	Compute d	m/s
			ydot	Rear axle velocity along the vehicle-fixed y-axis	Θ	m/s
			zdot	Rear axle velocity along the vehicle-fixed z-axis	Compute d	m/s
		PwrExt		Applied external power	Compute d	W
		Drag		Power loss due to drag	Compute d	W

xdot — Vehicle body longitudinal velocity

scalar

Vehicle body longitudinal velocity along the earth-fixed reference frame X-axis, in m/s.

FzF — Front axle normal force

scalar

Normal load force on the front axle, $F_{\it zf}$, along vehicle-fixed z-axis, in N.

FzR — Rear axle normal force

scalar

Normal force on rear axle, F_{zr} , along vehicle-fixed z-axis, in N.

Parameters

Longitudinal

Number of wheels on front axle, NF — Front wheel count scalar

Number of wheels on front axle, N_F , dimensionless.

Number of wheels on rear axle, NR — Rear wheel count scalar

Number of wheels on rear axle, N_R , dimensionless.

Mass, m — Vehicle mass

scalar

Vehicle mass, M, in kg.

Horizontal distance from CG to front axle, a — Front axle distance scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.

Horizontal distance from CG to rear axle, b — Rear axle distance scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.

CG height above axles, h — Height

scalar

Height of vehicle CG above the ground, h, in m.

Drag coefficient, Cd — Drag

scalar

Air drag coefficient, C_d .

Frontal area, Af — Area

scalar

Effective vehicle cross-sectional area, A, to calculate the aerodynamic drag force on the vehicle, in m^2 .

Initial position, x_o — Position

scalar

Vehicle body longitudinal initial position along the vehicle-fixed x-axis, x_0 , in m.

Initial velocity, xdot_o — Velocity

scalar

Vehicle body longitudinal initial velocity along the vehicle-fixed x-axis, \dot{x}_0 , in m/s.

Environment

Absolute Pressure, Pabs — Pressure

scalar

Environmental absolute pressure, P, in Pa.

Air Temp, T — Temperature

scalar

Environmental absolute temperature, T, in K.

Gravitational acceleration, g — Gravity

scalar

Gravitational acceleration, g, in m/s $^$.

See Also

Vehicle Body 3DOF Longitudinal | Vehicle Body Total Road Load

Introduced in R2017a

Vehicle Body 3DOF Longitudinal

3DOF rigid vehicle body to calculate longitudinal, vertical, and pitch motion

Library: Powertrain Blockset / Vehicle Dynamics Vehicle Dynamics Blockset / Vehicle Body

Fundant Strate S

Description

The Vehicle Body 3DOF Longitudinal block implements a three degrees-of-freedom (3DOF) rigid vehicle body model with configurable axle stiffness to calculate longitudinal, vertical, and pitch motion. The block accounts for body mass, aerodynamic drag, road incline, and weight distribution between the axles due to acceleration and the road profile.

You can specify the type of axle attachment to the vehicle:

- Grade angle Vertical axle displacement from road surface to axles remains constant.
 The block uses tabular stiffness and damping parameters to model the suspension
 forces acting between the vehicle body and axles.
- Axle displacement Axles have input-provided vertical displacement and velocity with respect to the road grade. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axle.
- External suspension Axles have externally applied forces for coupling the vehicle body to custom suspension models.

If the weight transfer from vertical and pitch motions are not negligible, consider using this block to represent vehicle motion in powertrain and fuel economy studies. For example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the normal forces on the front and rear axles. The block resolves the force components and moments on the rigid vehicle body frame:

$$\begin{split} F_{x} &= F_{wF} + F_{wR} - F_{d,x} - F_{sx,F} - F_{sx,R} + F_{g,x} \\ F_{z} &= F_{d,z} - F_{sz,F} - F_{sz,R} + F_{g,z} \\ M_{y} &= aF_{sz,F} - bF_{sz,R} + h \left(F_{wF} + F_{wR} + F_{sx,F} + F_{sx,R} \right) - M_{d,y} \end{split}$$

The equations use these variables.

F_{χ}	Longitudinal force on vehicle
F_z	Normal force on vehicle
M_y	Torque on vehicle about vehicle-fixed y-axis
F_{wF} , F_{wR}	Longitudinal force on front and rear axles along vehicle-fixed x-axis
$F_{d,x}$, $F_{d,z}$	Longitudinal and normal drag force on vehicle CG
$F_{sx,F}$, $F_{sx,R}$	Longitudinal suspension force on front and rear axles
$F_{sz,F}$, $F_{sz,R}$	Normal suspension force on front and rear axles
$F_{g,x}$, $F_{g,z}$	Longitudinal and normal gravitational force on vehicle along vehicle-fixed frame
$M_{d,y}$	Torque due to drag on vehicle about vehicle-fixed y-axis
a,b	Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane
h	Height of vehicle CG above the axle plane along vehicle-fixed z-axis
Fs_F , Fs_R	Front and rear axle suspension force along vehicle-fixed z-axis

Z_{wF} , Z_{wR}	Front and rear vehicle normal position along earth-fixed Z-axis
Θ	Vehicle pitch angle about vehicle-fixed y-axis
m	Vehicle body mass
N_{F} , N_{R}	Number of front and rear wheels
I_{yy}	Vehicle body moment of inertia about the vehicle-fixed y-axis
x , \dot{x} , \ddot{x}	Vehicle longitudinal position, velocity, and acceleration along vehicle-fixed x-axis
z,\dot{z},\ddot{z}	Vehicle normal position, velocity, and acceleration along vehicle-fixed ${\sf z}$ -axis
Fk_F , Fk_R	Front and rear wheel suspension stiffness force along vehicle-fixed z -axis
Fb_F , Fb_R	Front and rear wheel suspension damping force along vehicle-fixed z-axis
Z_F , Z_R	Front and rear vehicle vertical position along earth-fixed Z-axis
\dot{Z}_F,\dot{Z}_R	Front and rear vehicle vertical velocity along vehicle-fixed z-axis
$ar{Z}_F,ar{Z}_R$	Front and rear wheel axle vertical position along vehicle-fixed z-axis
$\dot{ar{Z}}_F,\dot{ar{Z}}_R$	Front and rear wheel axle vertical velocity along earth-fixed z-axis
dZ_F , dZ_R	Front and rear axle suspension deflection along vehicle-fixed z-axis
$d\dot{Z}_F, d\dot{Z}_R$	Front and rear axle suspension deflection rate along vehicle-fixed z-axis
C_d	Frontal air drag coefficient acting along vehicle-fixed x-axis
C_l	Lateral air drag coefficient acting along vehicle-fixedz-axis
$C_{\it pm}$	Air drag pitch moment acting about vehicle-fixed y-axis
A_f	Frontal area
P_{abs}	Environmental absolute pressure
R	Atmospheric specific gas constant
T	Environmental air temperature
W	Wind speed along vehicle-fixed axis

Rigid-Body Vehicle Motion

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axlelongitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). Depending on the inclined angle, the weight pulls the vehicle to the ground and either forward or backward. Whether the vehicle travels forward or backward, aerodynamic drag slows it down. For simplicity, the drag is assumed to act through the CG.

The Vehicle Body 3DOF Longitudinal implements these equations.

$$\ddot{x} = \frac{F_x}{m} - qz$$

$$\ddot{z} = \frac{F_z}{m} - qx$$

$$\dot{q} = \frac{M_y}{I_{yy}}$$

$$\dot{\theta} = q$$

Suspension System Forces

If you configure the block with the **Ground interaction type** parameter Grade angle or Axle displacement, velocity, the block uses nonlinear stiffness and damping parameters to model the suspension system.

The front and rear axle suspension forces are given by:

$$Fs_F = N_F [Fk_F + Fb_F]$$

 $Fs_R = N_R [Fk_R + Fb_R]$

The block uses lookup tables to implement the front and rear suspension stiffness. To account for kinematic and material nonlinearities, including collisions with end-stops, the tables are functions of the stroke.

$$Fk_F = f(dZ_F)$$
$$Fk_R = f(dZ_R)$$

The block uses lookup tables to implement the front and rear suspension damping. To account for nonlinearities, compression, and rebound, the tables are functions of the stroke rate.

$$Fb_F = f(d\dot{Z}_F)$$
$$Fb_R = f(d\dot{Z}_R)$$

The stroke is the difference in the vehicle vertical and axle positions. The stroke rate is the difference in the vertical and axle velocities.

$$\begin{split} dZ_F &= Z_F - \overline{Z}_F \\ dZ_R &= Z_R - \overline{Z}_R \\ d\dot{Z}_F &= \dot{Z}_F - \dot{\overline{Z}}_F \\ d\dot{Z}_R &= \dot{Z}_R - \dot{\overline{Z}}_R \end{split}$$

When the **Ground interaction type** parameter is **Grade** angle, the axle vertical positions (\bar{Z}_F, \bar{Z}_R) and velocities ($\dot{\bar{Z}}_F, \dot{\bar{Z}}_R$) are set to 0.

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed:

$$\begin{split} F_{d,x} &= \frac{1}{2TR} C_d A_f P_{abs} (\dot{x} - w)^2 \\ F_{d,z} &= \frac{1}{2TR} C_l A_f P_{abs} (\dot{x} - w)^2 \\ M_{d,y} &= \frac{1}{2TR} C_{pm} A_f P_{abs} (\dot{x} - w)^2 (a + b) \end{split}$$

Ports

Input

FwF — Total longitudinal force on the front axle

scalar

Longitudinal force on the front axle, Fw_F , along vehicle-fixed x-axis, in N.

FwR — Total longitudinal force on the rear axle

scalar

Longitudinal force on the rear axle, Fw_R , along vehicle-fixed x-axis, in N.

Grade — Road grade angle

scalar

Road grade angle, γ , in deg.

FsF — Suspension force on front axle per wheel

vector

Suspension force on front axle, Fs_F , along vehicle-fixed z-axis, in N.

Dependencies

To create this port, for the **Ground interaction type** parameter, select External suspension.

$\label{eq:Fsr} \textit{FsR} - \textit{Suspension force on rear axle per wheel}$

vector

Suspension force on rear axle, Fs_R , along vehicle-fixed z-axis, in N.

Dependencies

To create this port, for the **Ground interaction type** parameter, select External suspension.

WindXYZ — Wind speed

vector

Longitudinal wind speed, $V_{windxyz}$, in m/s.

zF,R — Forward and rear axle positions

vector

Forward and rear axle positions along the vehicle-fixed z-axis, \bar{Z}_F, \bar{Z}_R , in m.

Dependencies

To create this port, for the **Ground interaction type** parameter, select Axle displacement, velocity.

zdotF, R — Forward and rear axle velocities

vector

Forward and rear axle velocities along the vehicle-fixed z-axis, \dot{Z}_F, \dot{Z}_R , in m/s.

Dependencies

To create this port, for the **Ground interaction type** parameter, select Axle displacement, velocity.

Output

Info — Bus signal

bus

Bus signal containing these block values.

Signal			Description	Value	Units	
InertFr m	Cg	Disp	X	Vehicle CG displacement along earth-fixed X-axis	Compute d	m
			Υ	Vehicle CG displacement along earth-fixed Y-axis	0	m

Signal				Description	Value	Units
			Z	Vehicle CG displacement along earth-fixed Z-axis	Compute d	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Compute d	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y-axis	0	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Compute d	m/s
		Ang	phi	Rotation of vehicle-fixed frame about earth-fixed X-axis (roll)	Θ	rad
			theta	Rotation of vehicle-fixed frame about earth-fixed Y-axis (pitch)	Compute d	rad
			psi	Rotation of vehicle-fixed frame about earth-fixed Z-axis (yaw)	Θ	rad
	FrntAx l	tAx Disp	X	Front axle displacement along the earth-fixed X-axis	Compute d	m
			Y	Front axle displacement along the earth-fixed Y-axis	Θ	m
			Z	Front axle displacement along the earth-fixed Z-axis	Compute d	m
		Vel	Xdot	Front axle velocity along the earth-fixed X-axis	Compute d	m/s
			Ydot	Front axle velocity along the earth-fixed Y-axis	0	m/s
			Zdot	Front axle velocity along the earth-fixed Z-axis	Compute d	m/s

Signal				Description	Value	Units
	RearAx l	Disp	X	Rear axle displacement along the earth-fixed X-axis	Compute d	m
			Υ	Rear axle displacement along the earth-fixed Y-axis	Θ	m
			Z	Rear axle displacement along the earth-fixed Z-axis	Compute d	m
		Vel	Xdot	Rear axle velocity along the earth-fixed X-axis	Compute d	m/s
			Ydot	Rear axle velocity along the earth-fixed Y-axis	0	m/s
			Zdot	Rear axle velocity along the earth-fixed Z-axis	Compute d	m/s
BdyFrm	Cg	Vel	Х	Vehicle CG displacement along vehicle-fixed x-axis	Compute d	m
			У	Vehicle CG displacement along vehicle-fixed y-axis	0	m
			Z	Vehicle CG displacement along vehicle-fixed z-axis	Compute d	m
			xdot	Vehicle CG velocity along vehicle-fixed x- axis	Compute d	m/s
			ydot	Vehicle CG velocity along vehicle-fixed y- axis	Θ	m/s
			zdot	Vehicle CG velocity along vehicle-fixed z- axis	Compute d	m/s

Signal				Description	Value	Units
		AngVel	p	Vehicle angular velocity about the vehicle-fixed x-axis (roll rate)	Θ	rad/s
			q	Vehicle angular velocity about the vehicle-fixed y-axis (pitch rate)	Compute d	rad/s
			r	Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate)	0	rad/s
		Accel	ax	Vehicle CG acceleration along vehicle-fixed x- axis	Compute d	gn
			ay	Vehicle CG acceleration along vehicle-fixed y-axis	0	gn
			az	Vehicle CG acceleration along vehicle-fixed z- axis	Compute d	gn
	Forces	erces Body Ext	Fx	Net force on vehicle CG along vehicle-fixed x- axis	Compute d	N
			Fy	Net force on vehicle CG along vehicle-fixed y-axis	Θ	N
			Fz	Net force on vehicle CG along vehicle-fixed z- axis	Compute d	N
			Fx	External force on vehicle CG along vehicle-fixed x-axis	Θ	N
			Fy	External force on vehicle CG along vehicle-fixed y-axis	Θ	N

Signal			Description	Value	Units	
		Fz		External force on vehicle CG along vehicle-fixed z-axis	0	N
	FrntAx l	Fx		Longitudinal force on front axle, along the vehicle-fixed x-axis	Compute d	N
		Fy		Lateral force on front axle, along the vehicle-fixed y-axis	0	N
		Fz		Normal force on front axle, along the vehicle-fixed z-axis	Compute d	N
	RearAx l	Fx		Longitudinal force on rear axle, along the vehicle-fixed x-axis	Compute d	N
		Fy		Lateral force on rear axle, along the vehicle-fixed y-axis	0	N
		Fz		Normal force on rear axle, along the vehicle-fixed z-axis	Compute d	N
	Tires	FrntTi re		Front tire force, along vehicle-fixed x-axis	0	N
			F y	Front tire force, along vehicle-fixed y-axis	0	N
			F z	Front tire force, along vehicle-fixed z-axis	Compute d	N
		RearTi re	F x	1	0	N
			F y	Rear tire force, along vehicle-fixed y-axis	0	N
			F z	Rear tire force, along vehicle-fixed z-axis	Compute d	N

Signal				Description	Value	Units
		Drag	Fx	Drag force on vehicle CG along vehicle-fixed x-axis	Compute d	N
			Fy	Drag force on vehicle CG along vehicle-fixed y-axis	Compute d	N
			Fz	Drag force on vehicle CG along vehicle-fixed z-axis	Compute d	N
		Grvty	Fx	Gravity force on vehicle CG along vehicle-fixed x-axis	Compute d	N
			Fy	Gravity force on vehicle CG along vehicle-fixed y-axis	Θ	N
			Fz	Gravity force on vehicle CG along vehicle-fixed z-axis	Compute d	N
	Moments	ment Body Drag	Mx	Body moment on vehicle CG about vehicle-fixed x-axis	0	N·m
			Му	Body moment on vehicle CG about vehicle-fixed y-axis	Compute d	N·m
			Mz	Body moment on vehicle CG about vehicle-fixed z-axis	0	N·m
			Mx	Drag moment on vehicle CG about vehicle-fixed x-axis	Θ	N·m
			Му	Drag moment on vehicle CG about vehicle-fixed y-axis	Compute d	N·m

Signal				Description	Value	Units
			Mz	Drag moment on vehicle CG about vehicle-fixed z-axis	0	N·m
	FrntAx l	Disp	X	Front axle displacement along the vehicle-fixed x-axis	Compute d	m
			У	Front axle displacement along the vehicle-fixed y-axis	0	m
			Z	Front axle displacement along the vehicle-fixed z-axis	Compute d	m
		Vel	xdot	Front axle velocity along the vehicle-fixed x-axis	Compute d	m/s
			ydot	Front axle velocity along the vehicle-fixed y-axis	0	m/s
			zdot	Front axle velocity along the vehicle-fixed z-axis	Compute d	m/s
	RearAx l	Disp	х	Rear axle displacement along the vehicle-fixed x-axis	Compute d	m
			У	Rear axle displacement along the vehicle-fixed y-axis	0	m
			Z	Rear axle displacement along the vehicle-fixed z-axis	Compute d	m
		Vel	xdot	Rear axle velocity along the vehicle-fixed x-axis	Compute d	m/s
			ydot	Rear axle velocity along the vehicle-fixed y-axis	0	m/s
			zdot	Rear axle velocity along the vehicle-fixed z-axis	Compute d	m/s

Signal			Description	Value	Units
Pwr		PwrExt	Applied external power	Compute d	W
		Drag	Power loss due to drag	Compute d	W

xdot — Vehicle longitudinal velocity

scalar

Vehicle CG velocity along vehicle-fixed x-axis, in m/s.

FzF — Front axle normal force

scalar

Normal force on front axle, Fz_F , along vehicle-fixed z-axis, in N.

FzR — Rear axle normal force

scalar

Normal force on rear axle, Fz_R , along vehicle-fixed z-axis, in N.

Parameters

Longitudinal

Number of wheels on front axle, NF — Front wheel count scalar

Number of wheels on front axle, N_F , dimensionless.

Number of wheels on rear axle, NR — Rear wheel count scalar

Number of wheels on rear axle, $N_{\mathbb{R}}$, dimensionless.

Mass, m — Vehicle mass

scalar

Vehicle mass, m, in kg.

Horizontal distance from CG to front axle, a — Front axle distance scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.

Horizontal distance from CG to rear axle, b — Rear axle distance scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.

CG height above axles, h — Height

scalar

Height of vehicle CG above the axles, *h*, in m.

Drag coefficient, Cd — Drag

scalar

Air drag coefficient, C_d , dimensionless.

Frontal area, Af — Area

scalar

Effective vehicle cross-sectional area, A_f to calculate the aerodynamic drag force on the vehicle, in m².

Initial position, x_o - Position

scalar

Vehicle body longitudinal initial position along earth-fixed x-axis, x_0 , in m.

Initial velocity, xdot_o — Velocity

scalar

Vehicle body longitudinal initial velocity along earth-fixed x-axis, \dot{x}_0 , in m/s.

Vertical

Lift coefficient, Cl - Lift

scalar

Lift coefficient, C_l , dimensionless.

Initial vertical position, z_o — Position

scalar

Initial vertical CG position, z_o , along the vehicle-fixed z-axis, in m.

${\bf Initial\ vertical\ velocity,\ zdot_o-Velocity}$

scalar

Initial vertical CG velocity, *zdot*_o, along the vehicle-fixed z-axis, in m.

Pitch

Inertia, Iyy — About body y-axis

scalar

Vehicle body moment of inertia about body z-axis.

Pitch drag moment coefficient, Cpm — Drag coefficient

scalar

Pitch drag moment coefficient, dimensionless.

Initial pitch angle, theta_o - Pitch

scalar

Initial pitch angle about body z-axis, in rad.

Initial angular velocity, q_o — Pitch velocity

scalar

Initial vehicle body angular velocity about body z-axis, in rad/s.

Suspension

Front axle stiffness force data, FskF — Force

vector

Front axle stiffness force data, Fk_F , in N.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Front axle displacement data, dzsF — Displacement

vector

Front axle displacement data, in m.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Front axle damping force data, FsbF — Damping force

vector

Front axle damping force, in N.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Front axle velocity data, dzdotsF — Velocity

vector

Front axle velocity data, in m/s.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Rear axle stiffness force data, FskR — Force

vector

Rear axle stiffness force data, in N.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Rear axle displacement data, dzsR — Displacement

vector

Rear axle displacement data, in m.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Rear axle damping force data, FsbR — Damping force

vector

Rear axle damping force, in N.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Rear axle velocity data, dzdotsR — Velocity

vector

Rear axle velocity data, in m/s.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Environment

Absolute Pressure, Pabs — Pressure

scalar

Environmental absolute pressure, P_{abs} , in Pa.

Air Temp, T — Temperature

scalar

Environmental absolute temperature, T, in K.

Gravitational acceleration, g — Gravity

scalar

Gravitational acceleration, g, in m/s^2.

References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [3] Technical Committee. Road vehicles Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

See Also

Vehicle Body 1DOF Longitudinal | Vehicle Body Total Road Load

Introduced in R2017a

Vehicle Body Total Road Load

Vehicle motion using coast-down testing coefficients

Library: Powertrain Blockset / Vehicle Dynamics

Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body Total Road Load block implements a one degree-of-freedom (1DOF) rigid vehicle model using coast-down testing coefficients. You can use this block in a vehicle model to represent the load that the driveline and chassis applies to a transmission or engine. It is suitable for system-level performance, component sizing, fuel economy, or drive cycle tracking studies. The block calculates the dynamic powertrain load with minimal parameterization or computational cost.

You can configure the block for kinematic, force, or total power input.

- Kinematic Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power.
- Force Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity.
- Power Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity.

Equations

To calculate the total road load acting on the vehicle, the block implements this equation.

$$F_{mad} = a + b\dot{x} + c\dot{x}^2 + mg\sin(\theta)$$

To determine the coefficients a, b, and c, you can use a test procedure similar to the one described in Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. You can also use Simulink® Design Optimization $^{\text{m}}$ to fit the coefficients to measured data.

To calculate the vehicle motion, the block uses Newton's law for rigid bodies.

$$F_{total} = m\ddot{x} + F_{road}$$

Total power input is a product of the total force and longitudinal velocity. Power due to road and gravitational forces is a product of the road force and longitudinal velocity.

$$\begin{aligned} P_{total} &= F_{total} \dot{x} \\ P_{road} &= F_{road} \dot{x} \end{aligned}$$

The equations use these variables.

a	Steady-state rolling resistance coefficient
b	Viscous driveline and rolling resistance coefficient
c	Aerodynamic drag coefficient
g	Gravitational acceleration
X	Vehicle longitudinal displacement with respect to ground, in vehicle-fixed frame
\dot{x}	Vehicle longitudinal velocity with respect to ground, in vehicle-fixed frame
\ddot{x}	Vehicle longitudinal acceleration with respect to ground, vehicle-fixed frame
m	Vehicle body mass
Θ	Road grade angle
F_{total}	Total force acting on vehicle
F_{road}	Resistive road load due to losses and gravitational load
P_{total}	Total tractive input power
P_{road}	Total power due to losses and gravitational load

Ports

Input

xdot — Vehicle longitudinal velocity

scalar

Vehicle total longitudinal velocity, \dot{x} , in m/s.

Dependencies

To create this port, for the **Input Mode** parameter, select **Kinematic**.

xddot — Vehicle longitudinal acceleration

scalar

Vehicle total longitudinal acceleration, \ddot{x} , in m/s².

Dependencies

To create this port, for the **Input Mode** parameter, select **Kinematic**.

PwrTot — **Tractive** input power

scalar

Tractive input power, P_{total} , in W.

Dependencies

To create this port, for the Input Mode parameter, select Power.

ForceTot — Tractive input force

scalar

Tractive input force, F_{total} , in N.

Dependencies

To create this port, for the **Input Mode** parameter, select Force.

Grade — Road grade angle

scalar

Road grade angle, Θ , in deg.

Output

Info — Bus signal

hus

Bus signal containing these block calculations.

Sig	Signal			Description	Value	Units
I n	Cg	Disp	Х	Vehicle CG displacement along earth-fixed X-axis	Computed	m
e r t			Y	Vehicle CG displacement along earth-fixed Y-axis	0	m
F			Z	Vehicle CG displacement along earth-fixed Z-axis	Computed	m
m		Vel	Xdot	Vehicle CG velocity along earth- fixed X-axis	Computed	m/s
		Ang	Ydot	Vehicle CG velocity along earth- fixed Y-axis	0	m/s
			Zdot	Vehicle CG velocity along earth- fixed Z-axis	Computed	m/s
			phi	Rotation of vehicle-fixed frame about earth-fixed X-axis (roll)	0	rad
			thet a	Rotation of vehicle-fixed frame about earth-fixed Y-axis (pitch)	Computed	rad
			psi	Rotation of vehicle-fixed frame about earth-fixed Z-axis (yaw)	0	rad
B d	Cg	Disp	х	Vehicle CG displacement along vehicle-fixed x-axis	Computed	m
y F r			У	Vehicle CG displacement along vehicle-fixed y-axis	0	m
m			Z	Vehicle CG displacement along vehicle-fixed z-axis	0	m

Signal			Description	Value	Units	
	Vel x		xdot	Vehicle CG velocity along vehicle-fixed x-axis	Computed	m/s
			ydot	Vehicle CG velocity along vehicle-fixed y-axis	0	m/s
			zdot	Vehicle CG velocity along vehicle-fixed z-axis	0	m/s
		Acce l	ax	Vehicle CG acceleration along vehicle-fixed x-axis	Computed	gn
			ay	Vehicle CG acceleration along vehicle-fixed y-axis	0	gn
			az	Vehicle CG acceleration along vehicle-fixed z-axis	0	gn
	For ces	Body	Fx	Net force on vehicle CG along vehicle-fixed x-axis	Computed	N
			Fy	Net force on vehicle CG along vehicle-fixed y-axis	0	N
			Fz	Net force on vehicle CG along vehicle-fixed z-axis	Θ	N
		Ext	Fx	External force on vehicle CG along vehicle-fixed x-axis	Computed	N
			Fy	External force on vehicle CG along vehicle-fixed y-axis	0	m/s m/s m/s m/s gn gn N N N
			Fz	External force on vehicle CG along vehicle-fixed z-axis	0	
		Drag	Fx	Drag force on vehicle CG along vehicle-fixed x-axis	Computed	N
			Fy	Drag force on vehicle CG along vehicle-fixed y-axis	0	N
			Fz	Drag force on vehicle CG along vehicle-fixed z-axis	0	N
		Grvt y	Fx	Gravity force on vehicle CG along vehicle-fixed x-axis	Computed	N

Signal			Description	Value	Units	
Fy		Fy	Gravity force on vehicle CG along vehicle-fixed y-axis	0	N	
			Fz	Gravity force on vehicle CG along vehicle-fixed z-axis	Computed	N
	Pwr	PwrEx	t	Applied external power	Computed	W
		Drag		Power loss due to drag	Computed	W

xdot — Vehicle longitudinal velocity

scalar

Vehicle total longitudinal velocity, \dot{x} , in m/s.

Dependencies

To create this port, for the **Input Mode** parameter, select **Power** or **Force**.

ForceTot — Tractive input force

scalar

Tractive input force, F_{total} , in N.

Dependencies

To create this port, for the **Input Mode** parameter, select Kinematic.

Parameters

Input Mode — Specify input mode

Kinematic (default) | Force | Power

Specify the input type.

- Kinematic Block uses the vehicle longitudinal velocity and acceleration to
 calculate the tractive force and power. Use this configuration for powertrain, driveline,
 and braking system design, or component sizing.
- Force Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.

 Power — Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.

Dependencies

This table summarizes the port and input mode configurations.

Input Mode	Creates Ports
Kinematic	xdot
	xddot
Force	Force
Power	Power

Mass — Vehicle body mass

scalar

Vehicle body mass, m, in kg.

Rolling resistance coefficient, a — Rolling scalar

Steady-state rolling resistance coefficient, *a*, in N.

Rolling and driveline resistance coefficient, b — Rolling and driveline scalar

Viscous driveline and rolling resistance coefficient, *b*, in N*s/m.

Aerodynamic drag coefficient, c — Drag scalar

Aerodynamic drag coefficient, c, in N·s^2/m.

Gravitational acceleration, g — Gravity scalar

Gravitational acceleration, g, in m/s 2 .

Initial velocity, xdot_o - Velocity scalar

Vehicle longitudinal initial velocity with respect to ground, in m/s.

References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.
- [2] Light Duty Vehicle Performance And Economy Measure Committee. Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. Standard J1263 201003. SAE International, March 2010.

See Also

Drive Cycle Source | Vehicle Body 1DOF Longitudinal | Vehicle Body 3DOF Longitudinal

Introduced in R2017a

Energy Storage Blocks — Alphabetical List

Datasheet Battery

Lithium-ion, lithium-polymer, or lead-acid battery

Library: Powertrain Blockset / Energy Storage and Auxiliary

Drive / Datasheet Battery

Description

The Datasheet Battery block implements a lithium-ion, lithium-polymer, or lead-acid battery that you can parameterize using manufacturer data. To create the open-circuit voltage and internal resistance parameters that you need for the block, use the manufacturer discharge characteristics by temperature data. For an example, see "Generate Parameter Data for Datasheet Battery Block".

To determine the battery output voltage, the block uses lookup tables for the battery open-circuit voltage and the internal resistance. The lookup tables are functions of the state-of charge (SOC) and battery temperature, characterizing the battery performance at various operating points:

$$\begin{split} E_m &= f(SOC) \\ R_{int} &= f(T,SOC) \end{split}$$

To calculate the voltage, the block implements these equations.

$$\begin{split} V_T &= E_m - I_{batt} R_{int} \\ I_{batt} &= \frac{I_{in}}{N_p} \\ V_{out} &= N_s V_T \\ SOC &= \frac{-1}{Cap_{batt}} \int\limits_0^t I_{batt} dt \end{split}$$

Positive current indicates battery discharge. Negative current indicates battery charge.

The equations use these variables.

SOC State-of-charge

 E_m Battery open-circuit voltage I_{batt} Per module battery current

 I_{in} Combined current flowing from the battery network

 R_{int} Battery internal resistance N_s Number of cells in series N_p Number of cells in parallel

 V_{out} Combined voltage of the battery network

 V_T Per module battery voltage

Cap_{batt} Battery capacity

Ports

Inputs

CapInit — Battery capacity

scalar

Rated battery capacity at the nominal temperature, Cap_{batt} , in Ah.

Dependencies

To create this port, select External Input for the Initial battery capacity parameter.

BattCurr — Battery load current

scalar

Combined current flowing from the battery network, I_{in} , in A.

BattTemp — **Battery temperature**

scalar

Temperature measured at the battery housing, T, in K.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
BattCurr	Combined current flowing from the battery network	A
BattAmpHr	Normalized current flowing from the battery network	A*h
BattSoc	State-of-charge capacity	NA
BattVolt	Combined voltage of the battery network	V
BattPwr	Battery power	W

BattVolt — **Battery output voltage**

scalar

Combined voltage of the battery network, V_{out} , in V.

Parameters

Block Options

Initial battery capacity — Input or parameter

Parameter (default) | External Input

Initial battery capacity, Cap_{batt} , in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit

Block Parameter Initial battery capacity Option	Creates
Parameter	Parameter Initial battery capacity, BattCapInit

Output battery voltage — Unfiltered or Filter

Unfiltered (default) | Filtered

Select Filtered to apply a first-order filter to the output batter voltage.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Rated capacity at nominal temperature, BattChargeMax — Constant scalar

Rated battery capacity at the nominal temperature, in Ah.

Open circuit voltage table data, Em — 1-D lookup table 1-by-P matrix

Open-circuit voltage data curve, E_m , as a function of the discharged capacity for P operating points, in V.

Open circuit voltage breakpoints 1, CapLUTBp — Breakpoints 1-by-P matrix

Discharge capacity breakpoints for P operating points, dimensionless.

Although this parameter is the same as the **Battery capacity breakpoints 2**, **CapSOCBp** parameter, the block uses unique parameters for calibration flexibility.

Internal resistance table data, RInt — 2-D lookup table N-by-M \max ix

Internal resistance map, R_{int} , as a function of N temperatures and M SOCs, in ohms.

Battery temperature breakpoints 1, BattTempBp — Breakpoints 1-bv-N matrix

Battery temperature breakpoints for N temperatures, in K.

Battery capacity breakpoints 2, CapSOCBp — Breakpoints 1-by-M matrix

Battery capacity breakpoints for M SOCs, dimensionless.

Although this parameter is the same as the **Open circuit voltage breakpoints 1**, **CapLUTBp** parameter, the block uses unique parameters for calibration flexibility.

Number of cells in series, Ns — Integer scalar

Number of cells in series, dimensionless, N_s .

Number of cells in parallel, Np — Integer scalar

Number of cells in parallel, dimensionless, N_p .

Initial battery capacity, BattCapInit — Capacity scalar

Initial battery capacity, Cap_{batt} , in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
	Parameter Initial battery capacity, BattCapInit

Output battery voltage time constant, Tc — Filter time constant scalar

Output battery voltage time constant, T_c , in s. Used in a first-order voltage filter.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Output battery voltage initial value — Filter initial voltage scalar

Output battery voltage initial value, V_{init} , in V. Used in a first-order voltage filter.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- · Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

References

- [1] Arrhenius, S.A. "Über die Dissociationswärme und den Einflusß der Temperatur auf den Dissociationsgrad der Elektrolyte." *Journal of Physical Chemistry*. 4 (1889): 96–116.
- [2] Connors, K. Chemical Kinetics. New York: VCH Publishers, 1990.
- [3] Ji, Yan, Yancheng Zhang, and Chao-Yang Wang. *Journal of the Electrochemical Society*. Volume 160, Issue 4 (2013), A636-A649.

See Also

Equivalent Circuit Battery | Estimation Equivalent Circuit Battery

Topics

"Generate Parameter Data for Datasheet Battery Block" Battery Modeling

Introduced in R2017a

Estimation Equivalent Circuit Battery

Resistor-capacitor (RC) circuit battery that creates lookup tables

Library: Powertrain Blockset / Energy Storage and Auxiliary

Drive / Network Battery

Description

The Estimation Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery model that you can use to create lookup tables for the Equivalent Circuit Battery block. The lookup tables are functions of the state-of-charge (SOC).

The Estimation Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC. To acquire the SOC, the block integrates the charge and discharge currents.

Specifically, the block implements these parameters as lookup tables that are functions of the SOC:

- Series resistance, $R_o = f(SOC)$
- Battery open-circuit voltage, $E_m = f(SOC)$
- Network resistance, $R_n = f(SOC)$
- Network capacitance, $C_n = f(SOC)$

To calculate the combined voltage of the battery network, the block uses these equations.

$$\begin{aligned} V_T &= E_m - I_{batt} R_o - \sum_1^n V_n \\ V_n &= \int_0^t \left[\frac{I_{batt}}{C_n} - \frac{V_n}{R_n C_n} \right] dt \\ SOC &= \frac{-1}{C_{batt}} \int_0^t I_{batt} dt \\ I_{batt} &= I_{in} \\ V_{out} &= V_T \end{aligned}$$

Positive current indicates battery discharge. Negative current indicates battery charge.

The equations use these variables.

 E_m Battery open-circuit voltage I_{batt} Per module battery current

 I_{in} Combined current flowing from the battery network

 R_o Series resistance

n Number of RC pairs in series

 V_{out}, V_T Combined voltage of the battery network

 V_n Voltage for n-th RC pair R_n Resistance for n-th RC pair C_n Capacitance for n-th RC pair

 C_{batt} Battery capacity

Ports

Inputs

BattCurr — Battery network current

scalar

Combined current flowing from the battery network, I_{in} , in A.

Output

Info - Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
CapVolt	Voltage for <i>n</i> -th RC pair	V_n	V

BattVolt — Battery output voltage

scalar

Combined voltage of the battery network, V_{out} , in V.

BattSoc — Battery SOC

scalar

Battery state-of-charge, SOC.

Parameters

Core Battery

Number of series RC pairs — RC pairs

1 (default) | 2 | 3 | 4 | 5

Number of series RC pairs. For lithium, typically 1 or 2.

Open circuit voltage Em table data, Em — Voltage table array

Open-circuit voltage table, E_m , in V. Function of SOC.

Series resistance table data, R0 — Resistance array

Series resistance table, R_o , in ohms. Function of SOC.

State of charge breakpoints, SOC_BP — SOC breakpoints

vector

State-of-charge (SOC) breakpoints, dimensionless.

Battery capacity, BattCap — Capacity

scalar

Battery capacity, C_{batt} , in Ah.

Initial battery capacity, BattCapInit — Capacity

scalar

Initial battery capacity, C_{batto} , in Ah.

Initial capacitor voltage, InitialCapVoltage — Voltage

vector

Initial capacitor voltage, in V. Dimension of vector must equal the **Number of series RC pairs**.

R and C Table Data

Network resistance table data, Rn - Lookup table

array

Network resistance table data for n-th RC pair, as a function of SOC, in ohms.

Network capacitance table data, Cn - Lookup table

array

Network capacitance table data for *n*-th RC pair, as a function of SOC, in F.

Cell Limits

Upper Integrator Voltage Limit, Vu — Maximum

scalar

Upper voltage limit, in V.

Lower Integrator Voltage Limit, Vl — Minimum

scalar

Lower voltage limit, in V.

References

- [1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." *SAE International Journal of Alternative Powertrains*. doi: 10.4271/2015-01-0252, 4(2):2015.
- [2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." *SAE International Journal of Aerospace*. doi:10.4271/2014-01-2217, 7(2):2014.
- [3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." *IEEE*® *International Electric Vehicle Conference*. March 2012, pp. 1–8.
- [4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." SAE Technical Paper 2013-01-1544. doi:10.4271/2013-01-1544, 2013.
- [5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." *SAE Technical Paper 2007-01-0778*. doi: 10.4271/2007-01-0778, 2007.
- [6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." *SAE Technical Paper 2009-01-1381*. doi: 10.4271/2009-01-1381, 2009.
- [7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." *SAE Technical Paper 2013-01-1547*. Warrendale, PA: SAE International, 2013.

See Also

Datasheet Battery | Equivalent Circuit Battery

Topics

"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling

Introduced in R2017a

Equivalent Circuit Battery

Resistor-capacitor (RC) circuit battery

Library: Powertrain Blockset / Energy Storage and Auxiliary

Drive / Network Battery

Description

The Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery that you can parameterize using equivalent circuit modeling (ECM). To simulate the state-of-charge (SOC) and terminal voltage, the block uses load current and internal core temperature.

The Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC and battery temperature. You can use the Estimation Equivalent Circuit Battery block to help create the lookup tables.

Specifically, the Equivalent Circuit Battery block implements these parameters as lookup tables that are functions of the SOC and battery temperature:

- Series resistance, $R_o = f(SOC, T)$
- Battery open-circuit voltage, $E_m = f(SOC, T)$
- Battery capacity, $C_{batt} = f(T)$
- Network resistance, $R_n = f(SOC, T)$
- Network capacitance, $C_n = f(SOC, T)$

To calculate the combined voltage of the battery network, the block uses these equations.

$$\begin{split} V_T &= E_m - I_{batt} R_o - \sum_1^n V_n \\ V_n &= \int_0^t \left[\frac{I_{batt}}{C_n} - \frac{V_n}{R_n C_n} \right] dt \\ SOC &= \frac{-1}{C_{batt}} \int_0^t I_{batt} dt \\ I_{batt} &= \frac{I_{in}}{N_p} \\ V_{out} &= N_s V_T \end{split}$$

Positive current indicates battery discharge. Negative current indicates battery charge.

To calculate the battery power, the block uses this equation.

$$P_{batt} = I_{batt}^{2} R_{0} + \sum_{1}^{n} \frac{V_{n}^{2}}{R_{n}}$$

The equations use these variables.

SOC	State-of-charge
E_m	Battery open-circuit voltage
I_{batt}	Per module battery current
I_{in}	Combined current flowing from the battery network
R_o	Series resistance
N_p	Number parallel branches
N_p	Number of RC pairs in series
V_{out} , V_{T}	Combined voltage of the battery network
V_n	Voltage for <i>n</i> -th RC pair
R_n	Resistance for <i>n</i> -th RC pair
C_n	Capacitance for <i>n</i> -th RC pair
C_{batt}	Battery capacity

 P_{batt} Resistive battery power loss

T Battery temperature

Ports

Inputs

CapInit — Battery capacity

scalar

Rated battery capacity at the nominal temperature, Cap_{batt} , in Ah.

Dependencies

To create this port, select External Input for the Initial battery capacity parameter.

BattCurr — Battery network current

scalar

Combined current flowing from the battery network, I_{in} , in A.

BattTemp — Battery temperature

scalar

Battery temperature, T, in K.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
	Combined current flowing from the battery network	A
BattSoc	State-of-charge capacity	NA

Signal	Description	Units
BattVolt	Combined voltage of the battery network	V
BattPwr	Battery power	W
BattPwrLoss	Battery power loss	W

BattVolt — **Battery output voltage**

scalar

Combined voltage of the battery network, V_{out} , in V.

Parameters

Block Options

Initial battery capacity — Input or parameter

Parameter (default) | External Input

Initial battery capacity, Cap_{batt} , in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
Parameter	Parameter Initial battery capacity, BattCapInit

Output battery voltage — Unfiltered or Filter

Unfiltered (default) | Filtered

Select Filtered to apply a first-order filter to the output batter voltage.

Dependencies

Setting ${f Output}$ battery ${f voltage}$ parameter to Filtered creates these parameters:

• Output battery voltage time constant, Tc

Output battery voltage initial value, Vinit

Core Battery

Number of series RC pairs — RC pairs 1 (default) | 2 | 3 | 4 | 5

Number of series RC pairs. For lithium, typically 1 or 2.

Open circuit voltage Em table data, Em — Voltage table array

Open circuit voltage table, E_m , in V. Function of SOC and battery temperature.

Series resistance table data, R0 — Resistance array

Series resistance table, R_0 , in ohms. Function of SOC and battery temperature.

State of charge breakpoints, SOC_BP — SOC breakpoints vector

State-of-charge (SOC) breakpoints, dimensionless.

Temperature breakpoints, Temperature_BP — Battery vector

Battery temperature breakpoints, K.

Battery capacity table, BattCap — Capacity array

Battery capacity, $C_{\it batt}$, in Ah. Function of battery temperature.

Initial capacitor voltage, InitialCapVoltage — Voltage vector

Initial capacitor voltage, in V. Dimension of vector must equal the **Number of series RC pairs**.

Initial battery capacity, BattCapInit — Capacity scalar

Initial battery capacity, Cap_{batt}, in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
Parameter	Parameter Initial battery capacity, BattCapInit

Output battery voltage time constant, Tc — Filter time constant scalar

Output battery voltage time constant, T_c , in s. Used in a first-order voltage filter.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Output battery voltage initial value, Vinit — Filter initial voltage scalar

Output battery voltage initial value, V_{init} , in V. Used in a first-order voltage filter.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

R and C Table Data

Network resistance table data, Rn — Lookup table array

Network resistance table data for n-th RC pair, in ohms, as a function of SOC and battery temperature.

Network capacitance table data, Cn — Lookup table array

Network capacitance table data for n-th RC pair, in F, as a function of SOC and battery temperature.

Cell Limits

Upper integrator voltage limit, Vu — Maximum scalar

Upper voltage limit, in V.

Lower integrator voltage limit, Vl — Minimum scalar

Lower voltage limit, in V.

References

- [1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." *SAE International Journal of Alternative Powertrains*. doi: 10.4271/2015-01-0252, 4(2):2015.
- [2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." *SAE International Journal of Aerospace*. doi:10.4271/2014-01-2217, 7(2):2014.
- [3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." *IEEE International Electric Vehicle Conference*. March 2012, pp. 1–8.
- [4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." *SAE Technical Paper 2013-01-1544*. doi:10.4271/2013-01-1544, 2013.
- [5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." *SAE Technical Paper 2007-01-0778*. doi: 10.4271/2007-01-0778, 2007.
- [6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." *SAE Technical Paper 2009-01-1381*. doi: 10.4271/2009-01-1381, 2009.

[7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." *SAE Technical Paper 2013-01-1547*. Warrendale, PA: SAE International, 2013.

See Also

Datasheet Battery | Estimation Equivalent Circuit Battery

Topics

"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling

Introduced in R2017a

Reduced Lundell Alternator

Reduced Lundell (claw-pole) alternator with an external voltage regulator

Library: Powertrain Blockset / Energy Storage and Auxiliary

Drive / Alternator

AltVoit
AltVoit
LdCurr

LdTrq

Description

The Reduced Lundell Alternator block implements a reduced Lundell (claw-pole) alternator with an external voltage regulator. The back-electromotive force (EMF) voltage is proportional to the input velocity and field current. The motor operates as a source torque to the internal combustion engine.

Use the Reduced Lundell Alternator block:

- To model an automotive electrical system
- In an engine model with a front-end accessory drive (FEAD)

The calculated motor shaft torque is in the opposite direction of the engine speed. You can:

- Tune the external voltage regulator to a desired bandwidth. The stator current and two diode drops reduce the stator voltage.
- Filter the load current to desired bandwidth. The load current has a lower saturation of 0 A.

Equations

The Reduced Lundell Alternator block implements equations for the electrical, control, and mechanical systems that use these variables.

 v_{ref} Alternator output voltage command

 v_f Field winding voltage

i_f	Field winding current
i_s	Stator winding current
V_d	Diode voltage drop
R_f	Field winding resistance
R_s	Stator winding resistance
L_f	Field winding inductance
$K_{ u}$	Voltage constant
$F_{ u}$	Voltage regulator bandwidth
F_c	Input current filter bandwidth
V_{fmax}	Field control voltage upper saturation limit
V_{fmin}	Field control voltage lower saturation limit
K_c	Coulomb friction coefficient
K_b	Viscous friction coefficient
K_w	Windage coefficient
ω	Motor shaft angular speed
i_{load}	Alternator load current
v_s	Alternator output voltage
$ au_{mech}$	Motor shaft torque

To calculate voltages, the block uses these equations.

Calculation	Equations
Alternator output voltage	$v_s = K_v i_f \omega - R_s i_s - 2V_d$
Field winding voltage	
	$v_f = R_f i_f + L_f \frac{di_f}{dt}$

The controller assumes no resistance or voltage drop.

Calculation	Equations
Field winding voltage transform	$V_{f}(s) = R_{f}I_{f}(s) + sL_{f}I_{f}(s)$
Field winding current transform	$I_{f}(s) = \frac{V_{f}(s)}{(R_{f} + sL_{f})}$
Open loop electrical transfer function	$G(s) = \frac{V_s(s)}{V_f(s)} = \frac{K_v \omega}{(R_f + sL_f)}$
Open loop voltage regulator transfer function	$G_C(s) = \frac{V_f(s)}{Vref(s)}$
Closed loop transfer function	$T(s) = \frac{G(s)Gc(s)}{1 + G(s)Ge(s)}$
Closed loop controller design	$T(s) = \frac{1}{\tau s + 1} \to G(s)Gc(s) = \frac{1}{\tau s}$
	$G_C(s) = K_g(K_p + \frac{K_i}{s})$
	$G(s)G_{C}(s) = \frac{K_{v}\omega}{(R_{f} + sL_{f})}K_{g}(K_{p} + \frac{K_{i}}{s})$
	$K_p = L_f$, $K_i = R_f$, and $K_g = \frac{2\pi f}{K_v \omega}$

To calculate torques, the block uses these equations.

Calculation	Equations
Electrical torque	$\tau_{elec} = (K_v i_f \omega) i_{load}$

Calculation	Equations
Frictional torque	$\tau_{friction} = K_b \omega$
Min do go to way o	t friction - Now
Windage torque	$\tau_{windage} = K_w \omega^2$
Torque at start	$\tau_{start} = K_c$ when $\omega = 0$
Motor shaft torque	
_	$\tau_{mech} = \tau_{elec} + \tau_{friction} + \tau_{windage} + \tau_{start}$

Ports

Inputs

RefVolt — **Alternator output voltage command**

scalar

Alternator output voltage command, in V.

AltSpd — Angular speed

scalar

Motor shaft input angular speed, in rad/s.

LdCurr — Alternator load current

scalar

Alternator load current, in A.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
FldVolt	Field winding voltage	A
FldFlux	Field flux	Wb

AltVolt — Alternator output voltage

scalar

Alternator output voltage, in V.

LdTrq — Motor shaft torque

scalar

Motor shaft torque, in N⋅m.

Parameters

Machine Configuration

Voltage constant, Kv — Constant

scalar

Voltage constant, in V/rad/s.

Field winding resistance, Rf — Resistance

scalar

Field winding resistance, in ohm.

Field winding inductance, Lf - Inductance

scalar

Field winding inductance, in H.

Stator winding resistance, Rs — Resistance

scalar

Stator winding resistance, in ohm.

Diode voltage drop, Vd — Voltage

scalar

Diode voltage drop, in V.

Voltage Regulator

Regulator bandwidth, Fv — Bandwidth

scalar

The regulator bandwidth, in Hz.

Current filter bandwidth, Fc — Bandwidth

scalar

The current filter bandwidth, in Hz.

Field voltage max, Vfmax — Maximum field voltage

scalar

The maximum field voltage, in V.

Field voltage min, Vfmin — Minimum field voltage

scalar

The minimum field voltage, in V.

Mechanical Losses

Coulomb friction, Kc — Friction

scalar

Coulomb friction, in N·m.

Viscous friction, Kb — Friction

scalar

Viscous friction, in N·m/rad/s.

Windage, Kw — Windage

scalar

Windage, in $N \cdot m/rad^2/s^2$.

References

[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

See Also

Starter

Introduced in R2017a

Starter

Starter as a DC motor

Library: Powertrain Blockset / Energy Storage and Auxiliary

Drive / Starter

Description

The Starter block implements a starter assembly as a separately excited DC motor, permanent magnet DC motor, or series connection DC motor. The motor operates as a torque source to an internal combustion engine.

Use the Starter block:

- In an engine model with a front-end accessory drive (FEAD)
- To model engine start and stop scenarios

The Starter block supports only an angular speed input to the DC motor. A load torque input requires engine dynamics.

Equations

The block implements equations that use these variables.

 R_a Armature winding resistance

 L_a Armature winding inductance

EMF Counter-electromotive force

 R_f Field winding resistance

 L_f Field winding inductance

 L_{af} Field and armature mutual inductance

 i_a Armature winding current

i_f Field winding current

 K_t Motor torque constant

 ω Motor shaft angular speed

 V_a Armature winding voltage

 V_f Field winding voltage

 $V_{\it af}$ Field and armature winding voltage

 i_{af} Field and armature series current

 R_{ser} Series connected field and armature resistance

L_{ser} Series connected field and armature inductance

 i_{load} Starter motor current load T_{mech} Starter motor shaft torque

In a separately excited DC motor, the field winding is connected to a separate source of DC power.

The relationship between the field winding voltage, field resistance, and field inductance is given by:

$$V_f = L_f \frac{di_f}{dt} + R_f i_f$$

The counter-electromotive force is a product of the field resistance, mutual inductance, and motor shaft angular speed:

$$EMF = L_a i_f L_{af} \omega$$

The armature voltage is given by:

$$V_a = L_a \frac{di_a}{dt} + R_a i_a + EMF$$

The starter motor current load is the sum of the field winding current and armature winding current:

$$i_{load} = i_f + i_a$$

The starter motor shaft torque is the product of the armature current, field current, and mutual inductance:

$$T_{mech} = i_a i_f L_{af}$$

In a permanent magnet DC motor, the magnets establish the excitation flux, so there is no field current.

The counter-electromotive force is proportional to the motor shaft angular speed:

$$EMF = K_t \omega$$

The armature voltage is given by:

$$V_a = L_a \frac{di_a}{dt} + R_a i_a + EMF$$

The starter motor current load is equal to the armature winding current:

$$i_{load} = i_a$$

The starter motor shaft torque is proportional to the armature winding current:

$$T_{mech} = K_t i_a$$

A series excited DC motor connects the armature and field windings in series with a common DC power source.

The counter-electromotive force is a product of the field and armature initial series current, field, and armature mutual inductance and motor shaft angular speed:

$$EMF = i_{af} L_{af} \omega$$

The field and armature winding voltage is given by:

$$V_{af} = L_{ser} \frac{di_{af}}{dt} + R_{ser} i_{af} + EMF$$

The starter motor current load is equal to the field and armature series current:

$$i_{load} = i_{af}$$

The starter motor shaft torque is the product of the squared field and armature series current and the field and armature mutual inductance:

$$T_{mech} = i_{af}^2 L_{af}$$

For motor stability, the motor shaft angular speed must be greater than the ratio of the series connected field and armature resistance to the mutual inductance:

$$\omega > -\frac{R_{ser}}{L_{af}}$$

Ports

Inputs

MtrSpd — Angular speed

scalar

Motor shaft angular speed, in rad/s.

StartVolt — Armature and field voltage

scalar

- Armature winding voltage V_a and field winding voltage V_f , in V.
- In series excited DC motor, armature and field winding voltage $V_{a\mathit{f}}.$

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
ArmCurr	Armature winding current	A
FldCurr	Field winding current	A

LdCurr — Starter motor load current

scalar

Starter motor load current, in A.

MtrTrq — Starter motor shaft torque

scalar

Starter motor shaft torque, in $N \cdot m$.

Parameters

Configuration

Motor Type — Select motor type

Separately Excited DC Motor (default) | Permanent Magnet Excited DC Motor | Series Connection DC Motor

Select one of the three motor types.

Dependencies

The table summarizes the motor parameter dependencies.

Motor Type	Enables Motor Parameter
Separately Excited DC Motor	Armature winding resistance, Ra
	Armature winding inductance, La
	Field winding resistance Rf
	Field winding inductance, Lf
	Mutual inductance, Laf
	Initial armature and field current, Iaf
Permanent Magnet Excited DC Motor	Armature winding resistance, Rapm

Motor Type	Enables Motor Parameter	
	Armature winding inductance, Lapm	
	Torque constant, Kt	
	Initial armature current, Ia	
Series Connection DC Motor	Total resistance, Rser	
	Total inductance, Lser	
	Initial current, Iafser	
	Mutual inductance, Lafser	

Separately Excited DC Motor

Armature winding resistance, Ra — Resistance

scalar

Armature winding resistance, in ohm.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the $\bf Motor\ Type$ parameter.

scalar

Armature winding inductance, in H.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the ${\bf Motor}$ Type parameter.

Field winding resistance, Rf — Resistance

scalar

Field winding resistance, in ohm.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the **Motor Type** parameter.

Field winding inductance, Lf — Inductance

scalar

Field winding inductance, in H.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the **Motor Type** parameter.

Mutual inductance, Laf — Inductance

scalar

Mutual inductance, in H.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the **Motor Type** parameter.

Initial armature and field current, Iaf — Current

vector

Initial armature and field current, in A.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the **Motor Type** parameter.

Permanent Magnet Excited DC Motor

Armature winding resistance, Rapm — Resistance

scalar

Armature winding resistance, in ohm.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

Armature winding inductance, Lapm — Inductance

scalar

Armature winding inductance, in H.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

Torque constant, Kt — Motor torque constant

scalar

Motor torque constant, in N·m/A.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

Initial armature current, Ia — Current

scalar

Initial armature current, in A.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

Series Excited DC Motor

Total resistance, Rser — Resistance

scalar

Series connected field and armature resistance, in ohm.

Dependencies

To enable this parameter, select Series Excited DC Motor for the **Motor Type** parameter.

Total inductance, Lser — Inductance

scalar

Series connected field and armature inductance, in H.

Dependencies

To enable this parameter, select ${\tt Series}\ {\tt Excited}\ {\tt DC}\ {\tt Motor}\ {\tt for}\ {\tt the}\ {\tt Motor}\ {\tt Type}$ parameter.

Initial current, Iafser — Current

scalar

Initial series current, in A.

Dependencies

To enable this parameter, select Series Excited DC Motor for the **Motor Type** parameter.

Mutual inductance, Lafser — Inductance

scalar

Field and armature mutual inductance, in H.

Dependencies

To enable this parameter, select Series Excited DC Motor for the **Motor Type** parameter.

References

[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

See Also

Reduced Lundell Alternator

Introduced in R2017a

Bidirectional DC-DC

DC-to-DC converter that supports bidirectional boost and buck

Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / DC-DC

Description

The Bidirectional DC-DC block implements a DC-to-DC converter that supports bidirectional boost and buck (lower) operation. Unless the DC-to-DC conversion limits the power, the output voltage tracks the voltage command. You can specify electrical losses or measured efficiency.

Depending on your battery system configuration, the voltage might not be at a potential that is required by electrical system components such has inverters and motors. You can use the block to boost or buck the voltage. Connect the block to the battery and one of these blocks:

- Mapped Motor
- IM Controller
- Interior PM Controller
- Surface Mount PM Controller

To calculate the electrical loss during the DC-to-DC conversion, use **Parameterize losses by**.

Parameter Option	Description
_	Electrical loss calculated using a constant value for conversion efficiency.

Parameter Option	Description
Tabulated loss data	Electrical loss calculated as a function of load current and voltage. DC-to-DC converter data sheets typically provide loss data in this format. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same loss pattern for other quadrants. The block does not extrapolate loss that is outside the range voltage and current that you provide. The block allows you to account for fixed losses that are still present for zero voltage or current.
Tabulated efficiency data	Electrical loss calculated using conversion efficiency that is a function of load current and voltage. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same efficiency pattern for other quadrants. The block:
	Assumes zero loss when either the voltage or current is zero.
	Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.

Note The block does not support inversion. The polarity of the input voltage matches the polarity of the output voltage.

Theory

The Bidirectional DC-DC block uses the commanded voltage and the actual voltage to determine whether to boost or buck (lower) the voltage. You can specify a time constant for the voltage response.

If	Then
$Volt_{cmd} > Src_{Volt}$	Boost
$Volt_{cmd} < Src_{Volt}$	Buck

The Bidirectional DC-DC block uses a time constant-based regulator to provide a fixed output voltage that is independent of load current. Using the output voltage and current, the block determines the losses of the DC-to-DC conversion. The block uses the conversion losses to calculate the input current. The block accounts for:

- Bidirectional current flow
 - Source to load Battery discharge
 - Load to source Battery charge
- · Rated power limits

The block provides voltage control that is power limited based on these equations. The voltage is fixed. The block does not implement a voltage drop because the load current approximates DC-to-DC conversion with a bandwidth that is greater than the load current draw.

DC-to-DC converter load voltage	$LdVolt_{Cmd} = \min(Volt_{Cmd}, \frac{P_{limit}}{Ld_{Amp}}, 0)$
	$LdVolt = LdVolt_{Cmd} \cdot \frac{1}{\tau s + 1}$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Volt} \cdot Ld_{Amp}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot \left Ld_{Volt} \cdot Ld_{Amp} \right $
Power loss for tabulated efficiency	$Prw_{Loss} = f\left(Ld_{Volt}, Ld_{Amp}\right)$
Source current draw from DC-to-DC converter	$Src_{Amp} = \frac{Ld_{Pwr} + Prw_{Loss}}{Src_{Volt}}$
Source power from DC-to-DC converter	$Src_{Pwr} = Src_{Anp} \cdot Src_{Volt}$

The equations use these variables.

 $Volt_{Cmd}$ DC-to-DC converter commanded output voltage Src_{Volt} Source input voltage to DC-to-DC converter

 Ld_{Amp} Load current of DC-to-DC converter Ld_{Volt} Load voltage of DC-to-DC converter

Src_{Amp} Source current draw from DC-to-DC converter

au Conversion time constant

 V_{init} Initial load voltage of the DC-to-DC converter P_{limit} Output power limit for DC-to-DC converter

Eff Input to output efficiency

 Src_{Pwr} Source power to DC-to-DC converter Ld_{Pwr} Load power from DC-to-DC converter

 Pwr_{Loss} Power loss

LdVolt_{Cmd} Commanded load voltage of DC-to-DC converter before application of time

constant

Ports

Inputs

VoltCmd — **Commanded voltage**

scalar

DC-to-DC converter commanded output voltage, $Volt_{Cmd}$, in V.

SrcVolt — **Input voltage**

scalar

Source input voltage to DC-to-DC converter, Src_{Volt} , in V.

LdCurr — Load current

scalar

Load current of DC-to-DC converter, Ld_{Amp} , in A.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
SrcPwr	Source power to DC-to-DC converter	Src_{Pwr}	W
LdPwr	Load power from DC-to-DC converter	Ld_{Pwr}	W
PwrLoss	Power loss	Pwr_{Loss}	W
LdVoltCmd	Commanded load voltage of DC-to-DC converter before application of time constant	$LdVolt_{Cmd}$	V

LdVolt — Load voltage

scalar

Load voltage of DC-to-DC converter, Ld_{Volt} , in V.

SrcCurr — **Source** current

scalar

Source current draw from DC-to-DC converter, Src_{Amp} , in A.

Parameters

Electrical Control

${\bf Converter\ response\ time\ constant-Constant}$

scalar

Converter response time, τ , in s.

Converter response initial voltage, Vinit — Voltage scalar

Initial load voltage of the DC-to-DC converter, V_{init} , in V.

Converter power limit, Plimit — Power scalar

Initial load voltage of the DC-to-DC converter, P_{limit} , in W.

Electrical Losses

Parameterize losses by — Loss calculation

Single efficiency measurement (default) | Tabulated loss dataTabulated efficiency data

This table summarizes the loss options used to calculate electrical options.

Parameter Option	Description
Single efficiency measurement	Electrical loss calculated using a constant value for conversion efficiency.
Tabulated loss data	Electrical loss calculated as a function of load current and voltage. DC-to-DC converter data sheets typically provide loss data in this format. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same loss pattern for other quadrants. The block does not extrapolate loss that is outside the range voltage and current that you provide. The block allows you to account for fixed losses that are still present for zero voltage or current.

Parameter Option	Description
Tabulated efficiency data	Electrical loss calculated using conversion efficiency that is a function of load current and voltage. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same efficiency pattern for other quadrants. The block:
	Assumes zero loss when either the voltage or current is zero.
	Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.

Overall DC to DC converter efficiency, eff — Constant scalar

Overall conversion efficiency, *Eff*, in %.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Single efficiency measurement.

Vector of voltages (v) for tabulated loss, v_loss_bp — Breakpoints 1-by-M matrix

Tabulated loss breakpoints for M load voltages, in V.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of currents (i) for tabulated loss, i_loss_bp — Breakpoints 1-by-N matrix

Tabulated loss breakpoints for N load currents, in A.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Corresponding losses, losses_table — 2-D lookup table

N-by-M matrix

Electrical loss map, as a function of N load currents and M load voltages, in W.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of voltages (v) for tabulated efficiency, v_eff_bp — Breakpoints

1-by-M matrix

Tabulated efficiency breakpoints for M load voltages, in V.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Vector of currents (i) for tabulated efficiency, i_eff_bp — Breakpoints

1-by-N matrix

Tabulated efficiency breakpoints for N load currents, in A.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table — 2-D lookup table N-bv-M matrix

Electrical efficiency map, as a function of N load currents and Mload voltages, in %.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

See Also

Equivalent Circuit Battery | Estimation Equivalent Circuit Battery

Topics

Battery Modeling

Introduced in R2017b

Propulsion Blocks — Alphabetical List

Boost Drive Shaft

Boost drive shaft speed

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Boost

Description

The Boost Drive Shaft block uses the compressor, turbine, and external torques to calculate the drive shaft speed. Use the block to model turbochargers and superchargers in an engine model.

You can specify these configurations:

- Turbocharger Connect the compressor to the turbine
 - Two-way ports for turbine and compressor connections
 - · Option to add an externally applied input torque
- Compressor only Connect the drive shaft to the compressor
 - Two-way port for compressor connection
 - · Externally applied input torque
- \bullet $\;$ Turbine only Connect the drive shaft to the turbine
 - Two-way port for turbine connection
 - · Externally applied load torque

For the Turbine only and Turbocharger configurations, the block modifies the turbine torque with a mechanical efficiency.

Equations

The Boost Drive Shaft block applies Newton's Second Law for Rotation. Positive torques cause the drive shaft to accelerate. Negative torques impose a load and decelerate the drive shaft.

The block also calcu	lates the powe	r loss due to m	echanical inefficiency.

Calculation	Equations
Shaft dynamics	$\frac{d\omega}{dt} = \frac{1}{J_{shaft}} \Big(\eta_{mech} \tau_{turb} + \tau_{comp} + \tau_{ext} \Big)$ with initial speed ω_0
Speed constraint	$\omega_{min} \le \omega \le \omega_{max}$
Power loss	$\dot{W}_{loss} = \omega \tau_{turb} \left(1 - \eta_{mech} \right)$

The equations use these variables.

 ω Shaft speed

 ω_0 Initial drive shaft speed

 ω_{min} Minimum drive shaft speed ω_{max} Maximum drive shaft speed

 J_{shaft} Shaft inertia

 η_{max} Mechanical efficiency of turbine

 au_{comp} Compressor torque au_{turb} Turbine torque

 au_{ext} Externally applied torque.

Power loss due to mechanical inefficiency

 \dot{W}_{loss}

Ports

Input

${\it Cmprs-Compressor\ torque}$

two-way connector port

Compressor torque, τ_{comp} , in N·m.

Dependencies

To create this port, for the **Configuration** parameter, select **Turbocharger** or **Compressor** only.

Turb — **Turbine torque**

two-way connector port

Turbine torque, τ_{turb} , in N·m.

Dependencies

To create this port, for the **Configuration** parameter, select **Turbocharger** or **Turbine** only.

ExtTrq — Externally applied torque

scalar

Externally applied torque, τ_{ext} , in N·m.

Dependencies

For turbocharger configurations, to create this port, set **Additional torque input** to External torque input.

Output

Info — Bus signal

hus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
DriveshftSpd	Shaft speed	ω	rad/s
MechPwrLoss	Mechanical power loss	\dot{W}_{loss}	W
ExtTrq	Applied external torque	$ au_{ext}$	N·m

Cmprs — Compressor speed

two-way connector port

Compressor speed, ω , in rad/s.

Dependencies

To create this port, for the **Configuration** parameter, select **Turbocharger** or **Compressor only**.

Turb — Turbine speed

two-way connector port

Turbine speed, ω , in N·m.

Dependencies

To create this port, for the **Configuration** parameter, select **Turbocharger** or **Turbine** only.

Parameters

Block Options

Configuration — Specify configuration

Turbocharger (default) | Turbine only | Compressor only

Dependencies

- Selecting Turbocharger or Compressor only creates the Cmprs port.
- Selecting Turbocharger or Turbine only creates the Turb port.

Additional torque input — Specify external torque input

External torque input $(default) \mid No$ external torque input

Dependencies

- To enable this parameter, select a Turbocharger configuration.
- To create the Trq port, select External torque input.

Shaft inertia, J_shaft — Inertia

scalar

Shaft inertia, J_{shaft} , in kg·m².

Initial shaft speed, w_0 — Speed

scalar

Initial drive shaft speed, ω_0 , in rad/s.

Min shaft speed, w_min — Speed
scalar

Minimum drive shaft speed, ω_{min} , in rad/s.

Max shaft speed, w_max — Speed
scalar

Maximum drive shaft speed, ω_{max} , in rad/s.

Turbine mechanical efficiency, eta_mech — Efficiency scalar

Mechanical efficiency of turbine η_{max} .

Dependencies

To enable this parameter, select the Turbocharger or Turbine only configuration.

See Also

Compressor | Turbine

Introduced in R2017a

CI Controller

Compression-ignition controller that includes air mass flow, torque, and EGR estimation

Library: Powertrain Blockset / Propulsion / Combustion Engine

Controllers

Son Superior Superior

Description

The CI Controller block implements a compression-ignition (CI) controller with air mass flow, torque, exhaust gas recirculation (EGR) flow, exhaust back-pressure, and exhaust gas temperature estimation. You can use the CI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine block requires the commands that are output from the CI Controller block.

The block uses the commanded torque and measured engine speed to determine these open-loop actuator commands:

- Injector pulse-width
- Fuel injection timing
- Variable geometry turbocharger (VGT) rack position
- EGR valve area percent

The CI Controller block has two subsystems:

• The Controller subsystem — Determines the commands based on tables that are functions of commanded torque and measured engine speed.

Based On	Determines Commands for
Commanded torque	Injector pulse-width
Measured engine speed	Fuel injection timing
	VGT rack position
	EGR valve area percent

ullet The <code>Estimator</code> subsystem — Determines estimates based on these engine attributes.

Based On	Estimates
Measured engine speed	Air mass flow
Fuel injection timing	Torque
Cycle average intake manifold pressure	Exhaust gas temperature
and temperature	Exhaust gas back-pressure
Fuel injector pulse-width	EGR valve gas mass flow
Absolute ambient pressure	9
EGR valve area percent	
VGT rack position	
VGT speed	

The figure illustrates the signal flow.

The figure uses these variables.

N	Engine speed

MAP Cycle average intake manifold absolute pressure

MAT Cycle average intake manifold gas absolute temperature

EGR valve area percent and EGR valve area percent command,

 EGR_{cmd} respectively

 VGT_{pos} VGT rack position

 N_{vgt} Corrected turbocharger speed RP_{cmd} VGT rack position command

Fuel injector pulse-width

 Pw_{inj}

MAINSOI Start of injection timing for main fuel injection pulse

The Model-Based Calibration Toolbox $^{\scriptscriptstyle{\text{TM}}}$ was used to develop the tables that are available with the Powertrain Blockset.

Controller

The controller governs the combustion process by commanding VGT rack position, EGR valve area percent, fuel injection timing, and injector pulse-width. Feedforward lookup tables, which are functions of measured engine speed and commanded torque, determine the control commands.

The controller commands the EGR valve area percent and VGT rack position. Changing the VGT rack position modifies the turbine flow characteristics. At low-requested torques, the rack position can reduce the exhaust back pressure, resulting in a low turbocharger speed and boost pressure. When the commanded fuel requires additional air mass flow, the rack position is set to close the turbocharger vanes, increasing the turbocharger speed and intake manifold boost pressure.

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed

$$RP_{cmd} = f_{RPcmd}(Trq_{cmd}, N)$$

where:

- RP_{cmd} is VGT rack position command, in percent.
- Trq_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed

$$EGR_{cmd} = f_{EGRcmd}(Trq_{cmd}, N)$$

where:

- EGR_{cmd} is commanded EGR valve area percent, in percent.
- Trq_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

To initiate combustion, a CI engine injects fuel directly into the combustion chamber. After the injection, the fuel spontaneously ignites, increasing cylinder pressure. The total mass of the injected fuel and main injection timing determines the torque production.

Assuming constant fuel rail pressure, the CI controller commands the injector pulse-width based on the total requested fuel mass:

$$Pw_{inj} = \frac{F_{cmd,tot}}{S_{inj}}$$

The equation uses these variables.

Fuel injector pulse-width

 Pw_{inj}

 S_{inj} Fuel injector slope

 $F_{cmd,tot}$ Commanded total fuel mass per injection

MAINSOI Main start-of-injection timing

N Engine speed

The commanded total fuel mass per injection table is a function of the torque command and engine speed

$$F_{cmd.tot} = f_{Fcmd.tot}(Trq_{cmd}, N)$$

where:

- $F_{cmd,tot} = F$ is commanded total fuel mass per injection, in mg per cylinder.
- Trq_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed $\$

$$MAINSOI = f(F_{cmd,tot}, N)$$

where:

- *MAINSOI* is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- $F_{cmd,tot} = F$ is commanded fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.

If	Idle Speed Controller
$Trq_{cmd,input} < Trq_{idlecmd,enable}$	Enabled
$Trq_{idlecmd,enable} \leq Trq_{cmd,input}$	Not enabled

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:

$$C_{idle}(z) = K_{p,idle} + K_{i,idle} \frac{t_s}{z-1}$$

The idle speed commanded torque must be less than the maximum commanded torque:

$$0 \le Trq_{idlecomd} \le Trq_{idlecmd,max}$$

Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ($Trq_{cmd,input} < Trq_{idlecmd,enable}$), the commanded engine torque is given by:

 $Trq_{cmd} = \max(Trq_{cmd,input}, Trq_{idlecmd}).$

The equations use these variables.

 Trq_{cmd} Commanded engine torque

 $Trq_{cmd,input}$ Input commanded engine torque

 $Trq_{idlecmd,enable}$ Threshold for enabling idle speed controller $Trq_{idlecmd}$ Idle speed controller commanded torque

Trq_{idlecmd.max} Maximum commanded torque

 N_{idle} Base idle speed

 $K_{p,idle}$ Idle speed controller proportional gain $K_{i,idle}$ Idle speed controller integral gain

Estimator

Using the CI Core Engine block, the CI Controller block estimates the air mass flow rate, EGR valve mass flow, exhaust back-pressure, engine torque, AFR, and exhaust temperature from sensor feedback. The Info port provides the estimated values, but block does not use them to determine the open-loop engine actuator commands.

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

To calculate the estimated exhaust gas recirculation (EGR) valve mass flow, the block calculates the EGR flow that would occur at standard temperature and pressure conditions, and then corrects the flow to actual temperature and pressure conditions. The block EGR calculation uses estimated exhaust back-pressure, estimated exhaust temperature, standard temperature, and standard pressure.

$$\dot{m}_{egr,est} = \dot{m}_{egr,std} \, \frac{P_{exh,est}}{P_{std}} \, \sqrt{\frac{T_{std}}{T_{exh,est}}}$$

 The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area

$$\dot{m}_{egr,std} = f(\frac{MAP}{P_{exh,est}}, EGRap)$$

where:

- $\dot{m}_{egr,std}$ is the standard EGR valve mass flow, in g/s.
- $P_{exh,est}$ is the estimated exhaust back-pressure, in Pa.
- MAP is the cycle average intake manifold absolute pressure, in Pa.
- EGRap is the measured EGR valve area, in percent.

The equations use these variables.

	Estimated EGR valve mass flow
$m_{egr,est}$	Standard EGR valve mass flow
$m_{egr,std}$ P_{std}	Standard pressure
T_{std}	Standard temperature
$T_{exh,est}$	Estimated exhaust manifold gas temperature
MAP	Measured cycle average intake manifold absolute pressure
$P_{exh,est}$	Estimated exhaust back-pressure
P_{Amb}	Absolute ambient pressure

EGRap Measured EGR valve area percent

To estimate the EGR valve mass flow, the block requires an estimate of the exhaust back-pressure. To estimate the exhaust back-pressure, the block uses the ambient pressure and the turbocharger pressure ratio.

$$P_{exh,est} = P_{Amb}Pr_{turbo}$$

For the turbocharger pressure ration calculation, the block uses two lookup tables. The first lookup table determines the approximate turbocharger pressure ratio as a function of turbocharger mass flow and corrected turbocharger speed. Using a second lookup table, the block corrects the approximate turbocharger pressure ratio for VGT rack position.

$$Pr_{turbo} = f(\dot{m}_{airstd}, N_{vgtcorr}) f(VGT_{pos})$$

where:

$$N_{vgtcorr} = \frac{N_{vgt}}{\sqrt{T_{exh,est}}}$$

The equations use these variables.

Estimated EGR valve mass flow

 $\dot{m}_{egr,est}$

Standard EGR valve mass flow

 $\dot{m}_{egr,std}$

Estimated intake port mass flow rate

 $\dot{m}_{port,est}$

Standard air mass flow

 \dot{m}_{airstd}

EGRap Measured EGR valve area

MAP Measured cycle average intake manifold absolute pressure

MAT Measured cycle average intake manifold gas absolute temperature

Standard pressure

 P_{std}

Standard temperature

 T_{std}

 $T_{exh,est}$ Estimated exhaust manifold gas temperature

 $Pr_{vqtcorr}$ Turbocharger pressure ratio correction for VGT rack position

 Pr_{turbo} Turbocharger pressure ratio

 $P_{exh,est}$ Estimated exhaust back-pressure

 $P_{Amb} \qquad \qquad \text{Absolute ambient pressure}$

 $N_{vgtcorr}$ Corrected turbocharger speed

 VGT_{pos} Measured VGT rack position

The exhaust-back pressure calculation uses these lookup tables:

 The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected

turbocharger speed, $Pr_{turbo} = f(\dot{m}_{airstd}, N_{vgtcorr})$, where:

- Pr_{turbo} is the turbocharger pressure ratio, corrected for VGT speed.
- \dot{m}_{airstd} is the standard air mass flow, in g/s.
- $N_{vqtcorr}$ is the corrected turbocharger speed, in rpm/K^(1/2).

To calculate the standard air mass flow through the turbocharger, the block uses conservation of mass, the estimated intake port, and EGR mass flows (from the last estimated calculation). The calculation assumes negligible exhaust manifold filling dynamics.

$$\dot{m}_{airstd} = (\dot{m}_{port,est} - \dot{m}_{egr,est}) \frac{P_{std}}{MAP} \sqrt{\frac{MAT}{T_{std}}}$$

- The variable geometry turbocharger pressure ratio correction is a function of the rack position, $Pr_{vgtcorr} = f(VGT_{pos})$, where:
 - $Pr_{vqtcorr}$ is the turbocharger pressure ratio correction.
 - VGT_{pos} is the variable geometry turbocharger (VGT) rack position.

To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model	Description
"CI Engine Torque Structure Model"	The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal:
	Start of injection (SOI) timing
	Exhaust back-pressure
	Burned fuel mass
	Intake manifold gas pressure, temperature, and oxygen percentage
	Fuel rail pressure
	To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
"CI Engine Simple Torque Model"	For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass.

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.

Torque Model	Description	Equations
Simple	Exhaust temperature lookup	$T_{exh} = f_{Texh}(F, N)$
Torque	table is a function of the injected	exit lexit , ,
Lookup	fuel mass and engine speed.	

Torque Model	Description	Equations	
Torque Structur e	The exhaust temperature is a product of these exhaust temperature efficiencies: • SOI timing • Intake manifold gas pressure • Intake manifold gas temperature • Intake manifold gas oxygen percentage • Fuel rail pressure • Optimal temperature To determine the efficiencies, the block uses lookup tables.	$T_{exh} = SOI_{exhteff} MAP_{exhteff} MAT_{exhteff}$ $SOI_{exhteff} = f_{SOI_{exhteff}} \left(\Delta SOI, N\right)$ $MAP_{exhteff} = f_{MAP_{exhteff}} \left(MAP_{ratio}, \lambda\right)$ $MAT_{exhteff} = f_{MAT_{exhteff}} \left(\Delta MAT, N\right)$ $O2p_{exhteff} = f_{O2p_{exhteff}} \left(\Delta O2p, N\right)$ $Texh_{opt} = f_{Texh}(F, N)$	$O2p_{exhteff}FU$

The equations use these variables.

F	Compression stroke injected fuel mass
N	Engine speed
Texh	Exhaust manifold gas temperature
$Texh_{opt}$	Optimal exhaust manifold gas temperature
$SOI_{exhteff}$	Main SOI exhaust temperature efficiency multiplier
ΔSOI	Main SOI timing relative to optimal timing
MAP_{exheff}	Intake manifold gas pressure exhaust temperature efficiency multiplier
MAP_{ratio}	Intake manifold gas pressure ratio relative to optimal pressure ratio
λ	Intake manifold gas lambda
MAT_{exheff}	Intake manifold gas temperature exhaust temperature efficiency multiplier
ΔMAT	Intake manifold gas temperature relative to optimal temperature
$O2P_{exheff}$	Intake manifold gas oxygen exhaust temperature efficiency multiplier
$\Delta O2P$	Intake gas oxygen percent relative to optimal
$FUELP_{exheff}$	Fuel rail pressure exhaust temperature efficiency multiplier

$\Delta FUELP$ Fuel rail pressure relative to optimal

The measured engine speed and fuel injector pulse-width determine the commanded fuel mass flow rate:

$$\dot{m}_{fuel,cmd} = rac{NS_{inj}Pw_{inj}N_{cyl}}{Cpsigg(rac{60s}{min}igg)igg(rac{1000mg}{g}igg)}$$

The commanded total fuel mass flow and estimated port mass flow rates determine the estimated AFR:

$$AFR_{est} = \frac{\dot{m}_{port,est}}{\dot{m}_{fuel,cmd}}$$

The equations use these variables.

Fuel injector pulse-width

 Pw_{inj}

 AFR_{est} Estimated air-fuel ratio

Commanded fuel mass flow rate

 $\dot{m}_{fuel,cmd}$

Fuel injector slope

 S_{inj}

N Engine speed

 N_{cyl} Number of engine cylinders

Cps Crankshaft revolutions per power stroke, rev/stroke
Total estimated engine air mass flow at intake ports

 $\dot{m}_{port,est}$

Ports

Input

TrqCmd — Commanded engine torque

scalar

Commanded engine torque, $Trq_{cmd.input}$, in N·m.

EngSpd — Measured engine speed

scalar

Measured engine speed, N, in rpm.

Map — Measured intake manifold absolute pressure

scalar

Measured intake manifold absolute pressure, MAP, in Pa.

Mat — Measured intake manifold absolute temperature

scalar

Measured intake manifold absolute temperature, MAT, in K.

AmbPrs — Ambient pressure

scalar

Absolute ambient pressure, P_{Amb} , in Pa.

EgrVlvAreaPct — EGR valve area percent

scalar

Measured EGR valve area percent, EGRap, in %.

VgtPos — VGT speed

scalar

Measured VGT rack position, VGT_{pos} .

VgtSpd — VGT speed

scalar

Measured VGT speed, N_{vqt} , in rpm.

Ect — Engine cooling temperature

scalar

Engine cooling temperature, $T_{coolant}$, in K.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
InjPw	Fuel injector pulse-width	Pw_{inj}	ms
EgrVlvAreaPctCmd	EGR valve area percent command	EGR_{cmd}	%
TurbRackPosCmd	VGT rack position command	RP_{cmd}	N/A
TrqCmd	Engine torque	Trq_{cmd}	N·m
FuelMassTotCmd	Commanded total fuel mass per injection	$F_{cmd,tot}$	mg
FuelMainSoi	Main start-of-injection timing	MAINSOI	degATDC
FuelMassFlwCmd	Commanded fuel mass flow rate	$\dot{m}_{fuel,cmd}$	kg/s
EstIntkPortFlw	Estimated port mass flow rate	$\dot{m}_{port,est}$	kg/s
EstEngTrq	Estimated engine torque	Trq_{est}	N·m
EstExhManGasTemp	Estimated exhaust manifold gas temperature	$T_{exh,est}$	K
EstExhPrs	Estimated exhaust back- pressure	Pex	Pa
EstEGRFlow	EstEGRFlow	EstEGRFlow	EstEGRFlow
EstAfr	Estimated air-fuel ratio	AFR_{est}	N/A

InjPw — Fuel injector pulse-width

scalar

Fuel injector pulse-width, Pw_{inj} , in ms.

FuelMainSoi — Fuel main injecting timing

scalar

Main start-of-injection timing, *MAINSOI*, in degrees crank angle after top dead center (degATDC).

TurbRackPosCmd — Rack position

scalar

VGT rack position command, RP_{cmd} .

EgrVlvAreaPctCmd — Intake cam phaser angle command

scalar

EGR valve area percent command, EGR_{cmd} .

Parameters

Controls

Air - EGR

EGR valve area percent, $f_egrcmd - Lookup table$

array

The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed

$$EGR_{cmd} = f_{EGRcmd}(Trq_{cmd}, N)$$

where:

- EGR_{cmd} is commanded EGR valve area percent, in percent.
- Trq_{cmd} is commanded engine torque, in N·m.

Commanded torque breakpoints, f_egr_tq_bpt — Breakpoints vector

Commanded torque breakpoints, in N·m.

Speed breakpoints, in rpm.

Air - VGR

$$\begin{tabular}{lll} VGT & rack & position & table, & f_rpcmd - Lookup & table \\ & array \end{tabular}$$

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed ${}^{\circ}$

$$RP_{cmd} = f_{RPcmd}(Trq_{cmd}, N)$$

where:

- RP_{cmd} is VGT rack position command, in percent.
- Trq_{cmd} is commanded engine torque, in N·m.

Commanded torque breakpoints, f_rp_tq_bpt — Breakpoints vector

Breakpoints, in N·m.

Speed breakpoints, f_rp_n_bpt - Breakpoints vector

Breakpoints, in rpm.

Fuel

Injector slope, Sinj — Slope scalar

Fuel injector slope, S_{inj} , in mg/ms.

Stoichiometric air-fuel ratio, afr_stoich — Ratio scalar

Stoichiometric air-fuel ratio, AFR_{stoich} .

Fuel lower heating value, fuel_lhv — Heat scalar

Fuel lower heating value, in J/kg.

Fuel mass per injection table, f_fcmd_tot — Lookup table array

The commanded total fuel mass per injection table is a function of the torque command and engine speed

$$F_{cmd.tot} = f_{Fcmd.tot}(Trq_{cmd}, N)$$

where:

- $F_{cmd,tot} = F$ is commanded total fuel mass per injection, in mg per cylinder.
- Trq_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Fuel main injection timing table, f_main_soi — Lookup table
array

The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed

$$MAINSOI = f(F_{cmd,tot}, N)$$

where:

• *MAINSOI* is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).

- $F_{cmd,tot} = F$ is commanded fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Fuel main injection timing fuel breakpoints, f_main_soi_f_bpt — Breakpoints

vector

Fuel main injection timing fuel breakpoints, in mg per injection.

Fuel main injection timing speed breakpoints, f_main_soi_n_bpt — Breakpoints

vector

Fuel main injection timing speed breakpoints, in rpm.

$\begin{array}{c} \textbf{Commanded torque breakpoints, } \textbf{f_f_tot_tq_bpt-Breakpoints} \\ \textbf{vector} \end{array}$

Commanded torque breakpoints, in N·m.

Speed breakpoints, in rpm.

Idle Speed

Base idle speed, N_idle - Speed scalar

Base idle speed, N_{idle} , in rpm.

Enable torque command limit, Trq_idlecmd_enable — Torque scalar

Torque to enable the idle speed controller, $Trq_{idlecmd.enable}$, in N·m.

Maximum torque command, Trq_idlecmd_max — Torque scalar

Maximum idle controller commanded torque, $Trq_{idlecmd,max}$ in N·m.

Proportional gain, Kp_idle — PI Controller scalar

Proportional gain for idle speed control, $K_{p,idle}$, in N·m/rpm.

Integral gain, Ki_idle — PI Controller scalar

Integral gain for idle speed control, $K_{i,idle}$, in N·m/(rpm·s).

Estimation

Air

Number of cylinders, NCyl — Engine cylinders scalar

Number of engine cylinders, N_{cvl} .

Crank revolutions per power stroke, Cps — Revolutions per stroke scalar

Crankshaft revolutions per power stroke, *Cps* , in rev/stroke.

Total displaced volume, Vd — Volume scalar

Displaced volume, V_d , in m^3.

Ideal gas constant air, Rair — Constant scalar

Ideal gas constant, R_{air} , in J/(kg·K).

Air standard pressure, Pstd — Pressure scalar

Standard air pressure, P_{std} , in Pa.

Air standard temperature, Tstd — Temperature scalar

Standard air temperature, T_{std} , in K.

Speed density volumetric efficiency, f_nv — Lookup table array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed

$$\eta_v = f_{\eta_v}(MAP, N)$$

where:

- η_v is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- N is engine speed, in rpm.

Speed density intake manifold pressure breakpoints, f_nv_prs_bpt — Breakpoints

vector

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Speed density engine speed breakpoints, $f_nv_n_bpt - Breakpoints$ vector

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

EGR valve standard flow calibration, f_egr_stdflow — Lookup table array

The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area

$$\dot{m}_{egr,std} = f(\frac{M\!AP}{P_{exh,est}}, EGRap)$$

where:

- $\dot{m}_{egr,std}$ is the standard EGR valve mass flow, in g/s.
- $P_{exh,est}$ is the estimated exhaust back-pressure, in Pa.
- *MAP* is the cycle average intake manifold absolute pressure, in Pa.
- *EGRap* is the measured EGR valve area, in percent.

EGR valve standard flow pressure ratio breakpoints,
f_egr_stdflow_pr_bpt — Breakpoints
vector

EGR valve standard flow pressure ratio breakpoints, dimensionless.

EGR valve standard flow area percent breakpoints,
f_egr_stdflow_egrap_bpt — Breakpoints
vector

EGR valve standard flow area percent breakpoints, in percent.

Turbocharger pressure ratio, f_turbo_pr — Lookup table array

The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected

turbocharger speed, $Pr_{turbo} = f(\dot{m}_{airstd}, N_{vgtcorr})$, where:

- *Pr*_{turbo} is the turbocharger pressure ratio, corrected for VGT speed.
- \dot{m}_{airstd} is the standard air mass flow, in g/s.
- $N_{vatcorr}$ is the corrected turbocharger speed, in rpm/K $^(1/2)$.

Turbocharger pressure ratio standard flow breakpoints,
f_turbo_pr_stdflow_bpt — Breakpoints
vector

Turbocharger pressure ratio standard flow breakpoints, in g/s.

Turbocharger pressure ratio corrected speed breakpoints,
f_turbo_pr_corrspd_bpt — Breakpoints
vector

Turbocharger pressure ratio corrected speed breakpoints, in $rpm/K^{(1/2)}$.

Turbocharger pressure ratio VGT position correction,
f_turbo_pr_vgtposcorr — Lookup table
array

The variable geometry turbocharger pressure ratio correction is a function of the rack position, $Pr_{vatcorr} = f(VGT_{pos})$, where:

- *Pr*_{vatcorr} is the turbocharger pressure ratio correction.
- VGT_{pos} is the variable geometry turbocharger (VGT) rack position.

Turbocharger pressure ratio VGT position correction breakpoints,
f_turbo_pr_vgtposcorr_bpt — Breakpoints
vector

Turbocharger pressure ratio VGT position correction breakpoints, dimensionless.

Torque - Simple Torque Lookup

Torque table, f_tq_nf — Lookup table array

For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, $T_{brake} = f_{Tnf}(F, N)$, where:

- $Tq = T_{brake}$ is engine brake torque after accounting for engine mechanical and pumping friction effects, in N·m.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt — Breakpoints

vector

Torque table fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque table speed breakpoints, f_tq_nf_n_bpt — Breakpoints vector

Engine speed breakpoints, in rpm.

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque - Torque Structure

Fuel mass per injection breakpoints, f_tqs_f_bpt — Breakpoints
vector

Fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Engine speed breakpoints, f_tqs_n_bpt — Breakpoints vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal main start of injection timing, f_tqs_mainsoi — Optimal MAINSOI

array

The optimal main start of injection (SOI) timing lookup table, f_{SOIc} , is a function of the engine speed and injected fuel mass, $SOI_c = f_{SOIc}(F,N)$, where:

- SOI_c is optimal SOI timing, in degATDC.
- F is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake manifold gas pressure, f_tqs_map — Optimal intake MAP array

The optimal intake manifold gas pressure lookup table, f_{MAP} , is a function of the engine speed and injected fuel mass, $MAP = f_{MAP}(F,N)$, where:

- *MAP* is optimal intake manifold gas pressure, in Pa.
- ullet is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal exhaust manifold gas pressure, $f_{qs} = 0$ Optimal exhaust MAP

array

The optimal exhaust manifold gas pressure lookup table, f_{EMAP} , is a function of the engine speed and injected fuel mass, $EMAP = f_{EMAP}(F,N)$, where:

- *EMAP* is optimal exhaust manifold gas pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake manifold gas temperature, $f_tqs_mat - Optimal intake$ MAT

array

The optimal intake manifold gas temperature lookup table, f_{MAT} , is a function of the engine speed and injected fuel mass, $MAT = f_{MAT}(F,N)$, where:

- MAT is optimal intake manifold gas temperature, in K.
- *F* is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake gas oxygen percent, $f_{qs_0} = 0$

array

The optimal intake gas oxygen percent lookup table, f_{O2} , is a function of the engine speed and injected fuel mass, $O2PCT = f_{O2}(F,N)$, where:

- *O2PCT* is optimal intake gas oxygen, in percent.
- *F* is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal fuel rail pressure, f_tqs_fuelpress — Optimal fuel rail pressure array

The optimal fuel rail pressure lookup table, f_{fuelp} , is a function of the engine speed and injected fuel mass, $FUELP = f_{fuelp}(F,N)$, where:

- FUELP is optimal fuel rail pressure, in MPa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal gross indicated mean effective pressure, f_tqs_imepg — Optimal mean effective pressure

array

The optimal gross indicated mean effective pressure lookup table, f_{imepg} , is a function of the engine speed and injected fuel mass, $IMEPG = f_{imepg}(F,N)$, where:

- IMEPG is optimal gross indicated mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal friction mean effective pressure, $f_tqs_fmep-Optimal\,friction$ mean effective pressure

array

The optimal friction mean effective pressure lookup table, f_{fmep} , is a function of the engine speed and injected fuel mass, $FMEP = f_{fmep}(F,N)$, where:

- FMEP is optimal friction mean effective pressure, in Pa.
- ullet is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal pumping mean effective pressure, f_{tqs_pmep} — Optimal pumping mean effective pressure

array

The optimal pumping mean effective pressure lookup table, f_{pmep} , is a function of the engine speed and injected fuel mass, $PMEP = f_{pmep}(F,N)$, where:

- *PMEP* is optimal pumping mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Friction multiplier as a function of temperature,
f_tqs_fric_temp_mod — Friction multiplier
array

Friction multiplier as a function of temperature, dimensionless.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt — Breakpoints

vector

Friction multiplier temperature breakpoints, in K.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing efficiency multiplier, f_tqs_mainsoi_eff — MAINSOI efficiency multiplier array

The main start of injection (SOI) timing efficiency multiplier lookup table, f_{SOIeff} , is a function of the engine speed and main SOI timing relative to optimal timing, $SOI_{eff} = f_{SOIeff}(\Delta SOI,N)$, where:

- *SOI_{eff}* is main SOI timing efficiency multiplier, dimensionless.
- ΔSOI is main SOI timing relative to optimal timing, in degBTDC.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing relative to optimal timing breakpoints, f_tqs_mainsoi_delta_bpt — Breakpoints vector

Main start of injection timing relative to optimal timing breakpoints, in degBTDC.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff — Intake pressure efficiency multiplier

array

The intake manifold gas pressure efficiency multiplier lookup table, f_{MAPeff} , is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $MAP_{eff} = f_{MAPeff}(MAP_{ratio}, \lambda)$, where:

- *MAP*_{eff} is intake manifold gas pressure efficiency multiplier, dimensionless.
- MAP_{ratio} is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure ratio relative to optimal pressure
ratio breakpoints, f_tqs_map_ratio_bpt — Breakpoints
vector

Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt — Breakpoints
vector

Intake manifold gas lambda breakpoints, dimensionless.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff
— Intake temperature efficiency multiplier
array

The intake manifold gas temperature efficiency multiplier lookup table, f_{MATeff} , is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $MAT_{eff} = f_{MATeff}(\Delta MAT,N)$, where:

- \bullet MAT_{eff} is intake manifold gas temperature efficiency multiplier, dimensionless.
- ΔMAT is intake manifold gas temperature relative to optimal temperature, in K.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature relative to optimal gas temperature
breakpoints, f_tqs_mat_delta_bpt — Breakpoints
vector

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas oxygen efficiency multiplier, f_tqs_o2pct_eff — Intake oxygen efficiency multiplier

array

The intake manifold gas oxygen efficiency multiplier lookup table, f_{O2Peff} , is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O2P_{eff} = f_{O2Peff}(\Delta O2P_{eff})$, where:

- *O2P*_{eff} is intake manifold gas oxygen efficiency multiplier, dimensionless.
- $\triangle O2P$ is intake gas oxygen percent relative to optimal, in percent.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake gas oxygen percent relative to optimal breakpoints,
f_tqs_o2pct_delta_bpt — Breakpoints
vector

Intake gas oxygen percent relative to optimal breakpoints, in percent.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure efficiency multiplier, f tqs fuelpress eff — **Efficiency multiplier**

array

The fuel rail pressure efficiency multiplier lookup table, $f_{\it FUELPeff}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $FUELP_{eff}$ = $f_{FUELPeff}(\Delta FUELP,N)$, where:

- *FUELP*_{eff} is fuel rail pressure efficiency multiplier, dimensionless.
- $\Delta FUELP$ is fuel rail pressure relative to optimal, in MPa.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure relative to optimal breakpoints, f tqs fuelpress delta bpt — Breakpoints vector

Fuel rail pressure relative to optimal breakpoints, in MPa.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel mass injection type identifier, f_tqs_f_inj_type — Type identifier vector

Fuel mass injection type identifier, dimensionless.

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the **Fuel mass injection type identifier** parameter.

Type of Injection	Parameter Value
Pilot	0
Main	1
Post	2
Passed	3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the **Maximum start of injection angle for burned fuel**, **f tqs f burned soi limit** parameter to specify the threshold.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject correction, f_tqs_imep_post_corr — Post inject correction array

The indicated mean effective pressure post inject correction lookup table, $f_{IMEPpost}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $\Delta IMEP_{post} = f_{IMEPpost}(\Delta SOI_{post}, F_{post})$, where:

- $\Delta IMEP_{post}$ is indicated mean effective pressure post inject correction, in Pa.
- ΔSOI_{post} is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- F_{post} is indicated mean effective pressure post inject mass sum, in mg per injection.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject mass sum breakpoints,
f_tqs_f_post_sum_bpt — Breakpoints
vector

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject start of inject timing
centroid breakpoints, f_tqs_soi_post_cent_bpt — Breakpoints
vector

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit — Maximum SOI angle for burned fuel vector

Maximum start of injection angle for burned fuel, in degATDC.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Exhaust

Exhaust gas specific heat at constant pressure, cp_exh — Specific heat scalar

Exhaust gas-specific heat, Cp_{exh} , in J/(kg·K).

Exhaust Temperature - Simple Torque Lookup

Exhaust temperature table, $f_t_{exh} - Lookup$ table array

The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed

$$T_{exh} = f_{Texh}(F, N)$$

where:

- T_{exh} is exhaust temperature, in K.
- F is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Fuel mass per injection breakpoints, f_t_exh_f_bpt — Breakpoints array

Engine load breakpoints used for exhaust temperature lookup table, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Exhaust Temperature - Torque Structure

Optimal exhaust manifold gas temperature, f_tqs_exht — Optimal exhaust manifold gas temperature array

The optimal exhaust manifold gas temperature lookup table, f_{Texh} , is a function of the engine speed engine speed and injected fuel mass, $Texh_{out} = f_{Texh}(F,N)$, where:

- $Texh_{opt}$ is optimal exhaust manifold gas temperature, in K.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for Torque model, select Torque Structure.

Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff — Main SOI timing efficiency multiplier array

The main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, $f_{SOIexhteff}$, is a function of the engine speed engine speed and injected fuel mass, $SOI_{exhteff} = f_{SOIexhteff}(\Delta SOI,N)$, where:

- $SOI_{exhteff}$ is main SOI exhaust temperature efficiency multiplier, dimensionless.
- ΔSOI is main SOI timing relative to optimal timing, in degBTDC.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure exhaust temperature efficiency
multiplier, f_tqs_exht_map_eff — Intake manifold efficiency multiplier
array

The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, $f_{MAPexheff}$, is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $MAP_{exheff} = f_{MAPexheff}(MAP_{ratio}, \lambda)$, where:

- \bullet MAP _{exheff} is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- MAP_{ratio} is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas temperature exhaust temperature efficiency
multiplier, f_tqs_exht_mat_eff — Intake manifold efficiency multiplier
array

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, $f_{MATexheff}$, is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $MAT_{exheff} = f_{MATexheff}(\Delta MAT,N)$, where:

- MAT_{exheff} is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- ΔMAT is intake manifold gas temperature relative to optimal temperature, in K.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas oxygen exhaust temperature efficiency
multiplier, f_tqs_exht_o2pct_eff — Intake manifold efficiency multiplier
array

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, $f_{O2Pexheff}$, is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O2P_{exheff} = f_{O2Pexheff}(\Delta O2P_{ex}N)$, where:

- $O2P_{\it exheff}$ is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- $\Delta O2P$ is intake gas oxygen percent relative to optimal, in percent.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure exhaust temperature efficiency multiplier, f_tqs_exht_fuelpress_eff — Fuel rail pressure exhaust temperature efficiency multiplier

array

The fuel rail pressure efficiency exhaust temperature multiplier lookup table, $f_{FUELPexheff}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $FUELP_{exheff} = f_{FUELPexheff}(\Delta FUELP,N)$, where:

- $FUELP_{exheff}$ is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- $\Delta FUELP$ is fuel rail pressure relative to optimal, in MPa.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Post injection torque energy conservation multiplier, f_tqs_exht_post_inj_tq_energy_mult — Post injection torque energy conservation multiplier

scalar

Post injection torque energy conservation multiplier, dimensionless.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

References

[1] Heywood, John B. *Internal Combustion Engine Fundamentals*. New York: McGraw-Hill, 1988.

See Also

CI Core Engine | Mapped CI Engine

Topics

"Engine Calibration Maps"

Introduced in R2017a

[&]quot;Generate Mapped CI Engine from a Spreadsheet"

CI Core Engine

Compression-ignition engine from intake to exhaust port

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Core Engine

Description

The CI Core Engine block implements a compression-ignition (CI) engine from intake to the exhaust port. You can use the block for hardware-in-the-loop (HIL) engine control design or vehicle-level fuel economy and performance simulations.

The CI Core Engine block calculates:

- · Brake torque
- Exhaust temperature
- Air-fuel ratio (AFR)
- Fuel rail pressure
- Engine-out (EO) exhaust emissions:
 - Hydrocarbon (HC)
 - Carbon monoxide (CO)
 - Nitric oxide and nitrogen dioxide (NOx)
 - Carbon dioxide (CO₂)
 - Particulate matter (PM)

Air Mass Flow

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density

equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

Brake Torque

To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model	Description	
"CI Engine Torque Structure Model"	The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal:	
	Start of injection (SOI) timing	
	Exhaust back-pressure	
	Burned fuel mass	
	Intake manifold gas pressure, temperature, and oxygen percentage	
	Fuel rail pressure	
	To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.	
"CI Engine Simple Torque Model"	For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass.	

Fuel Flow

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the **Fuel mass injection type identifier** parameter.

Type of Injection	Parameter Value
Pilot	0
Main	1
Post	2

Type of Injection	Parameter Value
Passed	3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, **f tqs f burned soi limit** parameter to specify the threshold.

To calculate the engine fuel mass flow, the CI Core Engine block uses fuel mass flow delivered by the injectors and the engine airflow.

$$\dot{m}_{fuel} = \frac{N \cdot N_{cyl}}{Cps \left(\frac{60s}{\min}\right) \left(\frac{1000mg}{g}\right)} \sum m_{fuel,inj}$$

The equation uses these variables.

Engine fuel mass flow, g/s

 \dot{m}_{fuel}

Fuel mass per injection $m_{fuel.ini}$

Cps

Crankshaft revolutions per power stroke, rev/stroke

Number of engine cylinders

 N_{cyl}

Ν Engine speed, rpm

Air-Fuel Ratio

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.

$$AFR = \frac{\dot{m}_{air}}{\dot{m}_{fuel}}$$

The CI Core Engine uses this equation to calculate the relative AFR.

$$\lambda = \frac{AFR}{AFR_s}$$

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.

$$EGR_{pct} = 100 \frac{\dot{\mathbf{m}}_{intk,b}}{\dot{\mathbf{m}}_{intk}} = 100 y_{intk,b}$$

The equations use these variables.

AFR Air-fuel ratio

AFR_s Stoichiometric air-fuel ratio

Engine air mass flow

 \dot{m}_{intk}

Fuel mass flow

 \dot{m}_{fuel}

λ Relative AFR

 $y_{intk,b}$ Intake burned mass fraction

 EGR_{pct} EGR percent

Recirculated burned gas mass flow rate

 $\dot{m}_{intk,b}$

Exhaust Temperature

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.

Torque Model	Description	Equations
Simple	Exhaust temperature lookup	$T_{exh} = f_{Texh}(F, N)$
Torque	table is a function of the injected	
Lookup	fuel mass and engine speed.	

Torque Model	Description	Equations	
Torque Structur e	The exhaust temperature is a product of these exhaust temperature efficiencies: • SOI timing • Intake manifold gas pressure • Intake manifold gas temperature • Intake manifold gas oxygen percentage • Fuel rail pressure • Optimal temperature To determine the efficiencies, the block uses lookup tables.	$T_{exh} = SOI_{exhteff} MAP_{exhteff} MAT_{exhteff}$ $SOI_{exhteff} = f_{SOI_{exhteff}} \left(\Delta SOI, N ight)$ $MAP_{exhteff} = f_{MAP_{exhteff}} \left(MAP_{ratio}, \lambda ight)$ $MAT_{exhteff} = f_{MAT_{exhteff}} \left(\Delta MAT, N ight)$ $O2p_{exhteff} = f_{O2p_{exhteff}} \left(\Delta O2p, N ight)$ $Texh_{opt} = f_{Texh}(F, N)$	$O2p_{exhteff}FU$

The equations use these variables.

F	Compression stroke injected fuel mass
N	Engine speed
Texh	Exhaust manifold gas temperature
$Texh_{opt}$	Optimal exhaust manifold gas temperature
$SOI_{exhteff}$	Main SOI exhaust temperature efficiency multiplier
ΔSOI	Main SOI timing relative to optimal timing
MAP_{exheff}	Intake manifold gas pressure exhaust temperature efficiency multiplier
MAP_{ratio}	Intake manifold gas pressure ratio relative to optimal pressure ratio
λ	Intake manifold gas lambda
MAT_{exheff}	Intake manifold gas temperature exhaust temperature efficiency multiplier
ΔMAT	Intake manifold gas temperature relative to optimal temperature
$O2P_{exheff}$	Intake manifold gas oxygen exhaust temperature efficiency multiplier
$\Delta O2P$	Intake gas oxygen percent relative to optimal
$FUELP_{exheff}$	Fuel rail pressure exhaust temperature efficiency multiplier

 $\Delta FUELP$ Fuel rail pressure relative to optimal

EO Exhaust Emissions

The block calculates these engine-out (EO) exhaust emissions:

- Hydrocarbon (HC)
- Carbon monoxide (CO)
- · Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide (CO₂)
- Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.

$$h_{exh} = Cp_{exh}T_{exh}$$

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.

$$\dot{m}_{exh} = \dot{m}_{intake} + \dot{m}_{fuel}$$

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.

$$\begin{aligned} y_{exh,i} &= f_{i_frac}(T_{brake}, N) \\ \dot{m}_{exh,i} &= \dot{m}_{exh} y_{exh,i} \end{aligned}$$

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.

$$y_{exh,air} = \max \left[y_{in,air} - \frac{\dot{m}_{fuel} + y_{in,fuel} \dot{m}_{intake}}{\dot{m}_{fuel} + \dot{m}_{intake}} AFR_s \right]$$

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.

$$y_{exh,b} = \max \left[(1 - y_{exh,air} - y_{exh,HC}), 0 \right]$$

The equations use these variables.

 T_{exh} Engine exhaust temperature

 $h_{exh} \qquad \text{Exhaust manifold inlet-specific enthalpy} \\$

 Cp_{exh} Exhaust gas specific heat

Intake port air mass flow rate

 \dot{m}_{intk}

Fuel mass flow rate

 \dot{m}_{fuel} Exhaust mass flow rate

 \dot{m}_{exh} Intake fuel mass fraction

 $y_{in,fuel}$

 $y_{exh,i}$ Exhaust mass fraction for $i = CO_2$, CO, HC, NOx, air, burned gas, and PM Exhaust mass flow rate for $i = CO_2$, CO, HC, NOx, air, burned gas, and PM

 $\dot{m}_{exh,i}$

 T_{brake} Engine brake torque

N Engine speed

 $y_{exh,air}$ Exhaust air mass fraction

 $y_{exh,b}$ Exhaust air burned mass fraction

Ports

Input

FuelMass — Fuel injector pulse-width

vector

Fuel mass per injection, $m_{fuel,inj}$, in mg per injection.

Soi — Start of fuel injection timing

vector

Fuel injection timing, *SOI*, in degrees crank angle after top dead center (degATDC). First vector value, Soi(1), is main injection timing.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

EngSpd — Engine speed

scalar

Engine speed, N, in rpm.

FuelPrs — Fuel rail pressure

scalar

Fuel rail pressure, FUELP, in MPa.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Ect — Engine cooling temperature

scalar

Engine cooling temperature, $T_{coolant}$, in K.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intk — Intake port pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the upstream:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Intake port mass fractions, dimensionless. Exhaust gas recirculation (EGR) mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Exh — Exhaust port pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the exhaust:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide

- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
IntkGasMassFlw	Air mass flow entering and exiting the engine from the intake ports to the exhaust ports.	\dot{m}_{intk}	kg/s
IntkAirMassFlw	Total engine air mass flow at intake ports, including EGR flow.	\dot{m}_{port}	kg/s
NrmlzdAirChrg	Engine load (that is, normalized cylinder air mass) at arbitrary cam phaser angles, corrected for final steady-state cam phase angles	L	N/A
Afr	Air fuel ratio at engine exhaust port.	AFR	N/A
FuelMassFlw	Fuel flow into engine	\dot{m}_{fuel}	kg/s
ExhManGasTemp	Exhaust gas temperature at exhaust manifold inlet	T_{exh}	K
EngTrq	Engine brake torque	T_{brake}	N·m

Signal	Description	Variable	Units
EngSpd	Engine speed	N	rpm
CrkAng	Engine crankshaft absolute angle	$\int\limits_{0}^{(360)Cps} EngSpd\frac{180}{30}d\theta$ where Cps is crankshaft revolutions per power stroke	degrees crank angle
EgrPct	EGR percent	EGR_{pct}	N/A
EoAir	EO air mass flow rate	\dot{m}_{exh}	kg/s
EoBrndGas	EO burned gas mass flow rate	y _{exh,b}	kg/s
ЕоНС	EO hydrocarbon emission mass flow rate	Yexh,HC	kg/s
EoC0	EO carbon monoxide emission mass flow rate	Yexh,CO	kg/s
EoN0x	EO nitric oxide and nitrogen dioxide emissions mass flow rate	Yexh,NOx	kg/s
EoC02	EO carbon dioxide emission mass flow rate	Yexh,CO2	kg/s
EoPm	EO particulate matter emission mass flow rate	y _{exh,PM}	kg/s

$\mathbf{EngTrq} - \mathbf{Engine} \ \mathbf{brake} \ \mathbf{torque}$

scalar

Engine brake torque, T_{brake} , in N·m.

$\label{lower} \textbf{Intk} - \textbf{Intake port mass flow rate, heat flow rate, temperature, mass fraction} \\ \text{two-way connector port}$

Bus containing:

- MassFlwRate Intake port mass flow rate, in kg/s
- HeatFlwRate Intake port heat flow rate, in J/s
- ExhManGasTemp Intake port temperature, in K
- MassFrac Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- ullet NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Exh — Exhaust port mass flow rate, heat flow rate, temperature, mass fraction two-way connector port

Bus containing:

- MassFlwRate Exhaust port mass flow rate, in kg/s
- HeatFlwRate Exhaust heat flow rate, in J/s
- $\bullet \quad Exh Man Gas Temp Exhaust \ port \ temperature, \ in \ K$
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

• O2MassFrac — Oxygen

- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Torque model — Select torque model

Torque Structure (default) | Simple Torque Lookup

To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model	Description
"CI Engine Torque Structure Model"	The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal:
	Start of injection (SOI) timing
	Exhaust back-pressure
	Burned fuel mass
	Intake manifold gas pressure, temperature, and oxygen percentage
	Fuel rail pressure
	To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
"CI Engine Simple Torque Model"	For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass.

Air

Number of cylinders, NCyl — Engine cylinders scalar

Number of engine cylinders, N_{cyl} .

 $\begin{array}{c} \textbf{Crank revolutions per power stroke}, \ \textbf{Cps-Revolutions per stroke} \\ \textbf{scalar} \end{array}$

Crankshaft revolutions per power stroke, Cps , in rev/stroke.

Total displaced volume, Vd — Volume scalar

Displaced volume, V_d , in m^3.

Ideal gas constant air, Rair — Constant scalar

Ideal gas constant, R_{air} , in J/(kg·K).

Air standard pressure, Pstd — Pressure scalar

Standard air pressure, P_{std} , in Pa.

Speed-density volumetric efficiency, $f_nv - Lookup$ table array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed

$$\eta_v = f_{\eta_v}(MAP, N)$$

where:

- η_v is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- N is engine speed, in rpm.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt — Breakpoints

array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Speed-density engine speed breakpoints, f_nv_n_bpt — Breakpoints array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

Torque

Torque - Simple Torque Lookup

For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, $T_{brake} = f_{Tnf}(F, N)$, where:

- $Tq = T_{brake}$ is engine brake torque after accounting for engine mechanical and pumping friction effects, in N·m.
- *F* is injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt — Breakpoints

vector

Torque table fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque table speed breakpoints, f_tq_nf_n_bpt — Breakpoints vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque - Torque Structure

Fuel mass per injection breakpoints, f_tqs_f_bpt — Breakpoints vector

Fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Engine speed breakpoints, f_tqs_n_bpt — Breakpoints vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal main start of injection timing, f_tqs_mainsoi — Optimal MAINSOI

array

The optimal main start of injection (SOI) timing lookup table, f_{SOIc} , is a function of the engine speed and injected fuel mass, $SOI_c = f_{SOIc}(F,N)$, where:

- *SOI*_c is optimal SOI timing, in degATDC.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake manifold gas pressure, f_tqs_map — Optimal intake MAP array

The optimal intake manifold gas pressure lookup table, f_{MAP} , is a function of the engine speed and injected fuel mass, $MAP = f_{MAP}(F,N)$, where:

- MAP is optimal intake manifold gas pressure, in Pa.
- ullet F is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for Torque model, select Torque Structure.

Optimal exhaust manifold gas pressure, f_tqs_emap — Optimal exhaust MAP

array

The optimal exhaust manifold gas pressure lookup table, f_{EMAP} , is a function of the engine speed and injected fuel mass, $EMAP = f_{EMAP}(F,N)$, where:

- EMAP is optimal exhaust manifold gas pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake manifold gas temperature, f_tqs_mat — Optimal intake MAT

array

The optimal intake manifold gas temperature lookup table, f_{MAT} , is a function of the engine speed and injected fuel mass, $MAT = f_{MAT}(F,N)$, where:

- MAT is optimal intake manifold gas temperature, in K.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake gas oxygen percent, f_tqs_o2pct — Optimal intake gas oxygen

array

The optimal intake gas oxygen percent lookup table, f_{O2} , is a function of the engine speed and injected fuel mass, $O2PCT = f_{O2}(F_{\nu}N)$, where:

- *O2PCT* is optimal intake gas oxygen, in percent.
- *F* is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal fuel rail pressure, f_tqs_fuelpress — Optimal fuel rail pressure array

The optimal fuel rail pressure lookup table, f_{fuelp} , is a function of the engine speed and injected fuel mass, $FUELP = f_{fuelp}(F,N)$, where:

- FUELP is optimal fuel rail pressure, in MPa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal gross indicated mean effective pressure, f_tqs_imepg — Optimal mean effective pressure

array

The optimal gross indicated mean effective pressure lookup table, f_{imepg} , is a function of the engine speed and injected fuel mass, $IMEPG = f_{imeng}(F,N)$, where:

- *IMEPG* is optimal gross indicated mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal friction mean effective pressure, f_tqs_fmep — Optimal friction mean effective pressure

array

The optimal friction mean effective pressure lookup table, f_{fmep} , is a function of the engine speed and injected fuel mass, $FMEP = f_{fmep}(F,N)$, where:

- FMEP is optimal friction mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal pumping mean effective pressure, f_{tqs_pmep} — Optimal pumping mean effective pressure

array

The optimal pumping mean effective pressure lookup table, f_{pmep} , is a function of the engine speed and injected fuel mass, $PMEP = f_{pmep}(F,N)$, where:

- *PMEP* is optimal pumping mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Friction multiplier as a function of temperature,
f_tqs_fric_temp_mod — Friction multiplier
array

Friction multiplier as a function of temperature, dimensionless.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt — Breakpoints

vector

Friction multiplier temperature breakpoints, in K.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing efficiency multiplier,
f_tqs_mainsoi_eff — MAINSOI efficiency multiplier
array

The main start of injection (SOI) timing efficiency multiplier lookup table, f_{SOIeff} , is a function of the engine speed and main SOI timing relative to optimal timing, $SOI_{eff} = f_{SOIeff}(\Delta SOI,N)$, where:

- ullet $SOI_{\it eff}$ is main SOI timing efficiency multiplier, dimensionless.
- ΔSOI is main SOI timing relative to optimal timing, in degBTDC.
- N is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing relative to optimal timing breakpoints, f_tqs_mainsoi_delta_bpt — Breakpoints vector

Main start of injection timing relative to optimal timing breakpoints, in degBTDC.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff —
Intake pressure efficiency multiplier
array

The intake manifold gas pressure efficiency multiplier lookup table, f_{MAPeff} , is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $MAP_{eff} = f_{MAPeff}(MAP_{ratio}, \lambda)$, where:

- ullet MAP $_{e\!f\!f}$ is intake manifold gas pressure efficiency multiplier, dimensionless.
- MAP_{ratio} is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure ratio relative to optimal pressure
ratio breakpoints, f_tqs_map_ratio_bpt — Breakpoints
vector

Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt — Breakpoints
vector

Intake manifold gas lambda breakpoints, dimensionless.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff
— Intake temperature efficiency multiplier
array

The intake manifold gas temperature efficiency multiplier lookup table, f_{MATeff} , is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $MAT_{eff} = f_{MATeff}(\Delta MAT,N)$, where:

- *MAT*_{eff} is intake manifold gas temperature efficiency multiplier, dimensionless.
- ΔMAT is intake manifold gas temperature relative to optimal temperature, in K.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature relative to optimal gas temperature
breakpoints, f_tqs_mat_delta_bpt — Breakpoints
vector

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas oxygen efficiency multiplier, f_tqs_o2pct_eff —
Intake oxygen efficiency multiplier
array

The intake manifold gas oxygen efficiency multiplier lookup table, f_{O2Peff} , is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O2P_{eff} = f_{O2Peff}(\Delta O2P,N)$, where:

- *O2P*_{eff} is intake manifold gas oxygen efficiency multiplier, dimensionless.
- $\triangle O2P$ is intake gas oxygen percent relative to optimal, in percent.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake gas oxygen percent relative to optimal breakpoints,
f_tqs_o2pct_delta_bpt — Breakpoints
vector

Intake gas oxygen percent relative to optimal breakpoints, in percent.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure efficiency multiplier, f_tqs_fuelpress_eff — Efficiency multiplier

array

The fuel rail pressure efficiency multiplier lookup table, $f_{FUELPeff}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $FUELP_{eff} = f_{FUELPeff}(\Delta FUELP,N)$, where:

- FUELP_{eff} is fuel rail pressure efficiency multiplier, dimensionless.
- $\Delta FUELP$ is fuel rail pressure relative to optimal, in MPa.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure relative to optimal breakpoints,
f_tqs_fuelpress_delta_bpt — Breakpoints
vector

Fuel rail pressure relative to optimal breakpoints, in MPa.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel mass injection type identifier, f_tqs_f_inj_type — Type identifier vector

Fuel mass injection type identifier, dimensionless.

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the **Fuel mass injection type identifier** parameter.

Type of Injection	Parameter Value
Pilot	0
Main	1
Post	2

Type of Injection	Parameter Value
Passed	3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the **Maximum start of injection angle for burned fuel**, **f** tqs f burned soi limit parameter to specify the threshold.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject correction, f_tqs_imep_post_corr — Post inject correction array

The indicated mean effective pressure post inject correction lookup table, $f_{IMEPpost}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $\Delta IMEP_{post} = f_{IMEPpost}(\Delta SOI_{post}, F_{post})$, where:

- $\Delta IMEP_{post}$ is indicated mean effective pressure post inject correction, in Pa.
- ΔSOI_{post} is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- F_{post} is indicated mean effective pressure post inject mass sum, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject mass sum breakpoints,
f_tqs_f_post_sum_bpt — Breakpoints
vector

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject start of inject timing
centroid breakpoints, f_tqs_soi_post_cent_bpt — Breakpoints
vector

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Maximum start of injection angle for burned fuel,
f_tqs_f_burned_soi_limit — Maximum SOI angle for burned fuel
vector

Maximum start of injection angle for burned fuel, in degATDC.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Exhaust

Exhaust Temperature - Simple Torque Lookup

Exhaust temperature table, f_t_exh — Lookup table array

The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed

$$T_{exh} = f_{Texh}(F, N)$$

where:

- T_{exh} is exhaust temperature, in K.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Fuel mass per injection breakpoints, f_t_exh_f_bpt — Breakpoints array

 $Engine\ load\ breakpoints\ used\ for\ exhaust\ temperature\ lookup\ table,\ in\ mg\ per\ injection.$

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Speed breakpoints, f_t_exh_n_bpt — Breakpoints array

Engine speed breakpoints used for exhaust temperature lookup table, in $\ensuremath{\mathsf{rpm}}$.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Exhaust Temperature - Torque Structure

Optimal exhaust manifold gas temperature, f_tqs_exht — Optimal exhaust manifold gas temperature

array

The optimal exhaust manifold gas temperature lookup table, f_{Texh} , is a function of the engine speed engine speed and injected fuel mass, $Texh_{opt} = f_{Texh}(F,N)$, where:

- *Texh*_{opt} is optimal exhaust manifold gas temperature, in K.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff — Main SOI timing efficiency multiplier array

The main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, $f_{SOIexhteff}$, is a function of the engine speed engine speed and injected fuel mass, $SOI_{exhteff} = f_{SOIexhteff}(\Delta SOI, N)$, where:

- $SOI_{exhteff}$ is main SOI exhaust temperature efficiency multiplier, dimensionless.
- ΔSOI is main SOI timing relative to optimal timing, in degBTDC.

• N is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure exhaust temperature efficiency
multiplier, f_tqs_exht_map_eff — Intake manifold efficiency multiplier
array

The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, $f_{MAPexheff}$, is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $MAP_{exheff} = f_{MAPexheff}(MAP_{ratio},\lambda)$, where:

- \bullet MAP _{exheff} is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- ullet MAP_{ratio} is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature exhaust temperature efficiency
multiplier, f_tqs_exht_mat_eff — Intake manifold efficiency multiplier
array

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, $f_{MATexheff}$, is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $MAT_{exheff} = f_{MATexheff}(\Delta MAT,N)$, where:

- MAT_{exheff} is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- $\Delta \textit{MAT}$ is intake manifold gas temperature relative to optimal temperature, in K.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas oxygen exhaust temperature efficiency
multiplier, f_tqs_exht_o2pct_eff — Intake manifold efficiency multiplier
array

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, $f_{O2Pexheff}$, is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O2P_{exheff} = f_{O2Pexheff}(\Delta O2P,N)$, where:

- $O2P_{\it exheff}$ is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- $\triangle O2P$ is intake gas oxygen percent relative to optimal, in percent.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure exhaust temperature efficiency multiplier, f_tqs_exht_fuelpress_eff — Fuel rail pressure exhaust temperature efficiency multiplier

array

The fuel rail pressure efficiency exhaust temperature multiplier lookup table, $f_{FUELPexheff}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $FUELP_{exheff} = f_{FUELPexheff}(\Delta FUELP,N)$, where:

- $FUELP_{exheff}$ is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- $\Delta FUELP$ is fuel rail pressure relative to optimal, in MPa.
- N is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Post injection torque energy conservation multiplier, f_tqs_exht_post_inj_tq_energy_mult — Post injection torque energy conservation multiplier

scalar

Post injection torque energy conservation multiplier, dimensionless.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Emissions

CO2 mass fraction table, f_CO2_frac — Carbon dioxide (CO_2) emission lookup table

array

The CI Core Engine CO_2 emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:

• CO2 Mass Fraction is the CO₂ emission mass fraction, dimensionless.

- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

To enable this parameter, on the **Exhaust** tab, select **CO2**.

CO mass fraction table, $f_CO_frac-Carbon$ monoxide (CO) emission lookup table

array

The CI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:

- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

To enable this parameter, on the **Exhaust** tab, select **CO**.

HC mass fraction table, f_HC_frac — Hydrocarbon (HC) emission lookup table

array

The CI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction = f(Speed, Torque), where:

- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

To enable this parameter, on the **Exhaust** tab, select **HC**.

NOx mass fraction table, $f_NOx_frac - Nitric oxide$ and nitrogen dioxide (NOx) emission lookup table array

The CI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, $NOx\ Mass\ Fraction = f(Speed,\ Torque)$, where:

- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in $N \cdot m$.

To enable this parameter, on the **Exhaust** tab, select **NOx**.

PM mass fraction table, $f_PM_frac - Particulate matter (PM) emission lookup table$

array

The CI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:

- *PM* is the PM emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in $N \cdot m$.

Dependencies

To enable this parameter, on the $\mathbf{Exhaust}$ tab, select \mathbf{PM} .

Engine speed breakpoints, f_exhfrac_n_bpt — Breakpoints vector

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

To enable this parameter, on the **Exhaust** tab, select **CO2**, **CO**, **NOx**, **HC**, or **PM**.

Engine torque breakpoints, f_exhfrac_trq_bpt — Breakpoints
vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in N·m.

Dependencies

To enable this parameter, on the **Exhaust** tab, select **CO2**, **CO**, **NOx**, **HC**, or **PM**.

Exhaust gas specific heat at constant pressure, cp_exh — Specific heat scalar

Exhaust gas-specific heat, Cp_{exh} , in J/(kg·K).

Fuel

Stoichiometric air-fuel ratio, afr_stoich — Air-fuel ratio scalar

Air-fuel ratio, AFR.

Fuel lower heating value, fuel_lhv — Heating value
scalar

Fuel lower heating value, fuel_lhv, in J/kg.

References

[1] Heywood, John B. *Internal Combustion Engine Fundamentals*. New York: McGraw-Hill, 1988.

See Also

CI Controller | Mapped CI Engine

Topics

"CI Core Engine Air Mass Flow and Torque Production" "Engine Calibration Maps"

Introduced in R2017a

Compressor

Compressor for boosted engines

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Boost

Description

The Compressor block simulates engine boost by using the drive shaft energy to increase the intake manifold pressure. The block is a component of supercharger and turbocharger models. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. The control volumes provide the pressure, temperature, and specific enthalpy for the compressor to calculate the mass and energy flow rates. To calculate the torque and flow rates, the drive shaft provides the speed to the compressor. Typically, compressor manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. You can specify the lookup tables to calculate the mass flow rate and efficiency. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to the outlet control volume.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description			
Import compressor data	Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).			
	Pressure ratio, dimensionless			
	• Speed, rad/s			
	Mass flow rate,	kg/s		
	Efficiency, dime	ensionless		
	Model-Based Calibration Toolbox limits the speed and pressure rebreakpoint values to the maximum values in the file. To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens.			
Generate response models	Model-Based Calibration Toolbox fits the imported data to the response models.			
	Data Response Model			
		Extended ellipse response model described in Modeling and Control of Engines and Drivelines ²		
	Efficiency	Polynomial		
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).			
Generate calibration	Model-Based Calibration Toolbox calibrates the response model a generates calibrated tables.			
Model-Based Calibration		the calibration, select Edit in Application . The bration Toolbox CAGE Browser opens. For more Calibration Tables" (Model-Based Calibration		

Task	Description	
Update block parameters	Update these mass flow rate and efficiency parameters with the calibration.	
	Corrected mass flow rate table, mdot_corr_tbl	
	Efficiency table, eta_comp_tbl	
	Corrected speed breakpoints, w_corr_bpts1	
	Pressure ratio breakpoints, Pr_bpts2	

Thermodynamics

The block uses these equations to model the thermodynamics.

Calculation	Equations	
Forward mass flow	$\dot{m}_{comp} > 0$	
	$p_{01} = p_{inlet}$	
	$p_{02} = p_{outlet}$	
	$T_{01} = T_{inlet}$	
	$h_{01} = h_{inlet}$	
First law of thermodynamics	$\dot{W}_{comp} = \dot{m}_{comp} c_p \left(T_{01} - T_{02} \right)$	
Isentropic efficiency		
	$\eta_{comp} = \frac{h_{02s} - h_{01}}{h_{cos} - h_{01}} = \frac{T_{02s} - T_{01}}{T_{cos} - T_{01}}$	
Isentropic outlet temperature, assuming ideal gas and constant specific heats	$T_{02s} = T_{01} \left(\frac{p_{02}}{p_{01}} \right)^{\frac{\gamma - 1}{\gamma}}$	

Calculation	Equations
Specific heat ratio	
	c_p
Outlet temperature	$\gamma = \frac{c_p}{c_p - R}$
	$T_{02} = T_{01} + rac{T_{01}}{\eta_{comb}} \left\{ \left(rac{p_{02}}{p_{01}} ight)^{rac{\gamma-1}{\gamma}} - 1 ight\}$ $q_{inlet} = \dot{m}_{comp} h_{01}$
Heat flows	The six b
	$q_{inlet} - m_{comp}n_{01}$
	$q_{outlet} = \dot{m}_{comp} h_{02} = \dot{m}_{comp} c_p T_{02}$
Corrected mass flow rate	
	$\dot{m}_{corr} = \dot{m}_{comp} \frac{\sqrt{T_{01} / T_{ref}}}{p_{01} / p_{ref}}$
Corrected speed	P01 / Pref
	$\omega_{corr} = \frac{\omega}{\sqrt{T_{01}/T_{ref}}}$
Pressure ratio	$\sqrt{101}$ ref
	$p_r = \frac{p_{01}}{p_{02}}$

The equations use these variables.

	Inlet control volume total pressure
$p_{ m inlet}$, p_{01}	
T_{inlet} , T_{01}	Inlet control volume total temperature
h_{inlet} , h_{01}	Inlet control volume total specific enthalpy
p_{outlet} , p_{02}	Outlet control volume total pressure
T_{outlet}	Outlet control volume total temperature
h_{outlet}	Outlet control volume total specific enthalpy

Drive shaft power

 \dot{W}_{comp}

Outlet total temperature T_{02}

Outlet total specific enthalpy

 h_{02}

Mass flow rate through compressor

 \dot{m}_{comp}

Inlet heat flow rate

 q_{inlet}

Outlet heat flow rate

 q_{outlet}

Compressor isentropic efficiency

 η_{comp}

Isentropic outlet total temperature

Specific heat at constant pressure

 T_{02s}

Isentropic outlet total specific enthalpy

 h_{02s}

Ideal gas constant R

 c_p

Specific heat ratio γ

 \dot{m}_{corr}

Corrected mass flow rate

Drive shaft speed ω

 ω_{corr}

Corrected drive shaft speed

 T_{ref}

Lookup table reference temperature

 P_{ref}

Lookup table reference pressure

Compressor drive shaft torque

 τ_{comp}

Pressure ratio

 p_r

Compressor efficiency 3-D lookup table

 $\eta_{comb,tbl}$

Corrected mass flow rate 3-D lookup table

 $\dot{m}_{corr,tbl}$

Corrected speed breakpoints

 $\omega_{corr,bpts1}$

Pressure ratio breakpoints

 $p_{r,bpts2}$

Ports

Input

Ds — Drive shaft speed

two-way connector port

ShftSpd — Signal containing the drive shaft angular speed, ω , in rad/s.

A — Inlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the inlet control volume:

- InPrs Pressure, p_{inlet} , in Pa
- ${\tt InTemp-Temperature},\ T_{inlet}$, in K
- InEnth Specific enthalpy, h_{inlet} , in J/kg

${\sf B}-{\sf Outlet}$ pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the outlet control volume:

- OutPrs Pressure, p_{outlet} , in Pa
- OutTemp Temperature, T_{outlet} , in K
- OutEnth Specific enthalpy, h_{outlet} , in J/kg

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
CmprsOutletTemp	Temperature exiting the compressor	T_{02}	K
DriveshftPwr	Drive shaft power	\dot{W}_{comp}	W
DriveshftTrq	Drive shaft torque	$ au_{comp}$	N·m
CmprsMassFlw	Mass flow rate through compressor	\dot{m}_{comp}	kg/s
PrsRatio	Pressure ratio	p_r	N/A
DriveshftCorrSpd	Corrected drive shaft speed	ω_{corr}	rad/s
CmprsEff	Compressor isentropic efficiency	η_{comp}	N/A
CorrMassFlw	Corrected mass flow rate	\dot{m}_{corr}	kg/s

Ds — Drive shaft torque

two-way connector port

 ${\rm Trq}-{\rm Signal}$ containing the drive shaft torque, τ_{comp} , in N·m.

${\bf A}-{\bf Inlet}$ mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate Mass flow rate through inlet, \dot{m}_{comp} , in kg/s
- HeatFlwRate Inlet heat flow rate, q_{inlet} , in J/s

- Temp Inlet temperature, in K
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

$\ensuremath{\mathsf{B}}-\ensuremath{\mathsf{Outlet}}$ mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate Outlet mass flow rate, \dot{m}_{comp} , in kg/s
- $HeatFlwRate Outlet heat flow rate, q_{outlet}$, in J/s
- Temp Outlet temperature, in K
- $\bullet \quad {\tt MassFrac} {\tt Outlet} \ {\tt mass} \ {\tt fractions}, \ {\tt dimensionless}.$

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide

- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Performance Tables

Calibrate Performance Maps — Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description	
Import compressor data	Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).	
	Pressure ratio, dimensionless	
	Speed, rad/s	
	Mass flow rate, kg/s	
	Efficiency, dimensionless	
	Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file.	
	To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens.	

Task	Description				
Generate response models	Model-Based Calibration Toolbox fits the imported data to the response models.				
	Data	Response Model			
	Mass flow rate Extended ellipse response model described in Modeling and Control of Engines and Drivelines				
	Efficiency	Polynomial			
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).				
Generate calibration	Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables.				
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).				
Update block parameters	Update these mass flow rate and efficiency parameters with the calibration.				
	Corrected mass flow rate table, mdot_corr_tbl				
	Efficiency table, eta_comp_tbl				
	Corrected speed breakpoints, w_corr_bpts1				
	• Pressure ratio	breakpoints, Pr_bpts2			

Corrected mass flow rate table, $mdot_corr_tbl - Lookup$ table array

Corrected mass flow rate lookup table, $\dot{m}_{corr,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , in kg/s.

Efficiency table, eta_comp_tbl — Lookup table array

Efficiency lookup table, $\eta_{comb,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , dimensionless.

Corrected speed breakpoints, w_corr_bpts1 — Breakpoints vector

Corrected drive shaft speed breakpoints, $\,\omega_{\!corr,bpts1}\,$, in rad/s.

Pressure ratio breakpoints, $Pr_bpts2 - Breakpoints$ vector

Pressure ratio breakpoints, $p_{r,bpts2}$.

Reference temperature, T_ref — Reference scalar

Lookup table reference temperature, T_{ref} , in K.

Reference pressure, P_ref — Reference scalar

Lookup table reference pressure, P_{ref} , in Pa.

Gas Properties

Ideal gas constant, R — Constant scalar

Ideal gas constant, R, in J/(kg*K).

Specific heat at constant pressure, cp — Specific heat scalar

Specific heat at constant pressure, c_p , in J/(kg*K).

References

- [1] Heywood, John B. *Internal Combustion Engine Fundamentals*. New York: McGraw-Hill, 1988.
- [2] Eriksson, Lars and Lars Nielsen. *Modeling and Control of Engines and Drivelines*. Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2014.

See Also

Two-Way Connection | Boost Drive Shaft | Turbine

Topics

"Model-Based Calibration Toolbox"

Introduced in R2017a

Control Volume System

Constant volume open thermodynamic system with heat transfer

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Fundamental Flow

Description

The Control Volume System block models a constant volume open thermodynamic system with heat transfer. The block uses the conservation of mass and energy, assuming an ideal gas, to determine the pressure and temperature. The block implements an automotive-specific Constant Volume Pneumatic Chamber block that includes thermal effects related to the under hood of passenger vehicles. You can specify heat transfer models:

- Constant
- External input
- External wall convection

You can use the Control Volume System block to represent engine components that contain volume, including pipes and manifolds.

Thermodynamics

The Control Volume System block implements a constant volume chamber containing an ideal gas. To determine the rate changes in temperature and pressure, the block uses the continuity equation and the first law of thermodynamics.

$$\begin{split} &\frac{dT_{vol}}{dt} = \frac{RT_{vol}}{c_v V_{ch} P_{vol}} \left(\sum \left(q_i - T_{vol} c_v \dot{m}_i \right) - Q_{wall} \right) \\ &\frac{dP_{vol}}{dt} = \frac{P_{vol}}{T_{vol}} \frac{dT_{vol}}{dt} + \frac{RT_{vol}}{V_{ch}} \sum \dot{m}_i \end{split}$$

The block uses this equation for the volume-specific enthalpy.

$$h_{vol} = c_p T_{vol}$$

The equations use these variables.

\dot{m}_i	Mass flow rate at port
q_i	Heat flow rate at port
V_{ch}	Chamber volume
P_{vol}	Absolute pressure in the chamber
R	Ideal gas constant
C_{v}	Specific heat at constant volume
T_{vol}	Absolute gas temperature
Q_{wall}	Wall heat transfer rate
h_{vol}	Volume-specific enthalpy
c_p	Specific heat capacity

Mass Fractions

The Control Volume Source block is part of a flow network. Blocks in the network determine the mass fractions that the block will track during simulation. The block can track these mass fractions:

- 02 Oxygen
- N2 Nitrogen
- UnburnedFuel Unburned fuel
- CO2 Carbon dioxide
- H20 Water
- CO Carbon monoxide
- NO Nitric oxide
- N02 Nitrogen dioxide
- PM Particulate matter
- Air Air
- BurnedGas Burned gas

Using the conservation of mass for each gas constituent, this equation determines the rate change:

$$\frac{dy_{vol,j}}{dt} = \frac{RT_{vol}}{P_{vol}V_{ch}} \left(\sum \dot{m}_i y_{i,j} + y_{vol,j} \sum \dot{m}_i \right)$$

The equations use these variables.

 V_{ch} Chamber volume P_{vol} Absolute pressure in the chamber R Ideal gas constant T_{vol} Absolute gas temperature I-th port mass fraction for $j = O_2$, N_2 , unburned fuel, CO_2 , H_2O , CO, NO, NO_2 , $y_{i,i}$ PM, air, and burned gas Control volume mass fraction for $j = O_2$, N_2 , unburned fuel, CO_2 , H_2O , CO, NO, $y_{vol.i}$ NO₂, PM, air, and burned gas Mass flow rate for $i = O_2$, N_2 , unburned fuel, CO_2 , H_2O , CO, NO, NO_2 , PM, air, \dot{m}_i and burned gas

External Wall Convection Heat Transfer Model

To calculate the heat transfer, you can configure the Control Volume Source block to calculate the heat transfer across the wall of the control volume.

The block implements these equations to calculate the heat transfer, Q_1 , from the internal control volume gas to the internal wall depth, $D_{int\ cond}$.

$$Q_1 = Q_{1,conv} = Q_{1,cond}$$

$$Q_{1,conv} = h_{int}(x_{int}) \bullet A_{int_conv} \bullet (T_{int_gas} - T_{w_int})$$

$$Q_{1,cond} = k_{int} \bullet \frac{A_{int_cond}}{D_{int_cond}} \bullet \left(T_{w_int} - T_{mass}\right)$$

The block implements these equations to calculate the heat transfer, Q_2 , from the external wall depth, $D_{ext\ cond}$ to the external gas.

$$Q_{2} = Q_{2,conv} = h_{ext}\left(x_{ext}\right) \bullet A_{ext_conv} \bullet \left(T_{w_ext} - T_{ext_gas}\right)$$

$$Q_{2,cond} = k_{ext} \bullet \frac{A_{ext_cond}}{D_{ext_cond}} \bullet \left(T_{mass} - T_{w_ext}\right)$$

This equation expresses the heat stored in the thermal mass.

$$\frac{dT_{mass}}{dt} = \frac{Q_1 - Q_2}{c_{p_{wall}} m_{wall}}$$

The block determines the interior convection heat transfer coefficient using a lookup table that is a function of the average mass flow rate.

$$\dot{m}_{int_gas} = \frac{1}{2} \sum |\dot{m}_i|$$

The equations use these variables.

 Q_1 Heat flow from the internal gas to a specified wall depth

 $Q_{1,conv}$ Heat flow convection from the internal gas to the internal wall

 $Q_{1,cond}$ Conduction heat transfer rate

 Q_2 Heat transfer rate

 $Q_{2 conv}$ Convection heat transfer

 $Q_{2,cond}$ Heat flow conduction from the external middle portion of the wall to the

external wall

 Q_{mass} Heat stored in thermal mass

 h_{int} Internal convection heat transfer coefficient

 x_{int} Internal mass flow rate breakpoints

 $A_{int\ conv}$ Internal flow convection area

 T_{int_gas} Temperature of the gas inside the chamber T_{w_int} Temperature of the inside wall of the chamber

 k_{int} Internal wall thermal conductivity

 A_{int_cond} Internal conduction area D_{int_cond} Internal wall thickness

 h_{ext} External convection heat transfer coefficient

 $T_{w \text{ ext}}$ Temperature of the external wall of the chamber

 k_{ext} External wall thermal conductivity

 A_{ext_cond} External conduction area D_{ext_cond} External wall thickness

 T_{mass} Temperature of the thermal mass

 c_{p_wall} Wall heat capacity

 m_{wall} Thermal mass

 Flw_{spd} External flow velocity

Average internal mass flow rate

 \dot{m}_{int_gas}

Ports

Input

C — Inlet mass flow rate, heat flow rate, mass fractions

two-way connector port

Bus containing:

- MassFlw Mass flow rate through inlet, in kg/s
- HeatFlw Inlet heat flow rate, in J/s
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Dependencies

To create input ports, specify the **Number of inlet ports** parameter.

HeatTrnsfrRate - Heat transfer

scalar

External heat transfer input to control volume, q_{he} , in Kg/s.

Dependencies

To create this port, select External input for the **Heat transfer model** parameter.

ExtnlFlwVel — External flow velocity

scalar

External flow velocity, Flw_{spd} , in m/s.

To create this port, select External wall convection for the **Heat transfer model** parameter.

ExtnlTemp — Ambient temperature, K

scalar

Dependencies

To create this port, select External wall convection for the **Heat transfer model** parameter.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Units	
Vol	Prs		Volume pressure	Pa
	Temp		Volume temperature	K
	Enth		Volume specific enthalpy	J/kg
	Species	02MassFrac	Oxygen mass fraction	NA
		N2MassFrac	Nitrogen mass fraction	NA
		UnbrndFuelMassFr ac	Unburned gas mass fraction	NA
		C02MassFrac	Carbon dioxide mass fraction	NA
		H20MassFrac	Water mass fraction	NA
		COMassFrac	Carbon monoxide mass fraction	NA
		NOMassFrac	Nitric oxide mass fraction	NA

Signal		Description	Units	
		N02MassFrac	Nitrogen dioxide mass fraction	NA
		N0xMassFrac	Nitric oxide and nitrogen dioxide mass fraction	NA
		PmMassFrac	Particulate matter mass fraction	NA
		AirMassFrac	Air mass fraction	NA
		BrndGasMassFrac	Burned gas mass fraction	NA
HeatTrnsfr	HeatTrnsfrRa	te	Wall heat transfer rate	J/s
	MassFlw		Average internal mass flow rate	kg/s
	IntrnTemp		Temperature of gas inside chamber	K

C — Outlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the outlet control volume:

- Prs Chamber pressure, in Pa
- Temp Gas temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- $\bullet \quad {\tt N2MassFrac} {\tt Nitrogen} \\$
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water

- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

To create outlet ports, specify the **Number of outlet ports** parameter.

Parameters

Block Options

Number of inlet ports — Number of ports 1 (default) | 0 | 2 | 3 | 4

Number of inlet ports.

Dependencies

To create inlet ports, specify the number.

Number of outlet ports — Number of ports 1 (default) | 0 | 2 | 3 | 4

Number of outlet ports.

Dependencies

To create outlet ports, specify the number.

Heat transfer model — Select model

Constant (default) | External input | External wall convection

Dependencies

Selecting Constant or External wall convection enables the \boldsymbol{Heat} $\boldsymbol{Transfer}$ parameters.

Image type — Icon color

Cold (default) | Hot

Select color for block icon:

- Cold for blue
- Hot for red

General

Chamber volume, Vch — Volume

scalar

Chamber volume, V_{ch} , in m³.

Initial chamber pressure, Pinit — Pressure

scalar

Initial chamber pressure, P_{vol} , in Pa.

scalar

Initial chamber temperature, T_{vol} , in K.

Ideal gas constant, R — Ideal gas constant

scalar

Ideal gas constant, R, in J/(kg*K).

Specific heat capacity, cp — Specific heat

scalar

Specific heat capacity, c_p , in J/(kg·K).

Heat Transfer

Heat transfer rate, $q_he - Rate$

scalar

Constant heat transfer rate, q_{he} , in J/s.

To enable this parameter, select Constant for the **Heat transfer model** parameter.

External convection heat transfer coefficient, ext_tbl — Manifold external air

vector

External convection heat transfer coefficient, h_{ext} , in W/(m²K).

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External velocity breakpoints, ext_bpts — Manifold external air linspace(0,180,4) (default)

External velocity breakpoints, x_{ext} , in m/s.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External convection area, Aext_conv — Manifold external air scalar

External convection area, $A_{ext\ conv}$, in m².

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Thermal mass, m_wall — Manifold wall general scalar

Thermal mass, m_{wall} , in kg.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Wall heat capacity, cp_wall — Manifold wall general scalar

Wall heat capacity, $c_{p \ wall}$, in J/(kg·K).

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Initial mass temperature, Tmass — Manifold wall general scalar

Initial mass temperature, T_{mass} , in K.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External wall thickness, Dext_cond — Manifold wall external scalar

External wall thickness, $D_{ext\ cond}$, in m.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External conduction area, Aext_cond — Manifold wall external scalar

External conduction area, $A_{ext\ cond}$, in m².

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External wall thermal conductivity, kint — Manifold wall external scalar

External wall thermal conductivity, k_{ext} , in W/(m·K).

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal wall thickness, Dint_cond — Manifold wall internal scalar

Internal wall thickness, $D_{int\ cond}$, in m.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal conduction area, Aint_cond — Manifold wall internal scalar

Internal conduction area, $A_{int\ cond}$, in m².

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal wall thermal conductivity, kint — Manifold wall internal scalar

Internal wall thermal conductivity, k_{int} , in W/(m·K).

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal convection heat transfer coefficient, int_tbl — Manifold internal air

vector

Internal convection heat transfer coefficient, h_{int} , in W/(m²K).

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal mass flow rate breakpoints, int_bpts — Manifold internal air vector

Internal velocity breakpoints, x_{int} , in kg/s.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal flow convection area, Aint_conv — Manifold internal air scalar

Internal convection area, $A_{int\ conv}$, in m².

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

References

[1] Heywood, John B. *Internal Combustion Engine Fundamentals*. New York: McGraw-Hill, 1988.

See Also

Constant Volume Pneumatic Chamber | Two-Way Connection | Flow Restriction | Heat Exchanger

Introduced in R2017a

Interior PMSM

Three-phase interior permanent magnet synchronous motor with sinusoidal back electromotive force

Library: Powertrain Blockset / Propulsion / Electric Motors

Description

The Interior PMSM block implements a three-phase interior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Motor Construction

This figure shows the motor construction with a single pole pair on the rotor.

The rotor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with rotor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when rotor angle θ_r is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the rotor flux reference frame (dq frame). All quantities in the rotor reference frame are referred to the stator.

$$\begin{split} &\omega_e = P\omega_m \\ &\frac{d}{dt}i_d = \frac{1}{L_d}v_d - \frac{R}{L_d}i_d + \frac{L_q}{L_d}P\omega_m i_q \\ &\frac{d}{dt}i_q = \frac{1}{L_q}v_q - \frac{R}{L_q}i_q - \frac{L_d}{L_q}P\omega_m i_d - \frac{\lambda_{pm}P\omega_m}{L_q} \\ &T_e = 1.5P[\lambda_{pm}i_q + (L_d - L_q)i_di_q] \end{split}$$

The L_q and L_d inductances represent the relation between the phase inductance and the rotor position due to the saliency of the rotor.

The equations use these variables.

q- and d-axis inductances
Resistance of the stator windings
q- and d-axis currents
q- and d-axis voltages
Angular mechanical velocity of the rotor
Angular electrical velocity of the rotor
Permanent magnet flux linkage
Number of pole pairs
Electromagnetic torque
Electrical angle

Mechanical System

The rotor angular velocity is given by:

$$\begin{split} \frac{d}{dt}\omega_{m} &= \frac{1}{J} \big(T_{e} - T_{f} - F\omega_{m} - T_{m} \big) \\ \frac{d\theta_{m}}{dt} &= \omega_{m} \end{split}$$

The equations use these variables.

J	Combined inertia of rotor and load
F	Combined viscous friction of rotor and load
$\theta_{\it m}$	Rotor mechanical angular position
T_m	Rotor shaft torque
T_e	Electromagnetic torque
T_f	Rotor shaft static friction torque
ω_m	Angular mechanical velocity of the rotor

Ports

Input

LdTrq — Rotor shaft torque

scalar

Rotor shaft input torque, T_m , in N·m.

Dependencies

To create this port, select Torque for the **Port Configuration** parameter.

Spd — **Rotor shaft speed**

scalar

Angular velocity of the rotor, ω_{m} , in rad/s.

To create this port, select **Speed** for the **Port Configuration** parameter.

PhaseVolt — Stator terminal voltages

vector

Stator terminal voltages, V_a , V_b , and V_c , in V.

Dependencies

To create this port, select Speed or Torque for the **Port Configuration** parameter.

Output

Info — Bus signal

bus

The bus signal contains these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_a	A
IbStator	Stator phase current B	i_b	A
IcStator	Stator phase current C	i_c	A
IdSync	Direct axis current	i_d	A
IqSync	Quadrature axis current	i_q	A
VdSync	Direct axis voltage	v_d	V
VqSync	Quadrature axis voltage	v_q	V
MtrSpd	Angular mechanical velocity of the rotor	ω_m	rad/s
MtrPos	Rotor mechanical angular position	θ_m	rad
MtrTrq	Electromagnetic torque	T_e	N·m

Parameters

Port Configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	LdTrq
	PhaseVolt
	Info
Speed	Spd
	PhaseVolt
	Info

Stator phase resistance, Rs — Resistance scalar

Stator phase resistance, R_s , in ohm.

D and **Q** axis inductances, Ldq — Inductance vector

D and Q axis inductances, L_d , L_q , in H.

Permanent magnet flux, lambda_pm — Flux scalar

Permanent magnet flux linkage, λ_{pm} , in Wb.

Number of pole pairs, P — Pole pairs scalar

Motor pole pairs, P.

Initial dq current, idq0 — Current vector

Initial q- and d-axis currents, i_q , i_d , in A.

Initial mechanical position, theta_init — Angle scalar

Initial rotor angular position, θ_{m0} , in rad.

Initial mechanical speed, omega_init — Speed scalar

Initial angular velocity of the rotor, ω_{m0} , in rad/s.

Dependencies

To enable this parameter, select the **Torque** configuration parameter.

Physical inertia, viscous damping, and static friction, mechanical — Inertia, damping, friction

vector

Mechanical properties of the rotor:

- Inertia, J, in kgm²
- Viscous damping, F, in N·m/(rad/s)
- Static friction, T_f , in N·m

Dependencies

To enable this parameter, select the Torque configuration parameter.

References

- [1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
- [2] Anderson, P. M. *Analysis of Faulted Power Systems*. Hoboken, NJ: Wiley-IEEE Press, 1995.

See Also

Flux-Based PMSM | Induction Motor | Interior PM Controller | Interior PMSM | Mapped Motor | Surface Mount PMSM

Introduced in R2017a

Interior PM Controller

Torque-based, field-oriented controller for an internal permanent magnet synchronous motor

Library: Powertrain Blockset / Propulsion / Electric Motor

Controllers

Description

The Interior PM Controller block implements a torque-based, field-oriented controller for an internal permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Interior PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.

ω	Rotor speed
ω^*	Rotor speed command
T^*	Torque command
i_d	d-axis current
<i>i</i> * _d	d-axis current command
i_q	q-axis current
i* _q	q-axis current command
v_d ,	d-axis voltage
v^*_d	d-axis voltage command
v_q	q-axis voltage
v^*_q	q-axis voltage command
v_a , v_b , v_c	Stator phase a, b, c voltages
i_a , i_b , i_c	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the **Control Type** parameter **Speed** Control. If you select the **Control Type** parameter **Torque** Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Interior PM Controller block.

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the **Speed Controller** tab:

- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a **Speed time constant, Ksf** gain based on the state filter bandwidth, select **Calculate Speed Regulator Gains**.

The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{om}}$$

The equations use these variables.

 EV_{sf} Bandwidth of the speed command filter

 T_{sm} Motion controller sample time

 K_{sf} Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the **Speed Controller** tab, select **Calculate Speed Regulator Gains** to calculate:

- Proportional gain, ba
- · Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the **Physical inertia, viscous damping, static friction** parameter value on the **Motor Parameters** tab.

The gains for the state feedback are calculated using these equations.

Calculation	Equations	
Discrete forms of characteristic equation	$z^{3} + \frac{\left(-3J_{p} + T_{s}b_{a} + T_{s}^{2}K_{sa} + T_{s}^{3}K_{isa}\right)}{J_{p}}z^{2} + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z$	$\frac{-J_p + T_s b_a}{J_p}$
	$(z - p_1)(z - p_2)(z - p_3) = z^3 + (p_1 + p_2 + p_3)z^2 + (p_1p_2 + p_2p_3 + p_1)z^2 + (p_1p_2 + p_2p_3 + p_1)z^2 + (p_1p_2 + p_2)z^2 + (p_1p_2$	$^{2}-p_{1}p_{2}p_{3}$
Speed regulator proportional gain	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{sm}}$	
Speed regulator integral gain	$K_{sa} = \frac{J_{p}(p_{1}p_{2} + p_{2}p_{3} + p_{3}p_{1}) - 3J_{p} + 2b_{a}T_{sm}}{T_{sm}^{2}}$	
Speed regulator double integral gain	$K_{isa} = \frac{-J_p (p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$	

The equations use these variables.

P Motor pole pairs

 b_a Speed regulator proportional gain

 K_{sa} Speed regulator integral gain

 K_{isa} Speed regulator double integral gain

 J_p Motor inertia

 T_{sm} Motion controller sample time

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameters tab.

The feedforward torque command uses this equation.

$$T_{cmd_{-}ff} = J_{p}\dot{\omega}_{m} + F_{v}\omega_{m} + F_{s}\frac{\omega_{m}}{|\omega_{m}|}$$

where:

 J_p Motor inertia

 T_{cmd_ff} Torque command feedforward F_s Static friction torque constant F_v Viscous friction torque constant F_s Static friction torque constant

 ω_m Rotor speed

Torque Determination

The block uses a maximum torque per ampere (MTPA) trajectory to calculate the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.

Calculation	Equations
Electrical base speed transition into field weakening	$\omega_{base} = \frac{v_{max}}{\sqrt{2}}$
d-axis voltage	$\omega_{base} = \frac{v_{max}}{\sqrt{\left(L_q i_q\right)^2 + \left(L_d i_d + \lambda_{pm}\right)^2}}$ $v_d = -\omega_e L_q i_{q_{max}}$
q-axis voltage	$v_q = \omega_e (L_d i_{d_max} + \lambda_{pm})$
Maximum phase current	$i_{max}^2 = i_{d_{-\text{max}}}^2 + i_{q_{-\text{max}}}^2$
Maximum line to neutral voltage	$v_{max} = \frac{v_{bus}}{\sqrt{3}}$
d-axis phase current MTPA table	V3
	$I_m = \frac{2T_{max}}{3P\lambda_{pm}}$
q-axis phase current MTPA table	
Torque MTPA breakpoints	$T_{mtpa} = rac{3}{2} Pig(\lambda_{pm} i_q + ig(L_d - L_qig) i_d i_qig)$

Calculation	Equations
Field weakening, using the speed-based voltage limits	$\begin{split} & \left(L_{q}i_{q}\right)^{2} + \left(L_{d}i_{d} + \lambda_{pm}\right)^{2} \leq \frac{v_{max}^{2}}{\omega_{e}^{2}} \\ & i_{q} = \sqrt{i_{max}^{2} - i_{d}^{2}} \\ & \left(L_{d}^{2} - L_{q}^{2}\right)i_{d}^{2} + 2\lambda_{pm}L_{d}i_{d} + \lambda_{pm} + L_{q}^{2}i_{max}^{2} - \frac{v_{max}^{2}}{\omega_{e}^{2}} = 0 \end{split}$
	$\begin{split} i_{dfw} = & \frac{-\lambda_{pm}L_d + \sqrt{\left(\lambda_{pm}L_d\right)^2 - \left(L_d^2 - L_q^2\right)} \left(\lambda_{pm}^2 + L_q^2 i_{max}^2 - \frac{v_{max}^2}{\omega_e^2}\right)}{\left(L_d^2 - L_q^2\right)} \\ T_{fw} = & \frac{3}{2}P\left(\lambda_{pm}i_{qfw} + \left(L_d - L_q\right)i_{dfw}i_{qfw}\right) \end{split}$

Calculation	Equations	
Current command	$ \text{If} \omega_e \leq \omega_{base}$	
	$i_{dref} = i_{d_{mtpa}}(T_{ref})$ Else $i_{qref} = i_{q_{mtpa}}(T_{ref})$	
	$i_{dfw} = \max(i_{dfw}, -i_{max})$	
	$i_{qfw} = \sqrt{i_{max}^2 - i_d^2} \ ext{If} \ T_{fw} < T_{ref}$	
	$i_{dref} = \!\! i_{d_{\mathit{fiv}}}$ Else $i_{qref} = \!\! i_{q_{\mathit{fiv}}}$	
	$i_{dref}=\!\!i_{d_{\mathit{fiv}}}$	
	$i_{dref}=i_{d_{fw}}$ $\text{End} i_{qref}=\frac{T_{ref}}{\frac{3}{2}P\!\left(\lambda_{pm}+\!\left(L_{d}-L_{q}\right)\!i_{dfw}\right)}$	

The equations use these variables.

i_{max}	Maximum phase current
i_d	d-axis current
i_q	q-axis current
i_{d_max}	Maximum d-axis phase current
i_{q_max}	Maximum q-axis phase current
i_{d_mtpa}	d-axis phase current MTPA table
i_{q_mtpa}	q-axis phase current MTPA table
I_m	Estimated maximum current
i_{dfw}	d-axis field weakening current

i_{qfw}	q-axis field weakening current
ω_e	Rotor electrical speed
λ_{pm}	Permanent magnet flux linkage
v_d	d-axis voltage
v_q	q-axis voltage
v_{max}	Maximum line to neutral voltage
v_{bus}	DC bus voltage
L_d	d-axis winding inductance
L_q	q-axis winding inductance
P	Motor pole pairs
T_{fw}	Field weakening torque
T_{mtpa}	Torque MTPA breakpoints

Current Regulators

The block regulates the current with an anti-windup feature. Classic proportional-integrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- · d-axis and q-axis current cross-coupling
- Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of $\mathit{EV}_\mathit{current}$.

The block implements these equations.

Calculation	Equations
Motor voltage, in the rotor reference frame	
	$L_d \frac{di_d}{dt} = v_d - R_s i_d + p \omega_m L_q i_q$
	$-L_d \frac{di_q}{dt} = v_q - R_s i_q - p\omega_m L_d i_d - p\omega_m \lambda_{pm}$

Calculation	Equations
Current regulator gains	
	$\omega_b = 2\pi E V_{current}$
	$egin{aligned} \omega_b &= 2\pi E V_{current} \ K_{p_d} &= L_d \omega_b \ K_{p_q} &= L_q \omega_b \end{aligned}$
	$K_{p_{-}q} = L_q \omega_b$
Transfer functions	$K_i = R_s \omega_b$
	$i_d = \omega_b$
	i_{dref} $s + \omega_b$
	$i_q \qquad \omega_{\!{}_{\!{}_{\!{}_{\!{}}}}}$

The equations use these variables. $s + \omega_b$

$EV_{current}$	Current regulator bandwidth
i_d	d-axis current
i_q	q-axis current
K_{p_d}	Current regulator d-axis gain
K_{p_q}	Current regulator q-axis gain
L_d	d-axis winding inductance
L_q	q-axis winding inductance
R_s	Stator phase winding resistance
ω_m	Rotor speed
v_d	d-axis voltage
v_q	q-axis voltage
λ_{pm}	Permanent magnet flux linkage
P	Motor pole pairs

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$x_{\alpha} = \frac{2}{3}x_{\alpha} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $x_{\beta} = \frac{\sqrt{3}}{2}x_{b} - \frac{\sqrt{3}}{2}x_{c}$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_{\beta} = \frac{x_{b}}{2} x_{c}$ $x_{d} = x_{\alpha} \cos \theta_{e} + x_{\beta} \sin \theta_{e}$ $x_{q} = -x_{\alpha} \sin \theta_{e} + x_{\beta} \cos \theta_{e}$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_{\alpha} = x_{\alpha}$ $x_{b} = -\frac{1}{2}x_{\alpha} + \frac{\sqrt{3}}{2}x_{\beta}$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha}^{c} = \frac{1}{x_{2}} x_{\alpha}^{c} = \frac{1}{x_{2}} x_{\alpha$

The transforms use these variables.

ω_m	Rotor speed
P	Motor pole pairs
ω_e	Rotor electrical speed
Θ_e	Rotor electrical angle
Χ	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

Load power	$Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$
Source power	$Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$
DC bus current	$i_{bus} = \frac{Src_{Pwr}}{v_{bus}}$
Estimated rotor torque	$MtrTrq_{est} = 1.5P[\lambda i_q + (L_d - L_q)i_d i_q]$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{100} \cdot Ld_{Pwr} $
Power loss for tabulated efficiency	$Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$

The equations use these variables.

v_a , v_b , v_c	Stator phase a, b, c voltages	
v_{bus}	Estimated DC bus voltage	
i_a , i_b , i_c	Stator phase a, b, c currents	
i_{bus}	Estimated DC bus current	
Eff	Overall inverter efficiency	
ω_m	Rotor mechanical speed	
L_q	q-axis winding inductance	
L_d	d-axis winding inductance	
i_a	q-axis current	

i_d	d-axis current
λ	Permanent magnet flux linkage
P	Motor pole pairs

Electrical Losses

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

Setting	Block Implementation	
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.	
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.	
Tabulated efficiency data	 Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. 	
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.	
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.	
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.	

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- $\bullet\ \ \,$ Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq — Rotor speed command

scalar

Rotor speed command, ω^*_m , in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd — Torque command

scalar

Torque command, T^* , in N·m.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — **DC** bus voltage

scalar

DC bus voltage, v_{bus} , in V.

PhaseCurrA — Current

scalar

Stator current phase a, i_a , in A.

PhaseCurrB — Current

scalar

Stator current phase b, i_b , in A.

${\bf SpdFdbk-Rotor\ speed}$

scalar

Rotor speed, ω_m , in rad/s.

PosFdbk — Rotor electrical angle

scalar

Rotor electrical angle, Θ_m , in rad.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	N·m

BusCurr — Bus current

scalar

Estimated DC bus current, i_{bus} , in A.

PhaseVolt — Stator terminal voltages

array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Parameters

Block Options

Control Type — Select control

Speed Control (default) | Torque Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor Parameters

Stator resistance, Rs — Resistance

scalar

Stator phase winding resistance, R_s , in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Stator resistance, Rs	D and Q axis integral gain, Ki	Current Controller

D-axis inductance, Ld — Inductance

scalar

D-axis winding inductance, L_d , in H.

Dependencies

Parameter	Used to Derive	
	Parameter	Tab
D-axis inductance, Ld	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, q, and max current limits, idq limits	Id and Iq Calculation

Q-axis inductance, Lq — Inductance

scalar

Q-axis winding inductance, L_q , in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Q-axis inductance, Lq	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, Q, and max current limits, idq_limits	Id and Iq Calculation

Permanent magnet flux, lambda_pm — Flux scalar

Permanent magnet flux, λ_{pm} , in Wb.

Dependencies

Parameter	Used to Derive		
	Parameter	Tab	
Permanent magnet flux, lambda_pm	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, Q, and max current limits, idq_limits	Id and Iq Calculation	

Number of pole pairs, PolePairs — Poles scalar

Motor pole pairs, P.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Number of pole pairs, PolePairs	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, Q, and max current limits, idq_limits	Id and Iq Calculation

Physical inertia, viscous damping, static friction, Mechanical — Inertia, damping, friction

vector

Mechanical properties of the motor:

- Motor inertia, F_{ν} , in kgm²
- Viscous friction torque constant, F_v , in N·m/(rad/s)
- Static friction torque constant, F_s , in N·m

Dependencies

To enable this parameter, set the **Control Type** parameter to **Speed Control**.

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value that is on the **Motor Parameters** tab.

Parameter	Used to Derive	
	Parameter	Tab
Physical inertia, viscous damping, static friction,	Proportional gain, ba Angular gain, Ksa	Speed Controller
Mechanical	Rotational gain, Kisa	
	Inertia compensation, Jcomp	
	Viscous damping compensation, Fv	
	Static friction, Fs	

Id and Iq Calculation

Maximum torque, T_max — Torque

scalar

Maximum torque, in N·m.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Maximum torque, T_max	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, Q, and max current limits, idq_limits	Id and Iq Calculation

MTPA table breakpoints, bp — Number of breakpoints

scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
MTPA table breakpoints, pb	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, Q, and max current limits, idq_limits	Id and Iq Calculation

Calculate MTPA Table Data — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Id and Iq Calculation** tab, when you select **Calculate MPTA Table data**, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.

Derived Parameter on Id and Iq Calculation		Depends On	
tab		Parameter	Tab
Torque Breakpoints, T_mtpa	$T_{mtpa} = \frac{3}{2} P \left(\lambda_{pm} i_q + \left(L_d - L_q \right) i_d i_q \right)$	Maximum torque, T_max	Id and Iq Calculation
1_mcpu		MTPA table breakpoints, pb	

Derived Parameter on Id and Iq Calculation		Depends On	
tab	tab		Tab
D-axis table data, id_mtpa	$I_{m} = \frac{2T_{max}}{3P\lambda_{pm}}$ $i_{d_mtpa} = \frac{\lambda_{pm}}{4(T_{pm} - 1)} - 1$	Permanent magnet flux, lambda_pm D-axis inductance, Ld	Motor Parameters
Q-axis table data, iq_mtpa D, Q, and max current limits, idq_limits	$\frac{4 I_{\ell}-I_{\ell} }{2}$	Q2axis2 Inductance, Lq Number of pole pairs, PolePairs	

The equations use these variables.

Torque Breakpoints, T_mtpa — Derived

vector

Derived torque breakpoints, in $N \cdot m$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Torque Breakpoints, T_mtpa	Maximum torque, T_max MTPA table breakpoints, pb	Id and Iq Calculation
	Permanent magnet flux, lambda_pm	Motor Parameters
	D-axis inductance, Ld	
	Q-axis inductance, Lq	
	Number of pole pairs, PolePairs	

D-axis table data, id_mtpa — Derived vector

Derived d-axis table data, in A.

Dependencies

Parameter	Dependency		
	Parameter	Tab	
D-axis table data, id_mtpa	Maximum torque, T_max MTPA table breakpoints, pb	Id and Iq Calculation	

Parameter	Dependency	у	
	Parameter	Tab	
	Permanent magnet flux, lambda_pm	Motor Parameters	
	D-axis inductance, Ld		
	Q-axis inductance, Lq		
	Number of pole pairs, PolePairs		

Q-axis table data, iq_mtpa — Derived
vector

Derived q-axis table data, in A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
D-axis table data, id_mtpa	Maximum torque, T_max MTPA table breakpoints, pb	Id and Iq Calculation	
	Permanent magnet flux, lambda_pm	Motor Parameters	
	D-axis inductance, Ld		
	Q-axis inductance, Lq		
	Number of pole pairs, PolePairs		

$\mathbf{D}\text{, }\mathbf{Q}\text{, }\text{and }\text{max }\text{current limits, }\text{idq_limits}-\text{Derived}$ array

Derived d, q, and maximum current limits, in A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
D, Q, and max current limits, idq_limits	Maximum torque, T_max MTPA table breakpoints, pb	Id and Iq Calculation
	Permanent magnet flux, lambda_pm	Motor Parameters
	D-axis inductance, Ld	
	Q-axis inductance, Lq	
	Number of pole pairs, PolePairs	

Current Controller

Bandwidth of the current regulator, EV_current — Bandwidth scalar

Derived current regulator bandwidth, in Hz.

Dependencies

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the current regulator, EV_current	D-axis proportional gain, Kp_d Q-axis proportional gain, Kp_q D and Q axis proportional gain, Ki	Current Controller

Sample time for the torque control, Tst — Time scalar

Derived torque control sample time, in s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive Parameter Tab	
Sample time for the torque control, Tst	Speed time constant, Ksf	Speed Controller

Calculate Current Regulator Gains — Derive parameters button

Click to derive parameters.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.

Derived	Dependency	
Parameter on Current Controller tab	Parameter	Tab
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller
	Stator resistance, Rs	Motor Parameters
Q-axis proportional gain, Kp_q		
D and Q axis integral gain, Ki		

$\hbox{D-axis proportional gain, Kp_d--Derived}$

scalar

Derived d-axis proportional gain, in V/A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency Parameter Tab		
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller	

${\tt Q-axis\ proportional\ gain,\ Kp_q-Derived}$

scalar

Derived q-axis proportional gain, in V/A.

Dependencies

Parameter	Dependency		
	Parameter Tab		
Q-axis proportional gain, Kp_q	Bandwidth of the current regulator, EV_current	Current Controller	

D and **Q** axis integral gain, Ki — Derived scalar

Derived d- and q- axis integral gains, in V/A·s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
D and Q axis integral gain, Ki	Stator resistance, Rs	Motor Parameters

Speed Controller

Bandwidth of the motion controller, ${\sf EV_motion-Bandwidth}$ vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to 1/5 the value of the previous element. For example, if the desired cutoff frequency is 20 Hz, specify [20 4 0.8].

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the motion controller, EV_motion	Proportional gain, ba Angular gain, Ksa	Speed Controller
	Rotational gain, Kisa	

Bandwidth of the state filter, $EV_sf-Bandwidth$

scalar

State filter bandwidth, in Hz.

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the state filter, EV_sf	Speed time constant, Ksf	Speed Controller

Sample time for the motion control, Tsm — Time scalar

Sample time for the motion controller, in s.

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive		
	Parameter	Tab	
Sample time for the motion control, Tsm	Proportional gain, ba Angular gain, Ksa	Speed Controller	
	Rotational gain, Kisa		

Calculate Speed Regulator Gains — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Speed Controller** tab, when you select **Calculate Speed Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

tah		Depends On	
		Parameter	Tab
Proportional gain, ba	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{sm}}$	Sample time for the motion control, Tsm	Speed Controller
		Bandwidth of the motion controller, EV_motion	
		Bandwidth of the state filter, EV_sf	
Angular gain, Ksa	$K_{sa} = \frac{J_p(p_1p_2 + p_2p_3 + p_3p_1)}{T_{sm}^2}$	Sample b_a^{time} for the torque control, Tst	Current Controller
Rotational gain, Kisa	$K_{isa} = \frac{-J_p (p_1 + p_2 + p_3) + 3J_p}{T_{sm}^3}$	Physical inertia, -0.15 ms -0	Motor Parameters
Speed time constant, Ksf	$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$	Mechanical	
Inertia compensatio n, Jcomp	$J_{comp} = J_p$	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Derived Parameter on Speed Controller tab		Depends On	
		Parameter	Tab
Viscous damping compensatio n, Fv	$F_{ u}$		
Static friction, Fs	F_s		

The equations use these variables.

P	Motor pole pairs
b_a	Speed regulator proportional gain
K_{sa}	Speed regulator integral gain
K_{isa}	Speed regulator double integral gain
K_{sf}	Speed regulator time constant
J_p	Motor inertia
T_{sm}	Motion controller sample time
EV_{sf}	State filter bandwidth
EV_{motion}	Motion controller bandwidth

Proportional gain, ba — Derived

scalar

Derived proportional gain, in N·m/(rad/s).

Dependencies

Parameter	Dependency	
	Parameter Tab	
	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Parameter	Dependency	
	Parameter	Tab
	Bandwidth of the motion controller, EV_motion	Speed Controller
	Sample time for the motion control, Tsm	

Angular gain, Ksa — Derived

scalar

Derived angular gain, in N·m/rad.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Angular gain, Ksa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller
	Sample time for the motion control, Tsm	

Rotational gain, Kisa — Derived

scalar

Derived rotational gain, in $N \cdot m/(rad*s)$.

Dependencies

Parameter	Dependency	
	Parameter	Tab
Rotational gain, Kisa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller
	Sample time for the motion control, Tsm	

Speed time constant, Ksf — Derived scalar

Derived speed time constant, in 1/s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Speed time constant, Ksf	Sample time for the torque control, Tst	Current Controller
	Bandwidth of the state filter, EV_sf	Speed Controller

Inertia compensation, Jcomp — Derived scalar

Derived inertia compensation, in kg·m^2.

Dependencies

Parameter	Dependency	
	Parameter	Tab
Inertia compensation, Jcomp	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Viscous damping compensation, Fv — Derived scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Viscous damping compensation, Fv	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Static friction, Fs — Derived

scalar

Derived static friction, in $N \cdot m/(rad/s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. • Converts the efficiency values you provide into losses
	 and uses the tabulated losses for simulation. Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- \bullet $\,$ You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff — Constant scalar

Overall inverter efficiency, *Eff*, in %.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of speeds (w) for tabulated loss, w_loss_bp — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Vector of torques (T) for tabulated loss, T_loss_bp — Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in N·m.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Corresponding losses, losses_table — Table

M-by-N matrix

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of speeds (w) for tabulated efficiency, w_eff_bp — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Vector of torques (T) for tabulated efficiency, T_eff_bp — Breakpoints

1-by-N matrix

Torque breakpoints for lookup table when calculating efficiency, in $\ensuremath{N \cdot m}\xspace$.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table — Table M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

References

- [1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." *Proceedings of the IEEE*, Vol. 82, Issue 8, August 1994, pp. 1215–1240.
- [2] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." *IEEE Transactions on Industry Applications*, Vol. 30, Issue 4, July/ August 1994, pp. 920–926.
- [3] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
- [4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." *IEEE Transactions on Industry Applications*, Vol. 36, Issue 3, May/June 2000, pp. 817–825.
- [5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]." *IEEE Transactions on Industry Applications*, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42–50.

See Also

Flux-Based PM Controller | IM Controller | Interior PMSM | Surface Mount PM Controller

Introduced in R2017a

Flow Boundary

Flow boundary for ambient temperature and pressure

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Fundamental Flow

Description

The Flow Boundary block implements a flow boundary that typically represents ambient temperature and pressure. Engine models require flow boundaries at the intake inlet and exhaust outlet. In dynamic engine models, flow-modifying components (for example, flow restriction, turbines, and compressors) connect to control volumes and flow boundaries.

You can specify these block configurations:

- Constant pressure and temperature
- · Externally input pressure and temperature

The Flow Boundary block outputs pressure, temperature, and specific enthalpy:

$$h = c_p T$$

The block models the mass fractions as dry air, resulting in these mass fractions:

- $y_{N2} = 0.767$
- $y_{02} = .233$

The equation uses these variables.

T Temperature

h Specific enthalpy

 c_p Specific heat at constant pressure

 y_{N2} Nitrogen mass fraction y_{O2} Oxygen mass fraction

Ports

Input

Prs - Pressure

scalar

External input pressure, P, in Pa.

Dependencies

To create this port, select External input for the **Pressure and temperature source** parameter.

Temp — **Temperature**

scalar

External input temperature, *T*, in K.

Dependencies

To create this port, select External input for the **Pressure and temperature source** parameter.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
BndryPrs	Boundary pressure	Pa
BndryTemp	Boundary temperature	K
BndryEnth	Boundary specific enthalpy	J/kg

${\sf C}-{\sf Boundary}$ pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the flow boundary:

- Prs Pressure, P, in Pa
- Temp Temperature, *T*, in K
- Enth Specific enthalpy, h, in J/kg
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Pressure and temperature source — Select source

External input (default) | Constant

Pressure and temperature source.

Dependencies

The table summarizes the parameter and port dependencies.

Value	Enables Parameters	Creates Ports
Constant	Pressure, Pcnst	None
	Temperature, Tcnst	
External input	None	Prs
		Temp

Image type — Icon color

Cold (default) | Hot

Select color for block icon:

- Cold for blue
- Hot for red

Pressure, Pcnst — Constant

scalar

Constant pressure, P, in Pa.

Dependencies

To enable this parameter, select ${\tt Constant}$ for the ${\tt Pressure}$ and ${\tt temperature}$ source parameter.

Temperature, Tcnst — Constant

scalar

Constant temperature, T, in K.

Dependencies

To enable this parameter, select Constant for the **Pressure and temperature source** parameter.

Specific heat at constant pressure, cp — Constant, J/(kg(K) scalar

Specific heat at constant pressure, in $J/(kg \cdot K)$.

References

[1] Heywood, John B. *Internal Combustion Engine Fundamentals*. New York: McGraw-Hill, 1988.

See Also

Compressor | Flow Restriction | Turbine

Introduced in R2017a

Flow Restriction

Isentropic ideal gas flow through an orifice

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Fundamental Flow

Description

The Flow Restriction block models isentropic ideal gas flow through an orifice. The block uses the conservation of mass and energy to determine the mass flow rate. The flow velocity is limited by choked flow.

You can specify these orifice area models:

- Constant
- External input
- Throttle body geometry

Equations

The Flow Restriction block implements these equations.

Calculation	Equations
Standard Orifice	$\dot{m}_{orf} = \Gamma \cdot \Psi(P_{ratio})$
	$P_{ratio} = rac{P_{downstr}}{P_{upstr}}$
	$P_{ratio} = \frac{P_{downstr}}{P_{upstr}}$ $\Gamma = \frac{A_{eff} \cdot P_{upstr}}{\sqrt{R \cdot T_{upstr}}}$ $P_{cr} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}}$
	$P_{cr} = \left(rac{2}{\gamma+1} ight)^{rac{\gamma}{\gamma-1}}$
	$\sqrt{\gamma \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}} \qquad \qquad P_{ratio} < P_{cr}$
	$ \Psi = \left\{ \begin{array}{c} \sqrt{\frac{2\gamma}{\gamma - 1}} \left(P_{ratio}^{\frac{2}{\gamma}} - P_{ratio}^{\frac{\gamma + 1}{\gamma}} \right) & P_{cr} \leq P_{ratio} \leq P_{lim} \end{array} \right.$
Constituent Mass Flow Rates	$\dot{m_i} = \dot{m_{orf}} y_{upstr, \bar{i}} $ (2 $\frac{1}{\gamma+1}$)
Constant Orifice Area	
External Input Orifice Area	$A_{eff} = A_{orf_ext} \cdot Cd_{ext}$

Calculation	Equations
Throttle Body Geometry	$\theta_{thr} = Pct_{thr} \cdot \frac{90}{100}$
	$A_{eff_thr} = \frac{\pi}{4} D_{thr}^2 C_{d_thr} (\theta_{thr})$

The equations use these variables.

Effective orifice cross-sectional area A_{eff} , A_{eff_thr} Orifice area A_{orf_cnst} , A_{orf_ext} Discharge coefficient Cd_{cnst}, Cd_{ext} Ideal gas constant RCritical pressure at which choked flow occurs P_{cr} Ratio of specific heats γ Flow function based on pressure ratio Γ Pressure ratio P_{ratio} Upstream orifice pressure P_{upstr} Downstream orifice pressure $P_{downstr}$ Pressure ratio limit to avoid singularities as the pressure ratio P_{lim} approaches 1 Upstream species mass fraction for $i = O_2$, N_2 , unburned fuel, CO_2 , $y_{upstr,i}$ H₂O, CO, NO, NO₂, PM, air, and burned gas Mass flow rate for $i = O_2$, N_2 , unburned fuel, CO_2 , H_2O , CO, NO, NO_2 , \dot{m}_i PM, air, and burned gas Throttle angle θ_{thr}

Percentage of throttle body that is open

 $C_{d\ thr}$ Throttle discharge coefficient

 D_{thr} Throttle body diameter at opening

Ports

Input

A — Inlet orifice pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing orifice:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- $\bullet \quad {\tt COMassFrac-Carbon\ monoxide}$
- NOMassFrac Nitric oxide
- $\bullet \quad {\tt NO2MassFrac} {\tt Nitrogen\ dioxide}$
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet orifice pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing orifice:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- N0xMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Area — Orifice area

scalar

External area input for orifice area, A_{orf} ext, in m².

Dependencies

To create this port, select External input for the Orifice area model parameter.

ThrPct — Throttle body percent open

scalar

Percentage of throttle body that is open, Pct_{thr} .

Dependencies

To create this port, select Throttle body geometry for the **Orifice area model** parameter.

Output

A — Inlet mass flow rate, heat flow rate, temperature

two-way connector port

Bus containing:

- MassFlw Mass flow rate through inlet, in kg/s
- HeatFlw Inlet heat flow rate, in J/s
- Temp Inlet temperature, in K
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- C02MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet mass flow rate, heat flow rate, temperature

two-way connector port

Bus containing:

- MassFlw Outlet mass flow rate, in kg/s
- HeatFlw Outlet heat flow rate, in J/s
- Temp Outlet temperature, in K
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Units	
Flw	PrsAdj	DwnstrmPrs	Downstream pressure	Pa
		UpstrmPrs	Upstream pressure	Pa
		PrsRatio	Pressure ratio	NA
		DwnstrmTemp	Downstream temperature	K

Signal			Description	Units
		UpstrmTemp	Upstream temperature	K
	OrfMassFlw		Mass flow rate through orifice	kg/s
	SpeciesMassF low	02MassFlw	Oxygen mass flow rate	kg/s
		N2MassFlw	Nitrogen mass flow rate	kg/s
		UnbrndFuelMassFl w	Unburned gas mass flow rate	kg/s
		C02MassFlw	Carbon dioxide mass flow rate	kg/s
		H20MassFlw	Water mass flow rate	kg/s
		COMassFlw	Carbon monoxide mass flow rate	kg/s
	NOMassFlw	Nitric oxide mass flow rate	kg/s	
		NO2MassFlw	Nitrogen dioxide mass flow rate	kg/s
		NOxMassFlw	Nitric oxide and nitrogen dioxide mass flow rate	kg/s
		PmMassFlw	Particulate matter mass flow rate	kg/s
		AirMassFlw	Air mass flow rate	kg/s
		BrnedGasMassFlw	Burned gas mass flow rate	kg/s
Area	FlwArea		Cross-sectional flow area	m^2
	EffctArea		Effective orifice cross-sectional area	m^2

Signal		Description	Units
	ThrAng	Throttle area, if applicable	deg

Parameters

Block Options

Orifice area model — Select model

Constant (default) | External input | Throttle body geometry

Orifice area model.

Dependencies

The orifice area model enables the parameters on the **Area Parameters** tab.

Image type — Icon color

Cold (default) | Hot

Block icon color:

- Cold for blue.
- · Hot for red.

General

Ratio of specific heats, gamma — Ratio

scalar

Ratio of specific heats, γ .

Ideal gas constant, R — Constant

scalar

Ideal gas constant, R, in $J/(kg \cdot K)$.

Pressure ratio linearize limit, Plim — Limit

scalar

Pressure ratio limit to avoid singularities as the pressure ratio approaches 1, P_{lim} .

Area

Constant area value, Aorf_cnst — Area scalar

Constant area value, $A_{orf\ cnst}$, in m^2.

Dependencies

To enable this parameter, select Constant for the **Orifice area model** parameter.

Discharge coefficient, Cd_cnst — Coefficient scalar

Discharge coefficient for constant area, Cd_{cnst} .

Dependencies

To enable this parameter, select Constant for the Orifice area model parameter.

Discharge coefficient, Cd_ext — Coefficient scalar

Discharge coefficient for external area input, $\mathit{Cd}_{\mathit{ext}}$.

Dependencies

To enable this parameter, select External input for the **Orifice area model** parameter.

Throttle diameter, Dthr — Diameter scalar

Throttle body diameter at opening, D_{thr} , in mm.

Dependencies

To enable this parameter, select Throttle body geometry for the **Orifice area model** parameter.

Discharge coefficient table, ThrCd — Coefficient array

Discharge coefficient table, $C_{d\ thr}$.

Dependencies

To enable this parameter, select Throttle body geometry for the **Orifice area model** parameter.

Angle breakpoints, ThrAngBpts — Angle array

Angle breakpoints, $Thr_{ang\ bpts}$, in deg.

Dependencies

To enable this parameter, select Throttle body geometry for the **Orifice area model** parameter.

References

[1] Heywood, John B. *Internal Combustion Engine Fundamentals*. New York: McGraw-Hill, 1988.

See Also

Control Volume System | Heat Exchanger

Introduced in R2017a

Flux-Based PMSM

Flux-based permanent magnet synchronous motor **Library:** Powertrain Blockset / Propulsion / Electric Motors

Description

The Flux-Based PMSM block implements a flux-based three-phase permanent magnet synchronous motor (PMSM) with a tabular-based electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Flux-based motor models take into account magnetic saturation and iron losses. To calculate the magnetic saturation and iron loss, the Flux-Based PMSM block uses the inverse of the flux linkages. To obtain the block parameters, you can use finite-element analysis (FEA) or measure phase voltages using a dynamometer.

Three-Phase Sinusoidal Model Electrical System

The block implements equations that are expressed in a stationary rotor reference (dq) frame. The d-axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

The block uses these equations.

Calculation	Equation
q- and d -axis voltage	du
q- and d -axis current	$v_{d} = \frac{d\psi_{d}}{dt} + R_{s}i_{d} - \omega_{e}\psi_{q}$ $v_{q} = \frac{d\psi_{q}}{dt} + R_{s}i_{q} + \omega_{e}\psi_{d}$
Electromechanical torque	$\begin{vmatrix} i_d = f(\psi_d, \psi_q) \\ i_q = g(\psi_d, \psi_q) \end{vmatrix}$

The equations use these variables.

$$T_e = 1.5 P[\psi_d i_q - \psi_q i_d]$$

 ω_m Rotor mechanical speed

ω_e	Rotor electrical speed
Θ_{da}	$\mbox{d} q$ stator electrical angle with respect to the rotor a-axis
R_s , R_r	Resistance of the stator and rotor windings, respectively
i_q , i_d	q- and d -axis current, respectively
v_q , v_d	q- and d -axis voltage, respectively
Ψ_{q}, Ψ_{d}	q- and d -axis magnet flux, respectively
P	Number of pole pairs
T_e	Electromagnetic torque

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$\begin{bmatrix} x_{\alpha} - \frac{1}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c} \\ \sqrt{3} & \sqrt{3} \end{bmatrix}$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_{\beta} = \frac{\sqrt{3}}{2} x_b - \frac{\sqrt{3}}{2} x_c$ $x_d = x_{\alpha} \cos \theta_e + x_{\beta} \sin \theta_e$ $x_q = -x_{\alpha} \sin \theta_e + x_{\beta} \cos \theta_e$

Transform	Description	Equations
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_a = x_a$ $x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha}^{c} = \frac{1}{x_{\alpha}} x_{\alpha}^{c} = \frac{\sqrt{3}}{2} x_{\alpha}^{\beta} \sin \theta_{e}$ $x_{\beta} = x_{d} \sin \theta_{e} + x_{q} \cos \theta_{e}$

The transforms use these variables.

ω_m	Rotor mechanical speed
P	Motor pole pairs
ω_e	Rotor electrical speed
Θ_e	Rotor electrical angle
X	Phase current or voltage

Mechanical System

The rotor angular velocity is given by:

$$\begin{split} \frac{d}{dt}\omega_{m} &= \frac{1}{J} \left(T_{e} - T_{f} - F\omega_{m} - T_{m} \right) \\ \frac{d\theta_{m}}{dt} &= \omega_{m} \end{split}$$

The equations use these variables.

J	Combined inertia of rotor and load
F	Combined viscous friction of rotor and load
θ_m	Rotor mechanical angular position
T_m	Rotor shaft torque

 T_e Electromagnetic torque

 T_f Combined rotor and load friction torque

 ω_m Rotor mechanical speed

Ports

Input

LdTrq — Rotor shaft torque

scalar

Rotor shaft input torque, T_m , in N·m.

Dependencies

To create this port, select Torque for the **Port Configuration** parameter.

Spd — Rotor shaft speed

scalar

Angular velocity of the rotor, $\omega_{\text{m}}\text{, in rad/s.}$

Dependencies

To create this port, select Speed for the **Port Configuration** parameter.

PhaseVolt — Stator terminal voltages

vector

Stator terminal voltages, V_a , V_b , and V_c , in V.

Dependencies

To create this port, select $\mbox{\sc Speed}$ or $\mbox{\sc Torque}$ for the $\mbox{\sc Port}$ $\mbox{\sc Configuration}$ parameter.

Output

Info — Bus signal

bus

The bus signal contains these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_a	A
IbStator	Stator phase current B	i_b	A
IcStator	Stator phase current C	i_c	A
IdSync	d-axis current	i_d	A
IqSync	qaxis current	i_q	A
VdSync	d-axis voltage	v_d	V
VqSync	q-axis axis voltage	v_q	V
MtrSpd	Angular mechanical velocity of the rotor	ω_m	rad/s
MtrPos	Rotor mechanical angular position	θ_m	rad
MtrTrq	Electromagnetic torque	T_e	N·m

Parameters

$\label{eq:port_configuration} \textbf{Port} \ \ \textbf{Configuration} \ - \ \textbf{Select port configuration}$

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	LdTrq
	PhaseVolt
	Info
Speed	Spd
	PhaseVolt
	Info

Stator phase resistance, Rs — Resistance scalar

Stator phase resistance, R_s , in ohm.

Vector of d-axis flux, flux_d — Flux vector

d-axis flux, Ψ_d , in Wb.

Vector of q-axis flux, flux_q — Flux vector

q-axis flux, Ψ_q , in Wb.

Corresponding d-axis current, id - Current

vector

d-axis current, i_d , in A.

Corresponding q-axis current, iq — Current vector

q-axis current, i_a , in A.

Number of pole pairs, P - Pole pairs

scalar

Motor pole pairs, P.

Initial flux, fluxdq0 — Flux

vector

Initial d- and q-axis flux, Ψ_{q0} and Ψ_{d0} , in Wb.

Initial mechanical position, theta_init — Angle scalar

Initial rotor angular position, θ_{m0} , in rad.

Initial mechanical speed, omega_init — Speed scalar

Initial angular velocity of the rotor, ω_{m0} , in rad/s.

Dependencies

To enable this parameter, select the **Torque** configuration parameter.

Physical inertia, viscous damping, and static friction, mechanical — Inertia, damping, friction

vector

Mechanical properties of the rotor:

- Inertia, J, in kgm^2
- Viscous damping, F, in N·m/(rad/s)
- Static friction, T_f , in N·m

Dependencies

To enable this parameter, select the Torque configuration parameter.

References

- [1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." *IEEE Transactions on Industry Applications*, Vol. 51, No. 4, July/August 2015.
- [2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." *IEEE Transactions on Industrial Electronics*, Vol. 62, No. 7, July 2015.

See Also

Flux-Based PM Controller | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PMSM

Topics

"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

Flux-Based PM Controller

Controller for a flux-based permanent magnet synchronous motor **Library:** Powertrain Blockset / Propulsion / Electric Motor

Controllers

Description

The Flux Based PM Controller block implements a flux-based, field-oriented controller for an interior permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Flux Based PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations using these variables.

ω	Rotor speed
ω^*	Rotor speed command
<i>T</i> *	Torque command
i_d	d-axis current
i^*_d	d-axis current command
i_q	q-axis current
i^*_q	q-axis current command
v_d ,	d-axis voltage
v * _d	d-axis voltage command
v_q	<i>q</i> -axis voltage
v^*_q	q-axis voltage command
v_a , v_b , v_c	Stator phase a, b, c voltages
i_a , i_b , i_c	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the **Control Type** parameter **Speed** Control. If you select the **Control Type** parameter **Torque** Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Flux Based PM Controller block.

The state filter is a low-pass filter that generates the acceleration command based on the speed command. The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$$

The equations use these variables.

 EV_{sf} Bandwidth of the speed command filter

 T_{sm} Motion controller sample time K_{sf} Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. To filter the speed, the block uses a proportional integral (PI) controller.

$$T_{cmd} = Kp_{\omega}(\omega_m^* - \omega_m) + Ki_{\omega} \frac{zT_{sm}}{z - 1}(\omega_m^* - \omega_m)$$

The equations use these variables.

 ω_m Rotor speed

 ω^*_m Rotor speed command

 T_{cmd} Torque command

 Kp_ω Speed regulator proportional gain Ki_ω Speed regulator integral gain

 T_{sm} Speed regulator sample rate

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

The feedforward torque command uses this equation.

$$T_{cmd_{-}ff} = J_{p}\dot{\omega}_{m} + F_{v}\omega_{m} + F_{s}\frac{\omega_{m}}{|\omega_{m}|}$$

where:

 J_p Rotor inertia

 T_{cmd_ff} Torque command feedforward F_s Static friction torque constant F_v Viscous friction torque constant F_s Static friction torque constant

 ω_m Rotor speed

The block uses lookup tables to determine the d-axis and q-axis current commands. The lookup tables are functions of mechanical speed and torque. To determine the lookup tables, you can use an external finite element analysis (FEA) models or dynamometer test results.

$$i_{dref} = f(|\omega_m|, |T_{ref}|)$$

$$i_{qref} = sign(T_{ref}) * f(|\omega_m|, |T_{ref}|)$$

The equations use these variables.

 ω_m Rotor speed

 T_{ref} Torque command

i_{dref}, i_{aref} *d*- and *q*-axis reference current, respectively

The block uses these equations to calculate the voltage in the motor reference frame.

$$v_d = \frac{d\psi_d}{dt} + R_s i_d - \omega_e \psi_q$$

$$d\psi_q + R_s i_d + \omega_e \psi_q$$

$$v_q = \frac{d\psi_q}{dt} + R_s i_q + \omega_e \psi_d$$

$$\frac{d\psi_d}{dt} + R_s i_d = K p_d (i_d^* - i_d) + K i_d \frac{z T_{st}}{z - 1} (i_d^* - i_d)$$

$$\frac{d\psi_q}{dt} + R_s i_q = \mathit{Kp}_q(i_q^* - i_q) + \mathit{Ki}_q \, \frac{z \, T_{st}}{z - 1}(i_q^* - i_q)$$

$$v_d = Kp_i(i_d^* - i_d) + Ki_d \frac{zT_{st}}{z - 1}(i_d^* - i_d) + \omega_e \psi_q$$

$$v_q = \mathit{Kp}_i(i_q^* - i_q) + \mathit{Ki}_q \frac{\mathit{zT}_{\mathit{st}}}{\mathit{z} - 1}(i_q^* - i_q) - \omega_e \psi_d$$

$$\psi_q = f(i_d, i_q)$$

$$\psi_d = f(i_d, i_a)$$

The equations use these variables.

 ω_m Rotor mechanical speed

Rotor electrical speed ω_e

 R_s , R_r Resistance of the stator and rotor windings, respectively

q- and d-axis current, respectively i_a , i_d

q- and d-axis voltage, respectively v_q , v_d

 Ψ_q , Ψ_d q- and d-axis magnet flux, respectively

 T_{st} Current regulator sample rate

 Ki_{d} , Ki_{q} d- and q- axis integral gain, respectively

 Kp_{d} , Kp_{q} d- and q- axis proportional gain, respectively

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$x_{\alpha} = \frac{2}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $x_{\beta} = \frac{\sqrt{3}}{2}x_{b} - \frac{\sqrt{3}}{2}x_{c}$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_{\beta} = \frac{x_{b}}{2} x_{b} - \frac{x_{c}}{2}$ $x_{d} = x_{\alpha} \cos \theta_{e} + x_{\beta} \sin \theta_{e}$ $x_{q} = -x_{\alpha} \sin \theta_{e} + x_{\beta} \cos \theta_{e}$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_a = x_a$ $x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$

$$x_c = -\frac{1}{2}x_\alpha - \frac{\sqrt{3}}{2}x_\beta$$

Transform	Description	Equations
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha} = x_d \cos \theta_e - x_q \sin \theta_e$ $x_{\beta} = x_d \sin \theta_e + x_q \cos \theta_e$

The transforms use these variables.

ω_m	Rotor speed
P	Rotor pole pairs
ω_e	Rotor electrical speed
Θ_e	Rotor electrical angle
X	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge.

The block uses these equations.

Load power	$Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$
Source power	$Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$
DC bus current	$i_{bus} = \frac{Src_{Pwr}}{v_{bus}}$
Estimated rotor torque	$T_e = 1.5P[\psi_d i_q - \psi_q i_d]$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{100} \cdot Ld_{Pwr} $

Power loss for tabulated	
efficiency	$Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$

The equations use these variables.

Stator phase a, b, c voltages v_a , v_b , v_c Estimated DC bus voltage v_{bus} i_a , i_b , i_c Stator phase a, b, c currents Estimated DC bus current i_{bus} Eff Overall inverter efficiency Rotor mechanical speed ω_m q- and d-axis winding inductance, respectively L_a , L_d Ψ_{q}, Ψ_{d} q- and d-axis magnet flux, respectively i_q , i_d *q*- and *d*-axis current, respectively Permanent magnet flux linkage λ P Rotor pole pairs

Electrical Losses

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.

Setting	Block Implementation
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq — Rotor speed command

scalar

Rotor speed command, ω^*_m , in rad/s.

Dependencies

To create this port, select ${\tt Speed}\ {\tt Control}\ {\tt for}\ {\tt the}\ {\tt Control}\ {\tt Type}\ {\tt parameter}.$

TrqCmd — Torque command

scalar

Torque command, T^* , in N·m.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — **DC** bus voltage

scalar

DC bus voltage, v_{bus} , in V.

PhaseCurrA — Current

scalar

Stator current phase a, i_a , in A.

PhaseCurrB — Current

scalar

Stator current phase b, i_b , in A.

SpdFdbk — Rotor speed

scalar

Rotor speed, ω_m , in rad/s.

PosFdbk — Rotor electrical angle

scalar

Rotor electrical angle, Θ_m , in rad.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W

Signal	Description	Units
MtrTrqEst	Estimated motor torque	N·m

BusCurr — **Bus current**

scalar

Estimated DC bus current, i_{bus} , in A.

PhaseVolt — Stator terminal voltages

array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Parameters

Block Options

Control Type — Select control

Speed Control (default) | Torque Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor Parameters

Number of pole pairs, PolePairs — Poles

scalar

Motor pole pairs, P.

Vector of d-axis current breakpoints, id_index — Current

vector

d-axis current, $i_{d index}$, in A.

Vector of q-axis current breakpoints, iq_index — current

vector

q-axis current, $i_{q index}$, in A.

Corresponding d-axis flux, lambda d — Flux

vector

d-axis flux, λ_d , in Wb.

Corresponding q-axis flux, lambda_q — Flux

vector

q-axis flux, λ_a , in Wb.

Current Controller

Sample time for the torque control, Tst-Time

scalar

Torque control sample time, T_{st} , in s.

D-axis proportional gain, Kp_d — Gain

scalar

d-axis proportional gain, Kp_d , in V/A.

Q-axis proportional gain, Kp_q — Gain

scalar

q-axis proportional gain, Kp_q , in V/A.

D-axis integral gain, Ki_d — Gain

scalar

d-axis integral gain, Ki_d , in V/A·s.

Q-axis integral gain, Ki_q — Gain

scalar

q- axis integral gain, Ki_q , in V/A·s.

Vector of speed breakpoints, wpb — Breakpoints

vector

Speed breakpoints, ω_{bp} , in rad/s.

Vector of torque breakpoints, tpb — Breakpoints

vector

Torque breakpoints, T_{bp} , in N·m.

Corresponding d-axis current reference, id_ref — Current

vector

d-axis reference current, i_{dref} , in A.

Corresponding q-axis current reference, iq_ref — Current

vector

q-axis reference current, i_{qref} , in A.

Speed Controller

Sample time for the motion control, Tsm — Time

scalar

Sample time for the motion controller, T_{sm} , in s.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Speed time constant, Ksf — Time

scalar

Speed regulator time constant, K_{sf} , in 1/s.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Proportional gain, Kp_w — Gain

scalar

Proportional gain, Kp_{ω} , in N·m/(rad/s).

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Integral gain, Ki_w — Gain

scalar

Integral gain, Ki_{ω} N·m/rad.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Inertia compensation, Jcomp — Inertia

scalar

Inertia compensation, in kg·m^2.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Static friction, Fs — Friction

scalar

Static friction, in N·m.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Viscous damping compensation, Fv - Dampint

scalar

Viscous damping compensation, in $N \cdot m/(rad/s)$.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. • Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff — Constant scalar

Overall inverter efficiency, *Eff*, in %.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of speeds (w) for tabulated loss, w_loss_bp — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of torques (T) for tabulated loss, T_loss_bp — Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Corresponding losses, losses_table — Table

M-by-N matrix

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of speeds (w) for tabulated efficiency, w_eff_bp — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Vector of torques (T) for tabulated efficiency, T_eff_bp — Breakpoints

1-by-N matrix

Torque breakpoints for lookup table when calculating efficiency, in $N \cdot m$.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table — Table

M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

References

- [1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." *IEEE Transactions on Industry Applications*, Vol. 51, No. 4, July/August 2015.
- [2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." *IEEE Transactions on Industrial Electronics*, Vol. 62, No. 7, July 2015.

See Also

Flux-Based PMSM | IM Controller | Interior PM Controller | Surface Mount PM Controller

Topics

"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

Heat Exchanger

Intercooler or exhaust gas recirculation (EGR) cooler

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Fundamental Flow

Description

The Heat Exchanger block models a heat exchanger, for example, an intercooler or exhaust gas recirculation (EGR) cooler. The inlet (port C) connects to an engine flow component (flow restriction, compressor, turbine, or engine block). The outlet (port B) connects to a volume (control volume or environment). Based on the upstream temperature, heat exchanger effectiveness, and cooling medium temperature, the block determines the heat transfer rate and downstream temperature.

For the heat exchanger effectiveness and cooling medium temperature, you can specify either a constant value or an external input. For example, if you specify a heat exchanger effectiveness that is:

- Equal to 1, the downstream temperature is equal to the cooling medium temperature.
- Equal to 0, there is no heat transfer to the cooling medium. The downstream temperature is equal to the upstream temperature.

The block assumes no pressure drop. To model pressure losses, use a Flow Restriction block.

Equations

The Heat Exchanger block implements equations that use these variables.

Upstream temperature

 T_{upstr}

Downstream temperature

 T_{dnstr}

Cooling medium temperature

 T_{cool}

Constant cooling medium temperature

 $T_{cool.\,cnst}$

External input cooling medium temperature

 $T_{cool,input}$

Heat exchanger effectiveness ε

Constant heat exchanger effectiveness

 ε_{cnst}

Input heat exchanger effectiveness

 ε_{input}

Specific heat at constant pressure

 c_p

Heat exchanger heat transfer rate

 q_{ht}

Pressure at inlet

 $p_{flw,in}$

Pressure at outlet

 $p_{vol,out}$

Temperature at outlet

 $T_{vol,out}$

Specific enthalpy at outlet

 $h_{vol.out}$

Heat flow rate at inlet

 q_{in}

Heat flow rate at outlet

 q_{out}

Heat exchanger mass flow rate \dot{m}

Temperature at inlet

 $T_{flw,in}$

Heat exchanger inlet temperature T_{in}

Heat exchanger outlet temperature T_{out}

Inlet specific enthalpy

 h_{in}

Heat exchanger effectiveness measures the effectiveness of heat transfer from the incoming hot fluid to the cooling medium:

$$\varepsilon = \frac{T_{upstr} - T_{dnstr}}{T_{upstr} - T_{cool}}$$

In an ideal heat exchanger, the downstream temperature equals the cooling temperature. The effectiveness is equal to 1.

$$T_{dnstr} = T_{cool}$$

 $\varepsilon = 1$

The Heat Exchanger block uses the effectiveness to determine the downstream temperature and heat transfer rate.

$$\begin{split} T_{dnstr} &= T_{upstr} - \varepsilon \left(T_{upstr} - T_{cool} \right) \\ q_{ht} &= \dot{m}c_p \left(T_{upstr} - T_{dnstr} \right) \end{split}$$

Since the block assumes no pressure drop, $P_{flw,in} = P_{vol,out}$.

The flow component connection to the heat exchanger inlet determines the direction of the mass flow. Based on the mass flow rate direction, these temperature and heat flow equations apply.

Fluid Flow	Mass Flow Rate	Temperatures and Heat Flow
Forward — From engine flow component to outlet volume	<i>m</i> ≥ 0	$T_{upstr} = T_{flw,in}$ $T_{in} = T_{upstr}$ $T_{out} = T_{dnstr}$ $q_{out} = \dot{m}c_p T_{dnstr}$

Fluid Flow	Mass Flow Rate	Temperatures and Heat Flow
Reverse — From outlet volume to engine flow component	$\dot{m} < 0$	$T_{upstr} = T_{vol,out}$ $T_{in} = T_{dnstr}$ $T_{out} = T_{vol,out}$ $h_{in} = c_p T_{dnstr}$ $q_{out} = \dot{m} h_{vol,out}$

Ports

Input

C — Inlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing the heat exchanger:

- MassFlwRate Mass flow rate at inlet, \dot{m} , in kg/s
- HeatFlwRate Heat flow rate at inlet, q_{in} , in J/s
- $\mathsf{Temp}-\mathsf{Temperature}$ at inlet, $T_{flw,in}$, in K
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- $\bullet \quad {\tt N2MassFrac} {\tt Nitrogen}$
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide

- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet volume pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the heat exchanger:

- Prs Pressure at outlet, $p_{vol.out}$, in Pa
- Temp Temperature at outlet, $T_{vol,out}$, in K
- Enth Specific enthalpy at outlet, $h_{vol.out}$, in J/kg
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- $\bullet \quad {\tt N2MassFrac} {\tt Nitrogen}$
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Effct — **Heat exchanger effectiveness**

scalar

Heat exchanger effectiveness, ε_{input} .

Dependencies

To create this port, select External input for the **Effectiveness model** parameter.

CoolTemp — Cooling medium temperature

scalar

Cooling medium temperature, $T_{cool,input}$.

Dependencies

To create this port, select External input for the **Cooling medium temperature** input parameter.

Output

Info - Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
InletTemp	Heat exchanger inlet temperature	K
OutletTemp	Heat exchanger outlet temperature	K
HeatTrnsfrRate	Heat exchanger heat transfer rate	J/s

C — Inlet flow pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the heat exchanger:

- Prs Pressure at inlet, $p_{flw,in}$, in Pa
- $\mathsf{Temp}-\mathsf{Temperature}$ at inlet, T_{in} , in K
- ${\sf Enth-Spec}$ if central Enth ${\sf Enth-Spec}$ is a specific enthalpy at inlet, h_{in} , in ${\sf J/kg}$
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet volume mass flow rate, heat flow rate, temperature, mass fractions two-way connector port

Bus containing the heat exchanger:

- MassFlwRate Mass flow rate at outlet, \dot{m} , in kg/s
- HeatFlwRate Heat flow rate at outlet, q_{out} , in J/s
- Temp Temperature at outlet, T_{out} , in K
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide

- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Effectiveness model — Model type for heat effectiveness

Constant (default) | External input

Type of model to calculate the heat exchanger effectiveness.

Dependencies

- Selecting External input creates the Effct port.
- Selecting Constant enables the **Heat exchanger effectiveness**, **ep_cnst** parameter.

Cooling medium temperature input — Specify type

Constant (default) | External input

Cooling medium temperature input.

Dependencies

- Selecting External input creates the CoolTemp port.
- Selecting Constant enables the Cooling medium temperature, T_cool_cnst parameter.

Image type — Icon color

Intercooler (default) | EGR cooler

Block icon color:

- Intercooler for blue, to indicate an intercooler
- EGR cooler for red, to indicate exhaust-gas-recirculation (EGR) cooling

Heat exchanger effectiveness, ep_cnst — Effectiveness scalar

Constant heat exchanger effectiveness, ε_{cnst} .

Dependencies

To enable this parameter, select Constant for the **Effectiveness model** parameter.

Cooling medium temperature, T_cool_cnst — Temperature scalar

Constant cooling medium temperature, $T_{cool,cnst}$, in K.

Dependencies

To enable this parameter, select Constant for the Cooling medium temperature input parameter.

Specific heat at constant pressure, cp — Specific heat scalar

Specific heat at constant pressure, c_n , in J/(kg*K).

References

[1] Eriksson, Lars and Nielsen, Lars. *Modeling and Control of Engines and Drivelines*. Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2014.

See Also

Control Volume System | Flow Restriction

Introduced in R2017a

Mapped Motor

Mapped motor and drive electronics operating in torque-control mode **Library:** Powertrain Blockset / Propulsion / Electric Motors

Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped Motor block implements a mapped motor and drive electronics operating in torque-control mode. The output torque tracks the torque reference demand and includes a motor-response and drive-response time constant. Use the block for fast system-level simulations when you do not know detailed motor parameters, for example, for motor power and torque tradeoff studies. The block assumes that the speed fluctuations due to mechanical load do not affect the motor torque tracking.

You can specify:

- Port configuration Input torque or speed
- Electrical torque range Torque speed envelope or maximum motor power and torque
- ullet Electrical loss Single operating point, measured efficiency, or measured loss

Electrical Torque

To specify the range of torque and speed that the block allows, on the **Electrical Torque** tab, for **Parametrized by**, select one of these options.

Setting	Block Implementation
Tabulated torque-speed envelope	Range specified as a set of speed data points and corresponding maximum torque values.
Maximum torque and power	Range specified with maximum torque and maximum power.

For either method, the block implements an envelope similar to this.

Electrical Losses

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Sum of these terms, measured at a single measurement point:
	• Fixed losses independent of torque and speed, P_0 . Use P_0 to account for fixed converter losses.
	• A torque-dependent electrical loss $k\tau^2$, where k is a constant and τ is the torque. Represents ohmic losses in the copper windings.
	• A speed-dependent electrical loss $k_{\rm w}\omega^2$, where $k_{\rm w}$ is a constant and ω is the speed. Represents iron losses due to eddy currents.
Tabulated loss data	Loss lookup table that is a function of motor speeds and load torques.

Setting	Block Implementation
Tabulated efficiency data	Efficiency lookup table that is a function of motor speeds and load torques:
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Battery Current

The block calculates the battery current using the mechanical power, power loss, and battery voltage. Positive current indicates battery discharge. Negative current indicates battery charge.

$$BattAmp = \frac{MechPwr + PwrLoss}{BattVolt}$$

The equation uses these variables.

BattVolt Battery voltageMechPwr Mechanical powerPwrLoss Power lossBattCurr Battery current

Ports

Input

BattVolt — **Battery voltage**

scalar

Battery voltage, *BattVolt*, in V.

TrqCmd — Commanded motor torque

scalar

Commanded motor torque, Trq_{cmd} , in N·m.

Dependencies

To create this input port, for the **Port configuration**, select **Torque**.

MtrSpd — Motor output shaft speed

scalar

Motor shaft speed, Mtr_{spd} , in rad/s.

Dependencies

To create this input port, for the **Port configuration**, select Speed.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
MechPwr	Mechanical power	W
PwrLoss	Internal inverter and motor power loss	W

BattCurr — **Battery current**

scalar

Battery current draw or demand, I_{batt} , in A.

MtrTrq — Motor torque

scalar

Motor output shaft torque, Mtr_{trq} , in N·m.

MtrSpd — Motor shaft speed

scalar

Motor shaft speed, Mtr_{spd} , in rad/s.

Dependencies

To create this output port, for the **Port configuration**, select **Torque**.

Parameters

Block Options

Port configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	Outpost Mt rSpd
Speed	Input MtrSpd

Electrical Torque

Parameterized by — Select type

Tabulated torque-speed envelope (default) | Maximum torque and power

Setting	Block Implementation
Tabulated torque-speed envelope	Range specified as a set of speed data points and corresponding maximum torque values.
Maximum torque and power	Range specified with maximum torque and maximum power.

For either method, the block implements an envelope similar to this.

Vector of rotational speeds, w_t — Rotational speeds vector

Rotational speeds for permissible steady-state operation, in rad/s. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

Dependencies

To create this parameter, for the **Parameterized by** parameter, select **Tabulated** torque-speed envelope.

Vector of maximum torque values, T_t — Torque vector

Maximum torque values for permissible steady state, in $N \cdot m$.

Dependencies

To create this parameter, for the **Parameterized by** parameter, select **Tabulated** torque-speed envelope.

Maximum torque, torque_max — Torque scalar

The maximum permissible motor torque, in N·m.

Dependencies

To create this parameter, for the **Parameterized by** parameter, select Maximum torque and power.

Maximum power, power_max — Power

scalar

The maximum permissible motor power, in W.

Dependencies

To create this parameter, for the **Parameterized by** parameter, select Maximum torque and power.

Torque control time constant, Tc — Time constant

scalar

Time constant with which the motor driver tracks a torque demand, in s.

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) \mid Tabulated loss data \mid Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Sum of these terms, measured at a single measurement point:
	• Fixed losses independent of torque and speed, P_0 . Use P_0 to account for fixed converter losses.
	• A torque-dependent electrical loss $k\tau^2$, where k is a constant and τ is the torque. Represents ohmic losses in the copper windings.
	• A speed-dependent electrical loss $k_{\rm w}\omega^2$, where $k_{\rm w}$ is a constant and ω is the speed. Represents iron losses due to eddy currents.
Tabulated loss data	Loss lookup table that is a function of motor speeds and load torques.

Setting	Block Implementation
Tabulated efficiency data	Efficiency lookup table that is a function of motor speeds and load torques:
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Motor and drive overall efficiency, eff — Efficiency scalar

The block defines overall efficiency as:

$$\eta = 100 \frac{\tau_0 \omega_0}{\tau_0 \omega_0 + P_0 + k \tau_0^2 + k_w \omega_0^2}$$

The equation uses these variables.

$ au_0$	Torque at which efficiency is measured
ω_0	Speed at which efficiency is measured
P_0	Fixed losses independent of torque or speed
$k au_0^2$	Torque-dependent electrical losses

$k_w\omega^2$ Speed-dependent iron losses

At initialization, the block solves the efficiency equation for k. The block neglects losses associated with the rotor damping.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select **Single** efficiency measurement.

Speed at which efficiency is measured, w_eff — Speed scalar

Speed at which efficiency is measured, in rad/s.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

Torque at which efficiency is measured, T_eff — Torque scalar

Torque at which efficiency is measured, in $N \cdot m$.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

Iron losses, Piron — Power scalar

Iron losses at the speed and torque at which efficiency is defined, in W.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

Fixed losses independent of torque and speed, Pbase — Power scalar

Fixed electrical loss associated with the driver when the motor current and torque are zero, in W.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

Vector of speeds (w) for tabulated losses, w_eff_bp — Breakpoints
$$[1 \times m]$$
 vector

Speed breakpoints for lookup table when calculating losses, in rad/s. Array dimensions are 1 by the number of speed breakpoints, m.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Tabulated loss data or Tabulated efficiency data

Vector of torques (T) for tabulated losses, T_eff_bp — Breakpoints
$$[1 \times n]$$
 vector

Torque breakpoints for lookup table when calculating losses, in $N \cdot m$. Array dimensions are 1 by the number of torque breakpoints, n.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated** loss data or **Tabulated** efficiency data

Corresponding losses, losses_table — Table
$$[m \times n]$$
 array

Array of values for electrical losses as a function of speed and torque, in W. Each value specifies the losses for a specific combination of speed and torque. The [mxn] array dimensions must match the speed, m, and torque, n, breakpoint vector dimensions.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated** loss data.

Corresponding efficiency, efficiency_table — Table [m x n] array

Array of efficiency as a function of speed and torque, in %. Each value specifies the losses for a specific combination of speed and torque. The [mxn] array dimensions must match the speed, m, and torque, n, breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated** efficiency data.

Mechanical

Rotational inertia, J — Inertia

scalar

Rotor resistance to change in motor motion, in kg*m². The value can be zero.

Dependencies

To create this parameter, for the **Port configuration** parameter, select **Torque**.

Rotor damping, b — Damping

scalar

Rotor damping, in $N \cdot m/(rad/s)$. The value can be zero.

Dependencies

To create this parameter, for the **Port configuration** parameter, select **Torque**.

Initial rotor speed, omega_o — Speed

scalar

Rotor speed at the start of the simulation, in rad/s.

Dependencies

To create this parameter, for the **Port configuration** parameter, select **Torque**.

See Also

Flux-Based PMSM | Induction Motor | Interior PMSM | Surface Mount PMSM

Introduced in R2017a

Induction Motor

Three-phase induction motor

Library: Powertrain Blockset / Propulsion / Electric Motors

Description

The Induction Motor block implements a three-phase induction motor. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Three-Phase Sinusoidal Model Electrical System

The block implements equations that are expressed in a stationary rotor reference (qd) frame. The d-axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

The block uses these equations to calculate the electrical speed (ω_{em}) and slip speed (ω_{slip}) .

$$\omega_{em} = P\omega_{m}$$

$$\omega_{slip} = \omega_{syn} - \omega_{em}$$

To calculate the dq rotor electrical speed with respect to the rotor A-axis (dA), the block uses the difference between the stator a-axis (da) speed and slip speed:

$$\omega_{dA} = \omega_{da} - \omega_{em}$$

To simplify the equations for the flux, voltage, and current transformations, the block uses a stationary reference frame:

$$\omega_{da} = 0$$

$$\omega_{dA} = -\omega_{em}$$

Calculation	Equation
Flux	$\begin{split} \frac{d}{dt} \begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \end{bmatrix} = & \begin{bmatrix} v_{sd} \\ v_{sq} \end{bmatrix} - R_s \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} - \omega_{da} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \end{bmatrix} \\ \frac{d}{dt} \begin{bmatrix} \lambda_{rd} \\ \lambda_{rq} \end{bmatrix} = & \begin{bmatrix} v_{rd} \\ v_{rq} \end{bmatrix} - R_r \begin{bmatrix} i_{rd} \\ i_{rq} \end{bmatrix} - \omega_{dA} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{rd} \\ \lambda_{rq} \end{bmatrix} \end{split}$
	$\begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \\ \lambda_{rd} \\ \lambda_{rq} \end{bmatrix} = \begin{bmatrix} L_s & 0 & L_m & 0 \\ 0 & L_s & 0 & L_m \\ L_m & 0 & L_r & 0 \\ 0 & L_m & 0 & L_r \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{rd} \\ i_{rq} \end{bmatrix}$
Current	$ \begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{rd} \\ i_{rq} \end{bmatrix} = \begin{pmatrix} 1 \\ L_m^2 - L_r L_s \end{pmatrix} \begin{bmatrix} -L_r & 0 & L_m & 0 \\ 0 & -L_r & 0 & L_m \\ L_m & 0 & -L_s & 0 \\ 0 & L_m & 0 & -L_s \end{bmatrix} \begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \\ \lambda_{rd} \\ \lambda_{rq} \end{bmatrix} $
Inductance	$L_s = L_{ls} + L_m$ $L_r = L_{lr} + L_m$
Electromagnetic torque	$T_e = PL_m(i_{sq}i_{rd} - i_{sd}i_{rq})$
Power invariant dq transformation to ensure that the dq and three phase powers are equal	$\begin{bmatrix} v_{sd} \\ v_{sq} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\Theta_{da}) & \cos(\Theta_{da} - \frac{2\pi}{3}) & \cos(\Theta_{da} + \frac{2\pi}{3}) \\ -\sin(\Theta_{da}) & -\sin(\Theta_{da} - \frac{2\pi}{3}) & -\sin(\Theta_{da} + \frac{2\pi}{3}) \end{bmatrix}$
	$\begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\Theta_{da}) & -\sin(\Theta_{da}) \\ \cos(\Theta_{da} - \frac{2\pi}{3}) & -\sin(\Theta_{da} - \frac{2\pi}{3}) \\ \cos(\Theta_{da} + \frac{2\pi}{3}) & -\sin(\Theta_{da} + \frac{2\pi}{3}) \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix}$

The equations use these variables.

ω_m	Angular velocity of the rotor
ω_{em}	Electrical rotor speed
ω_{slip}	Electrical rotor slip speed
ω_{syn}	Synchronous rotor speed
ω_{da}	$\mbox{d} q$ stator electrical speed with respect to the rotor a-axis
ω_{dA}	dq stator electrical speed with respect to the rotor A-axis
Θ_{da}	dq stator electrical angle with respect to the rotor a-axis
Θ_{dA}	dq stator electrical angle with respect to the rotor A-axis
L_q , L_d	q- and d-axis inductances
L_s	Stator inductance
L_r	Rotor inductance
L_m	Magnetizing inductance
L_{ls}	Stator leakage inductance
L_{lr}	Rotor leakage inductance
v_{sq} , v_{sd}	Stator q- and d-axis voltages
i_{sq} , i_{sd}	Stator q- and d-axis currents
λ_{sq} , λ_{sd}	Stator q- and d-axis flux
i_{rq} , i_{rd}	Rotor q- and d-axis currents
λ_{rq} , λ_{rd}	Rotor q- and d-axis flux
v_a , v_b , v_c	Stator voltage phases a, b, c
i_a , i_b , i_c	Stator currents phases a, b, c

Resistance of the stator windings Resistance of the rotor windings

Number of pole pairs

Electromagnetic torque

Mechanical System

 R_s

 R_r P

 T_e

The rotor angular velocity is given by:

$$egin{aligned} rac{d}{dt}\omega_m &= rac{1}{J}ig(T_e - T_f - F\omega_m - T_mig) \ rac{d heta_m}{dt} &= \omega_m \end{aligned}$$

The equations use these variables.

J	Combined inertia of rotor and load
F	Combined viscous friction of rotor and load
$ heta_m$	Rotor mechanical angular position
T_m	Rotor shaft torque
T_e	Electromagnetic torque
T_f	Rotor shaft static friction torque

Angular mechanical velocity of the rotor

Ports

 ω_m

Input

LdTrq — Rotor shaft torque

scalar

Rotor shaft input torque, T_m , in N·m.

Dependencies

To create this port, select Torque for the **Port configuration** parameter.

Spd — Rotor shaft speed

scalar

Angular velocity of the rotor, ω_m , in rad/s.

Dependencies

To create this port, select Speed for the **Port configuration** parameter.

PhaseVolt — Stator terminal voltages

vector

Stator terminal voltages, V_a , V_b , and V_c , in V.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_a	A
IbStator	Stator phase current B	i_b	A
IcStator	Stator phase current C	i_c	A
IdSta	Direct axis current	i_{sd}	A
IqSta	Quadrature axis current	i_{sq}	A
VdSta	Direct axis voltage	v_{sd}	V
VqSta	Quadrature axis voltage	v_{sq}	V
MtrSpd	Angular velocity of the rotor	ω_m	rad/s
MtrPos	Rotor angular position	θ_m	rad
MtrTrq	Electromagnetic torque	T_e	N·m

Parameters

Configuration

Port configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	PhaseV
	Info
	LdTrq
Speed	PhaseV
	Info
	Spd

Stator resistance and leakage inductance, ${\sf Zs-Resistance}$ and inductance

vector

Stator resistance, R_S , in ohms and leakage inductance, L_{ls} , in H.

Rotor resistance and leakage inductance, Zr — Resistance and inductance vector

Rotor resistance, R_r , in ohms and leakage inductance, L_{lr} , in H.

Magnetizing inductance, Lm — Inductance scalar

Magnetizing inductance, L_m , in H.

Number of pole pairs, P — Pole pairs scalar

Motor pole pairs, P.

Initial mechanical position, theta_init — Angular position scalar

Initial rotor angular position, θ_{m0} , in rad.

Initial mechanical speed, omega_init — Angular speed scalar

Initial angular velocity of the rotor, ω_{m0} , in rad/s.

Dependencies

To enable this parameter, select Torque for the **Port configuration**.

Physical inertia, viscous damping, static friction, mechanical — Inertia, damping, friction

vector

Mechanical properties of the rotor:

- Inertia, *J*, in kgm²
- Viscous damping, F, in N·m/(rad/s)
- Static friction, T_f , in N·m

Dependencies

To enable this parameter, select Torque for the **Port configuration**.

References

[1] Mohan, Ned. Advanced Electric Drives: Analysis, Control and Modeling Using Simulink. Minneapolis, MN: MNPERE, 2001.

See Also

Flux-Based PMSM | IM Controller | Interior PMSM | Mapped Motor | Surface Mount PMSM

Introduced in R2017a

IM Controller

Internal torque-based, field-oriented controller for an induction motor with an optional outer-loop speed controller

Library: Powertrain Blockset / Propulsion / Electric Motor Controllers

Description

The IM Controller block implements an internal torque-based, field-oriented controller for an induction motor (IM) with an optional outer-loop speed controller. The torque control implements a strategy to control the motor flux. You can specify either speed or torque control.

The IM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.

ω	Rotor speed
ω^*	Rotor speed command
T^*	Torque command
i_d	d-axis current
<i>i</i> * _d	d-axis current command
i_q	q-axis current
i^*_q	q-axis current command
v_d ,	d-axis voltage
v* _d	d-axis voltage command
v_q	q-axis voltage
v^*_q	q-axis voltage command
v_a , v_b , v_c	Stator phase a, b, c voltages
i_a , i_b , i_c	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the **Control Type** parameter **Speed** Control. If you select the **Control Type** parameter **Torque** Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the IM Controller block.

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the **Speed Controller** tab:

- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a **Speed time constant, Ksf** gain based on the state filter bandwidth, select **Calculate Speed Regulator Gains**.

The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$$

The equation uses these variables.

 EV_{sf} Bandwidth of the speed command filter

 T_{sm} Motion controller sample time

 K_{sf} Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the **Speed Controller** tab, select **Calculate Speed Regulator Gains** to compute:

- Proportional gain, ba
- · Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the **Physical inertia, viscous damping, static friction** parameter value on the **Motor Parameter** tab.

The gains for the state feedback are calculated using these equations.

Calculation	Equations	
Discrete forms of characteristic equation	$z^{3} + \frac{\left(-3J_{p} + T_{s}b_{a} + T_{s}^{2}K_{sa} + T_{s}^{3}K_{isa}\right)}{J_{p}}z^{2} + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z$	$\frac{-{J}_p + T_s b_a}{{J}_p}$
	$(z - p_1)(z - p_2)(z - p_3) = z^3 + (p_1 + p_2 + p_3)z^2 + (p_1p_2 + p_2p_3 + p_13)z^2$	$2 - p_1 p_2 p_3$
Speed regulator proportional gain	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{sm}}$	
Speed regulator integral gain	$K_{sa} = \frac{J_p \left(p_1 p_2 + p_2 p_3 + p_3 p_1 \right) - 3J_p + 2b_a T_{sm}}{T_{sm}^2}$	
Speed regulator double integral gain	$K_{isa} = \frac{-J_p (p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$	

The equations use these variables.

P Motor pole pairs

 b_a Speed regulator proportional gain

 K_{sa} Speed regulator integral gain

 K_{isa} Speed regulator double integral gain

 J_p Motor inertia

 T_{sm} Motion controller sample time

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameter tab.

The feedforward torque command uses this equation.

$$T_{cmd_{-}ff} = J_{p}\dot{\omega}_{m} + F_{v}\omega_{m} + F_{s}\frac{\omega_{m}}{|\omega_{m}|}$$

The equation uses these variables.

 J_p Motor inertia T_{cmd_ff} Torque command feedforward F_s Static friction torque constant F_v Viscous friction torque constant F_s Static friction torque constant

 ω_m Rotor mechanical speed

Torque Determination

The block uses a quadrature current to determine the base speed and the current commands. The motor ratings determine the rated electrical speed.

Calculation	Equations
Current commands	$i_{qref} = \frac{T_{cmd}}{i_{sq,0} \cdot P \cdot \left(\frac{L^2_m}{T_m}\right)}$
	$\begin{split} i_{qref} &= \frac{T_{cmd}}{i_{sq_0} \cdot P \cdot \left(\frac{L^2_{\ m}}{L_r}\right)} \\ &\text{If } \omega_e \leq \omega_{rated} \cdot \frac{L^2_{\ m}}{L_r} \end{split}$ \vdots $i_{dref} = i_{sd_0}$ Else
	$i_{dref} = \frac{i_{sd_0}}{ \omega_e }$ End
Inductance	
	$\begin{aligned} L_r &= L_{lr} + L_m \\ L_S &= L_{lS} + L_m \end{aligned}$

The equations use these variables.

i_{dref}	d-axis reference current
i_{qref}	q-axis reference current
i_{sd_0}	d-axis rated current
i_{sq_0}	q-axis rated current
ω_e	Rotor electrical speed
ω_{rated}	Rated electrical speed
L_{lr}	Rotor leaking inductance
L_r	Rotor winding inductance
L_{ls}	Stator leaking inductance
L_s	Stator winding inductance
L_m	Motor magnetizing inductance
P	Motor pole pairs
T_{cmd}	Commanded motor maximum torque

Current Regulators

The block regulates the current with an anti-windup feature. Classic proportional-integrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- d-axis and q-axis current cross-coupling
- · Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of $EV_{current}$.

The block implements these equations.

Calculation	Equations
Motor voltage, in the stator reference frame	
	$\sigma = 1 - \frac{L_m^2}{L_s L_r}$
	$v_{sd} = R_s i_{sd} + \sigma L_s \frac{di_{sd}}{dt} + \frac{L_m}{L_r} \frac{d\lambda_{rd}}{dt} - P\omega_m \sigma L_s i_{sq}$
Current regulator gains	$v_{sq} = R_s i_{sq} + \sigma L_s \frac{di_{sq}}{dt} + \omega_d \frac{L_m}{L_r} \frac{d\lambda_{rd}}{dt} + P\omega_m \sigma L_s i_{sd}$
	$K_p = \sigma L_d \omega_b$
Transfer functions	$K_i = R_s \omega_b$
	$\frac{i_d}{i_{dref}} = \frac{\omega_b}{s + \omega_b}$ $\frac{i_q}{s - \frac{\omega_b}{s - \omega_b}}$
	i_q ω_b

The equations use these variables. $s + \omega_b$

$EV_{current}$	Current regulator bandwidth
i_d	d-axis current
i_q	q-axis current
i_{sq}	Stator q-axis current
i_{sd}	Stator d-axis current
v_{sd}	Stator d-axis voltage
v_{sq}	Stator q-axis voltage
K_p	Current regulator d-axis gain
K_i	$Current\ regulator\ integrator\ gain$
L_s	Stator winding inductance
L_m	Motor magnetizing inductance
L_r	Rotor winding inductance
R_s	Stator phase winding resistance
λ_{rd}	Rotor d-axis magnetic flux
σ	Leakage factor
p	Motor pole pairs

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$x_{\alpha} = \frac{2}{3}x_{\alpha} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $x_{\beta} = \frac{\sqrt{3}}{2}x_{b} - \frac{\sqrt{3}}{2}x_{c}$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_{\beta} = \frac{x_b - x_c}{2} x_c$ $x_d = x_{\alpha} \cos \theta_e + x_{\beta} \sin \theta_e$ $x_q = -x_{\alpha} \sin \theta_e + x_{\beta} \cos \theta_e$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_a = x_a$ $x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha} = \frac{1}{x_{\alpha}} x_{\alpha} \sin \theta_{e} + x_{q} \cos \theta_{e}$ $x_{\beta} = x_{d} \sin \theta_{e} + x_{q} \cos \theta_{e}$

The transforms use these variables.

ω_m	Rotor mechanical speed
P	Motor pole pairs
ω_e	Rotor electrical speed
Θ_e	Rotor electrical angle
X	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

Load power	$Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$
Source power	$Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$
DC bus current	$i_{bus} = \frac{Src_{Pwr}}{v_{bus}}$
Estimated rotor torque	$MtrTrq_{est} = P\lambda_{rd}i_{sq} \frac{L_m}{L_r}$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{100} \cdot Ld_{Pwr} $
Power loss for tabulated efficiency	$Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$

The equations use these variables.

v_a , v_b , v_c	Stator phase a, b, c voltages
v_{bus}	Estimated DC bus voltage
i_a , i_b , i_c	Stator phase a, b, c currents
i_{bus}	Estimated DC bus current
Eff	Overall inverter efficiency
ω_m	Rotor mechanical speed
L_r	Rotor winding inductance
L_m	Motor magnetizing inductance
λ_{rd}	Rotor d-axis magnetic flux
i_{sq}	q-axis current
P	Motor pole pairs

Electrical Losses

To specify the electrical losses, on the $\bf Electrical\ Losses$ tab, for $\bf Parameterize\ losses$ $\bf by$, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq — Rotor mechanical speed command scalar

Rotor mechanical speed command, ω^*_m , in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd — Torque command

scalar

Torque command, T^* , in N·m.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — DC bus voltage

scalar

DC bus voltage v_{bus} , in V.

PhaseCurrA — Current

scalar

Stator current phase a, i_a , in A.

PhaseCurrB — Current

scalar

Stator current phase b, i_b , in A.

SpdFdbk — Rotor mechanical speed

scalar

Rotor mechanical speed, ω_m , in rad/s.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	N·m

BusCurr — **Bus current**

scalar

Estimated DC bus current, i_{bus} , in A.

PhaseVolt — Stator terminal voltages

array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Parameters

Block Options

Control Type — Select control

Speed Control (default) | Torque Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor

Stator resistance, Rs — Resistance

scalar

Stator phase winding resistance, R_s , in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Stator resistance, Rs	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation
	D and Q axis integral gain, Ki	Current Controller

Stator leakage inductance, Lls — Inductance

scalar

Stator leakage inductance, L_{ls} , in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Stator leakage inductance, Lls	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation
	D and Q axis proportional gain, Kp D and Q axis integral gain, Ki	Current Controller

Rotor resistance, Rr - Resistance

scalar

Rotor resistance, R_r , in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor resistance, Rr	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation

Rotor leakage inductance, Llr — Inductance

scalar

Rotor leakage inductance, L_{lr} , in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor leakage inductance, Llr	D-axis rated current, Isd_0	Id and Iq Calculation
	Q-axis rated current, Isq_0	
	Torque at rated current, Tem	
	D and Q axis proportional gain, Kp	Current Controller

Rotor magnetizing inductance, Lm - Inductance

scalar

Rotor magnetizing inductance, L_m , in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor leakage inductance, Llr	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation
	D and Q axis proportional gain, Kp	Current Controller

Number of pole pairs, PolePairs — Poles scalar

Motor pole pairs, P.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor leakage inductance, Llr	Torque at rated current, Tem	Id and Iq Calculation

Physical inertia, viscous damping, static friction, Mechanical — Mechanical properties of motor

vector

Mechanical properties of the motor:

- Motor inertia, F_{v} , in kgm^2
- Viscous friction torque constant, F_{ν} , in N·m/(rad/s)
- Static friction torque constant, F_s , in N·m

Dependencies

To enable this parameter, set the **Control Type** parameter to **Speed Control**.

For the gain calculations, the block uses the inertia from the **Physical inertia, viscous damping, static friction** parameter value that is on the **Motor Parameters** tab.

Parameter	Used to Derive	sed to Derive	
	Parameter	Tab	
Physical inertia, viscous damping,	Proportional gain, ba	Speed Controller	
static friction, Mechanical	Angular gain, Ksa		
	Rotational gain, Kisa		
	Inertia compensation, Jcomp		
	Viscous damping compensation, Fv		
	Static friction, Fs		

Id and Iq Calculation

Rated synchronous speed, Frate — Motor frequency scalar

Motor-rated electrical frequency, $F_{\it rate}$, in Hz.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rated synchronous speed, Frate	D-axis rated current, Isd_0 Q-axis rated current, Isq_0	Id and Iq Calculation
	Torque at rated current, Tem	

Rated line to line voltage RMS, Vrate — Motor voltage scalar

Motor-rated line-to-line voltage, V_{rate} , in V.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rated synchronous speed, Frate	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current,	Id and Iq Calculation
	Tem	

Rated slip, Srate — Motor slip speed

scalar

Motor-rated slip speed, S_{rate} , dimensionless.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rated slip, Srate	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation

Calculate Rated Stator Flux Current — Derive parameters button

Click to derive parameters.

Dependencies

Derived	Dependency	
Parameter on Id and Iq Calculation tab	Parameter	Tab
D-axis rated current, Isd_0	Rated synchronous speed, Frate	Id and Iq Calculation
Q-axis rated current, Isq_0	Rated line to line voltage RMS, Vrate	
Torque at rated current, Tem	Rated slip, Srate	

Derived	Dependency	
Parameter on Id and Iq Calculation tab	Parameter	Tab
	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	Motor Parameters

D-axis rated current, Isd_0 — Derived scalar

Derived d-axis rated current, in A.

Dependencies

Derived	Dependency	
Parameter on Id and Iq Calculation tab	Parameter	Tab
D-axis rated current, Isd_0	Rated synchronous speed, Frate	Id and Iq Calculation
Q-axis rated current, Isq_0	Rated line to line voltage RMS, Vrate	
Torque at rated current, Tem	Rated slip, Srate	

Derived	Dependency	
Parameter on Id and Iq Calculation tab	Parameter	Tab
	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr Rotor leakage inductance, Llr	Motor Parameters
	Rotor magnetizing inductance, Lm	

Q-axis rated current, Isq_0 — Derived scalar

Derived q-axis rated current, in A.

Dependencies

Derived	Dependency	
Parameter on Id and Iq Calculation tab	Parameter	Tab
D-axis rated current, Isd_0	Rated synchronous speed, Frate	Id and Iq Calculation
Q-axis rated current, Isq_0	Rated line to line voltage RMS, Vrate	
Torque at rated current, Tem	Rated slip, Srate	

Derived	Dependency	
Parameter on Id and Iq Calculation tab	Parameter	Tab
	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr Rotor leakage inductance, Llr	Motor Parameters
	Rotor magnetizing inductance, Lm	

Torque at rated current, Tem — Derived scalar

Torque at rated current, in $N {\cdot} m.$

Dependencies

Derived	Dependency	
Parameter on Id and Iq Calculation tab	Parameter	Tab
D-axis rated current, Isd_0	Rated synchronous speed, Frate	Id and Iq Calculation
Q-axis rated current, Isq_0	Rated line to line voltage RMS, Vrate	
Torque at rated current, Tem	Rated slip, Srate	

Derived	Dependency	
Parameter on Id and Iq Calculation tab	Parameter	Tab
	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr	Motor Parameters
	Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	

Current Controller

Bandwidth of the current regulator, EV_current — Bandwidth ${\tt scalar}$

Current regulator bandwidth, in Hz.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the current regulator, EV_current	D and Q axis integral gain, Ki D and Q axis proportional gain, Kp	Current Controller

Sample time for the torque control, Tst-Time scalar

Torque control sample time, in s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Sample time for the torque control, Tst	Speed time constant, Ksf	Speed Controller

Calculate Current Regulator Gains — Derive parameters button

Click to derive parameters.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived	Dependency	
Parameter on Current Controller tab	Parameter	Tab
D and Q axis proportional gain, Kp D and Q axis integral gain, Ki	Bandwidth of the current regulator, EV_current	Current Controller
	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr	Motor Parameters
	Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	

D and **Q** axis proportional gain, Kp — Derived scalar

Derived proportional gain, in V/A.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived	Dependency		
Parameter on Current Controller tab	Parameter	Tab	
D and Q axis proportional gain,	Bandwidth of the current regulator, EV_current	Current Controller	
Кр	Stator resistance, Rs	Motor Parameters	
D and Q axis integral gain, Ki	Stator leakage inductance, Lls		
	Rotor resistance, Rr		
	Rotor leakage inductance, Llr		
	Rotor magnetizing inductance, Lm		

D and **Q** axis integral gain, Ki — Derived scalar

Derived integral gain, in V/A*s.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived	Dependency	
Parameter on Current Controller tab	Parameter	Tab
D and Q axis proportional gain,	Bandwidth of the current regulator, EV_current	Current Controller
Kp D and Q axis integral gain, Ki	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	Motor Parameters

Speed Controller

$\begin{tabular}{lll} \textbf{Bandwidth of the motion controller, EV_motion} & -- \textbf{Bandwidth} \\ & \texttt{vector} \end{tabular}$

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to 1/5 the value of the previous element. For example, if the desired cutoff frequency is 20 Hz, specify [20 4 0.8].

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive		
	Parameter	Tab	
Bandwidth of the motion controller,	Proportional gain, ba	Speed Controller	
EV_motion	Angular gain, Ksa		
	Rotational gain, Kisa		

Bandwidth of the state filter, $EV_sf-Bandwidth$

scalar

State filter bandwidth, in Hz.

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive		
	Parameter	Tab	
Bandwidth of the state filter, EV_sf	Speed time constant, Ksf	Speed Controller	

Sample time for the motion control, $\ensuremath{\mathsf{Tsm}} - \ensuremath{\mathsf{Time}}$

scalar

Sample time for the motion controller, in s.

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive		
	Parameter	Tab	
Sample time for the motion	Proportional gain, ba	Speed Controller	
control, Tsm	Angular gain, Ksa		
	Rotational gain, Kisa		

Calculate Speed Regulator Gains — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Speed Controller** tab, when you select **Calculate Speed Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

	meter on Speed Controller	Depends On	
tab		Parameter	Tab
Proportional gain, ba	$b_{a} = \frac{J_{p} - J_{p} p_{1} p_{2} p_{3}}{T_{sm}}$	Sample time for the motion control, Tsm	Speed Controller
		Bandwidth of the motion controller, EV_motion	
		Bandwidth of the state filter, EV_sf	
Angular gain, Ksa	$K_{sa} = \frac{J_p(p_1p_2 + p_2p_3 + p_3p_1)}{T_{sm}^2}$	Sample $time_a for$ the torque control, Tst	Current Controller
Rotational gain, Kisa	$K_{isa} = \frac{-J_p (p_1 + p_2 + p_3) + 3J_p}{T_{sm}^3}$	Physical inertia, $-5 L_{sa}^{-1} K_{sa} T_{sm}^{-1}$ damping, static friction,	Motor Parameters
Speed time constant, Ksf	$K_{sf} = rac{1 - \exp\left(-T_{sm} 2\pi E V_{sf} ight)}{T_{sm}}$	Mechanical	
Inertia compensatio n, Jcomp	$J_{comp} = J_p$	viscous damping, static	Motor Parameters
Viscous damping compensatio n, Fv	$F_{ m v}$	friction, Mechanical	
Static friction, Fs	$ F_s $		

The equations use these variables.

P Motor pole pairs

D_a	Speed regulator proportional gain
K_{sa}	Speed regulator integral gain
K_{isa}	Speed regulator double integral gain
K_{sf}	Speed regulator time constant
J_p	Motor inertia
T_{sm}	Motion controller sample time
EV_{sf}	State filter bandwidth
EV_{motion}	Motion controller bandwidth

Proportional gain, ba — Derived

scalar

Derived proportional gain, in N·m/(rad/s).

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Proportional gain, ba	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller
	Sample time for the motion control, Tsm	

Angular gain, Ksa — Derived

scalar

Derived angular gain, in N·m/rad.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Angular gain, Ksa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller
	Sample time for the motion control, Tsm	

${\bf Rotational\ gain,\ Kisa-Derived}$

scalar

Derived rotational gain, in $N \cdot m/(rad*s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
Rotational gain, Kisa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters	
	Bandwidth of the motion controller, EV_motion	Speed Controller	
	Sample time for the motion control, Tsm		

$\label{eq:speed_speed} \textbf{Speed time constant, Ksf} - \textbf{Derived}$

scalar

Derived speed time constant, in 1/s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter Tab		
Speed time constant, Ksf	Sample time for the torque control, Tst	Current Controller	
	Bandwidth of the state filter, EV_sf	Speed Controller	

${\bf Inertia\ compensation,\ Jcomp-Derived}$

scalar

Derived inertia compensation, in kg·m^2.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency Parameter Tab	
Inertia compensation, Jcomp	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Viscous damping compensation, Fv — Derived

scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Static friction, Fs — Derived

scalar

Derived static friction, in $N \cdot m/(rad/s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Static friction, Fs	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff — Constant scalar

Overall inverter efficiency, *Eff*, in %.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Vector of speeds (w) for tabulated loss, w_loss_bp — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of torques (T) for tabulated loss, T_loss_bp — Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Corresponding losses, losses_table — Table M-hv-N matrix

M-by-N matrix

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Vector of speeds (w) for tabulated efficiency, w_eff_bp — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Vector of torques (T) for tabulated efficiency, T_eff_bp — Breakpoints

1-by-N matrix

Torque breakpoints for lookup table when calculating efficiency, in $N \cdot m$.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

Corresponding efficiency, efficiency_table — Table M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

References

- [1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." *Proceedings of the IEEE*, Vol. 82, Issue 8, August 1994, pp. 1215–1240.
- [2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current

- regulator." *IEEE Transactions on Industry Applications*, Vol. 30, Issue 4, July/ August 1994, pp. 920–926.
- [3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
- [4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." *IEEE Transactions on Industry Applications*, Vol. 36, Issue 3, May/June 2000, pp. 817–825.
- [5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]." *IEEE Transactions on Industry Applications*, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42–50.

See Also

Flux-Based PM Controller | Induction Motor | Interior PM Controller | Surface Mount PM Controller

Introduced in R2017a

Surface Mount PMSM

Three-phase exterior permanent magnet synchronous motor with sinusoidal back electromotive force

Library: Powertrain Blockset / Propulsion / Electric Motors

Description

The Surface Mount PMSM block implements a three-phase exterior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Motor Construction

This figure shows the motor construction with a single pole pair on the rotor.

The rotor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with rotor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when rotor angle θ_r is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the rotor flux reference frame (dq frame). All quantities in the rotor reference frame are referred to the stator.

$$\begin{split} & \omega_e = P\omega_m \\ & \frac{d}{dt}i_d = \frac{1}{L_d}v_d - \frac{R}{L_d}i_d + \frac{L_q}{L_d}P\omega_m i_q \\ & \frac{d}{dt}i_q = \frac{1}{L_q}v_q - \frac{R}{L_q}i_q - \frac{L_d}{L_q}P\omega_m i_d - \frac{\lambda_{pm}P\omega_m}{L_q} \\ & T_e = 1.5P[\lambda_{pm}i_q + (L_d - L_q)i_di_q] \end{split}$$

The L_q and L_d inductances represent the relation between the phase inductance and the rotor position due to the saliency of the rotor magnets. For the surface mount PMSM,

$$L_d = L_q$$
.

The equations use these variables.

L_q , L_d	q- and d-axis inductances
R	Resistance of the stator windings
i_q , i_d	q- and d-axis currents
v_q , v_d	q- and d-axis voltages
ω_m	$\label{eq:continuous} \textbf{Angular mechanical velocity of the rotor}$
ω_e	Angular electrical velocity of the rotor
λ_{pm}	Permanent magnet flux linkage
P	Number of pole pairs
T_e	Electromagnetic torque
Θ_e	Electrical angle

Mechanical System

The rotor angular velocity is given by:

$$\begin{split} \frac{d}{dt}\omega_{m} &= \frac{1}{J} \big(T_{e} - T_{f} - F\omega_{m} - T_{m} \big) \\ \frac{d\theta_{m}}{dt} &= \omega_{m} \end{split}$$

The equations use these variables.

J	Combined inertia of rotor and load
F	Combined viscous friction of rotor and load
$ heta_m$	Rotor mechanical angular position
T_m	Rotor shaft torque
T_e	Electromagnetic torque
T_f	Rotor shaft static friction torque
ω_m	Angular mechanical velocity of the rotor

Ports

Input

LdTrq — Rotor shaft torque

scalar

Rotor shaft input torque, T_m , in N·m.

Dependencies

To create this port, select Torque for the **Port Configuration** parameter.

Spd — **Rotor shaft speed**

scalar

Angular velocity of the rotor, ω_m , in rad/s.

Dependencies

To create this port, select **Speed** for the **Port Configuration** parameter.

PhaseVolt — Stator terminal voltages

vector

Stator terminal voltages, V_a , V_b , and V_c , in V.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_a	A
IbStator	Stator phase current B	$ i_b $	A
IcStator	Stator phase current C	i_c	A
IdSync	Direct axis current	i_d	A
IqSync	Quadrature axis current	i_q	A
VdSync	Direct axis voltage	v_d	V
VqSync	Quadrature axis voltage	v_q	V
MtrSpd	Angular mechanical velocity of the rotor	ω_m	rad/s
MtrPos	Rotor mechanical angular position	θ_m	rad
MtrTrq	Electromagnetic torque	T_e	N·m

Parameters

$\label{eq:configuration} \textbf{Port Configuration} - \textbf{Select port configuration}$

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	PhaseVolt
	Info
	LdTrq
Speed	PhaseVolt
	Info
	Spd

Stator phase resistance, Rs — Resistance scalar

Stator phase resistance, R_s , in ohm.

Armature inductance, Ldq_ — Inductance vector

Armature inductance, L_d , L_q , in H.

Permanent magnet flux, lambda_pm — Flux scalar

Permanent magnet flux linkage, λ_{pm} , in Wb.

Number of pole pairs, P — Pole pairs scalar

Motor pole pairs, *P*.

Initial dq current, idq0 — Current vector

Initial q- and d-axis currents, i_q , i_d , in A.

Initial mechanical position, theta_init — Angle scalar

Initial rotor angular position, θ_{m0} , in rad.

Initial mechanical speed, omega_init — Speed scalar

Initial angular velocity of the rotor, ω_{m0} , in rad/s.

Dependencies

To enable this parameter, select the **Torque** configuration parameter.

Physical inertia, viscous damping, and static friction, mechanical — Inertia, damping, friction

vector

Mechanical properties of the rotor:

- Inertia, J, in kgm^2
- Viscous damping, F, in N·m/(rad/s)
- Static friction, T_f , in N·m

Dependencies

To enable this parameter, select the Torque configuration parameter.

References

- [1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
- [2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

See Also

Flux-Based PMSM | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PM Controller

Introduced in R2017a

Surface Mount PM Controller

Torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor

Library: Powertrain Blockset / Propulsion / Electric Motors

Description

The Surface Mount PM Controller block implements a torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The torque control utilizes quadrature current and does not weaken the magnetic flux. You can specify either speed or torque control.

The Surface Mount PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.

ω	Rotor speed
ω^*	Rotor speed command
T^*	Torque command
i_d	d-axis current
i^*_d	d-axis current command
i_q	q-axis current
i^*_q	q-axis current command
v_d ,	d-axis voltage
v^*_d	d-axis voltage command
v_q	q-axis voltage
v^*_q	q-axis voltage command
v_a , v_b , v_c	Stator phase a, b, c voltages
i_a , i_b , i_c	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the **Control Type** parameter **Speed** Control. If you select the **Control Type** parameter **Torque** Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Surface Mount PM Controller block.

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the **Speed Controller** tab:

- To make the speed-command lag time negligible, specify a **Bandwidth of the state filter** parameter.
- To calculate a **Speed time constant, Ksf** gain based on the state filter bandwidth, select **Calculate Speed Regulator Gains**.

The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{cm}}$$

The equations use these variables.

 EV_{sf} Bandwidth of the speed command filter

 T_{sm} Motion controller sample time K_{sf} Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the **Speed Controller** tab, select **Calculate Speed Regulator Gains** to calculate:

- · Proportional gain, ba
- · Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value on the **Motor Parameters** tab.

The gains for the state feedback are calculated using these equations.

Calculation	Equations	
Discrete forms of characteristic equation	$z^{3} + \frac{\left(-3J_{p} + T_{s}b_{a} + T_{s}^{2}K_{sa} + T_{s}^{3}K_{isa}\right)}{J_{p}}z^{2} + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z$	$\frac{-J_p + T_s b_a}{J_p}$
	$(z - p_1)(z - p_2)(z - p_3) = z^3 + (p_1 + p_2 + p_3)z^2 + (p_1p_2 + p_2p_3 + p_13)z^2 + (p_1p_2 + p_2p_3 + p_2p$	$^{2}-p_{1}p_{2}p_{3}$
Speed regulator proportional gain	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{sm}}$	
Speed regulator integral gain	$K_{sa} = \frac{J_p (p_1 p_2 + p_2 p_3 + p_3 p_1) - 3J_p + 2b_a T_{sm}}{T_{sm}^2}$	
Speed regulator double integral gain	$K_{isa} = \frac{-J_p (p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$	

The equations use these variables.

P Motor pole pairs

 b_a Speed regulator proportional gain

 K_{sa} Speed regulator integral gain

 K_{isa} Speed regulator double integral gain

 J_p Motor inertia

 T_{sm} Motion controller sample time

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameters tab.

The feedforward torque command uses this equation.

$$T_{cmd_{-}ff} = J_{p}\dot{\omega}_{m} + F_{v}\omega_{m} + F_{s}\frac{\omega_{m}}{|\omega_{m}|}$$

The equation uses these variables.

 J_p Motor inertia T_{cmd_ff} Torque command feedforward F_s Static friction torque constant F_v Viscous friction torque constant F_s Static friction torque constant

 ω_m Rotor speed

Torque Determination

The block uses a quadrature current to determine the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.

Calculation	Equations
Motor maximum torque	
	$T_{max} = \frac{3}{2} P \left(\lambda_{pm} i_q + \left(L_d - L_q \right) i_d i_q \right)$
Maximum q-axis phase current	_
	$i_{q_max} = \frac{T_{cmd}}{\frac{3}{2}P\lambda_{pm}}$
Electrical base speed	$\frac{3}{2}P\lambda_{pm}$
	$\omega_{base} = \frac{v_{max}}{\sqrt{2}}$
d-axis voltage	$\omega_{base} = \frac{v_{max}}{\sqrt{\left(L_{q}i_{q}\right)^{2} + \left(\lambda_{pm}\right)^{2}}}$ $v_{d} = -\omega_{e}L_{q}i_{q_max}$
q-axis voltage	$v_q = \omega_e \lambda_{pm}$
Maximum phase current	
	$i_{max} = i_{q_max} $
Maximum voltage	
	$v_{max} = \frac{v_{bus}}{\sqrt{3}}$

Calculation	Equations
Current command	
	$i_{dref} = 0$
	$i_{q_tmp} = \min(i_{q_max}, \frac{T_{cmd}}{\frac{3}{2}P\lambda_{pm}})$ If $ \omega_e \le \omega_{base}$
	$ \text{If} \omega_e \le \omega_{base}$ $\frac{-P^{\lambda_{pm}}}{2}$
	$i_{qre\!f}$ $=$ i_{q_tmp} Else
	$i_{qfw} = sqrt(\min(0, \frac{1}{L_q} (\left(\frac{v_{max}}{\omega_e}\right)^2 - \left(\lambda_{pm}\right)^2))$
	If $i_{q_tmp} < i_{qfw}$
	$i_{qref}=i_{q_tmp}$ Else
	$i_{qre\!f}=\!i_{qf\!w}$ End
	End

The equations use these variables.

i_{max}	Maximum phase current
i_d	d-axis current
i_q	q-axis current
i_{dref}	d-axis reference current
i_{qref}	q-axis reference current
i_{q_max}	Maximum q-axis phase current
ω_e	Rotor electrical speed
λ_{pm}	Permanent magnet flux linkage
v_d	d-axis voltage
v_q	q-axis voltage
v_{max}	Maximum line to neutral voltage

v_{bus}	DC bus voltage
L_d	d-axis winding inductance
L_q	q-axis winding inductance
P	Motor pole pairs
T_{max}	Motor maximum torque
T_{cmd}	Commanded motor maximum torque

Current Regulators

The block regulates the current with an anti-windup feature. Classic proportional-integrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- · d-axis and q-axis current cross-coupling
- · back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of $EV_{current}$.

The block implements these equations.

Calculation	Equations
Motor voltage, in the rotor reference frame	
	$L_d \frac{di_d}{dt} = v_d - R_s i_d + p\omega_m L_q i_q$
Current regulator gains	$L_{d} \frac{di_{q}}{dt} = v_{q} - R_{s}i_{q} - p\omega_{m}L_{d}i_{d} - p\omega_{m}\lambda_{pm}$
	$\omega_b = 2\pi E V_{current}$
	$ \begin{aligned} \omega_b &= 2\pi E V_{current} \\ K_{p_d} &= L_d \omega_b \\ K_{p_q} &= L_q \omega_b \end{aligned} $
	$K_i = R_s \omega_b$

Calculation	Equations
Transfer functions	
	$\frac{i_d}{i_{dref}} = \frac{\omega_b}{s + \omega_b}$
	$i_q - \omega_b$

The equations use these variables. $s + \omega_b$

Current regulator bandwidth
d-axis current
q-axis current
Current regulator d-axis gain
Current regulator q-axis gain
Current regulator integrator gain
d-axis winding inductance
q-axis winding inductance
Stator phase winding resistance
Rotor speed
d-axis voltage
q-axis voltage
Permanent magnet flux linkage
Motor pole pairs

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$x_{\alpha} = \frac{2}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $x_{\beta} = \frac{\sqrt{3}}{2}x_{b} - \frac{\sqrt{3}}{2}x_{c}$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_{\beta} = \frac{1}{2} x_{b} - \frac{1}{2} x_{c}$ $x_{d} = x_{\alpha} \cos \theta_{e} + x_{\beta} \sin \theta_{e}$ $x_{q} = -x_{\alpha} \sin \theta_{e} + x_{\beta} \cos \theta_{e}$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_{\alpha} = x_{\alpha}$ $x_{b} = -\frac{1}{2}x_{\alpha} + \frac{\sqrt{3}}{2}x_{\beta}$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha}^{c} = \frac{1}{x_{2}} x_{\alpha}^{c} = \frac{1}{x_{2}} x_{\alpha$

The transforms use these variables.

ω_m	Rotor speed
P	Motor pole pairs
ω_e	Rotor electrical speed
Θ_e	Rotor electrical angle
Χ	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

Load power	$Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$
Source power	$Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$
DC bus current	$i_{bus} = \frac{Src_{Pwr}}{v_{bus}}$
Estimated rotor torque	$MtrTrq_{est} = 1.5P[\lambda i_q + (L_d - L_q)i_d i_q]$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{100} \cdot Ld_{Pwr} $
Power loss for tabulated efficiency	$Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$

The equations use these variables.

v_a , v_b , v_c	Stator phase a, b, c voltages
v_{bus}	Estimated DC bus voltage
i_a , i_b , i_c	Stator phase a, b, c currents
i_{bus}	Estimated DC bus current
Eff	Overall inverter efficiency
ω_m	Rotor mechanical speed
L_q	q-axis winding inductance
L_d	d-axis winding inductance
i_a	q-axis current

 i_d d-axis current λ Permanent magnet flux linkage P Motor pole pairs

Electrical Losses

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

Setting	Block Implementation	
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.	
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.	
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.	
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.	
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.	
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.	

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- $\bullet\ \ \,$ Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq — Rotor speed command

scalar

Rotor speed command, ω^*_m , in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd — Torque command

scalar

Torque command, T^* , in N·m.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — **DC** bus voltage

scalar

DC bus voltage v_{bus} , in V.

PhaseCurrA — Current

scalar

Stator current phase a, i_a , in A.

PhaseCurrB — Current

scalar

Stator current phase b, i_b , in A.

SpdFdbk — Rotor speed

scalar

Rotor speed, ω_m , in rad/s.

PosFdbk — Rotor electrical angle

scalar

Rotor electrical angle, Θ_m , in rad.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	N·m

BusCurr — Bus current

scalar

Estimated DC bus current, i_{bus} , in A.

PhaseVolt — Stator terminal voltages

array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Parameters

Configuration

Control Type — Select control

Speed Control (default) | Torque Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor Parameters

Stator resistance, Rs — Resistance

scalar

Stator phase winding resistance, R_s , in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Stator resistance, Rs	D and Q axis integral gain, Ki	Current Controller

DQ axis inductance, $\operatorname{Ldq}-\operatorname{Inductance}$

scalar

D-axis winding inductance, L_{dq} , in H.

Dependencies

Parameter	Used to Derive	
	Parameter	Tab
DQ axis inductance, Ldq	D-axis proportional gain, Kp_d Q-axis proportional gain, Kp_q D and Q axis integral gain, Ki	Current Controller

Permanent magnet flux, lambda_pm — Flux
scalar

Permanent magnet flux, λ_{pm} , in Wb.

Number of pole pairs, PolePairs — Poles scalar

Motor pole pairs, P.

Physical inertia, viscous damping, static friction, Mechanical — Inertia, damping, friction

vector

Mechanical properties of the motor:

- Motor inertia, F_{ν} , in kgm²
- Viscous friction torque constant, F_{v} , in N·m/(rad/s)
- Static friction torque constant, F_s , in N·m

Dependencies

To enable this parameter, set the Control Type parameter to Speed Control.

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value that is on the **Motor Parameters** tab.

Parameter	Used to Derive	
	Parameter	Tab
Physical inertia, viscous damping,	Proportional gain, ba	Speed Controller
static friction,	Angular gain, Ksa	
Mechanical	Rotational gain, Kisa	
	Inertia compensation, Jcomp	
	Viscous damping compensation, Fv	
	Static friction, Fs	

Id and Iq Calculation

Maximum torque, T_max — Torque
scalar

Maximum torque, in $N \cdot m$.

Current Controller

Bandwidth of the current regulator, EV_current — Bandwidth
scalar

Current regulator bandwidth, in Hz.

Dependencies

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the current regulator, EV_current	D-axis proportional gain, Kp_d Q-axis proportional gain, Kp_q D and q axis proportional gain, Ki	Current Controller

Sample time for the torque control, Tst — Time scalar

Torque control sample time, in s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter Tab		
Sample time for the torque control, Tst	Speed time constant, Ksf	Speed Controller	

Calculate Current Regulator Gains — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived	Dependency	
Parameter on Current Controller tab	Parameter	Tab
	Bandwidth of the current regulator, EV_current	Current Controller
Kp_d	Stator resistance, Rs	Motor Parameters
Q-axis proportional gain, Kp_q	DQ-axis inductance, Ldq	
D and Q axis integral gain, Ki		

D-axis proportional gain, Kp_d — Derived scalar

Derived d-axis proportional gain, in V/A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter Tab		
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller	
	DQ-axis inductance, Ldq	Motor Parameters	

Q-axis proportional gain, Kp_q — Derived scalar

Derived q-axis proportional gain, in V/A.

Dependencies

Parameter	Dependency		
	Parameter Tab		
	Bandwidth of the current regulator, EV_current	Current Controller	
Kp_q	DQ-axis inductance, Ldq	Motor Parameters	

D and **Q** axis integral gain, Ki — Derived scalar

Derived axis integral gain, in V/A*s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
D and Q axis integral gain, Ki	Bandwidth of the current regulator, EV_current	Current Controller	
	Stator resistance, Rs	Motor Parameters	
	DQ-axis inductance, Ldq		

Speed Controller

Bandwidth of the motion controller, EV_motion — Bandwidth vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to 1/5 the value of the previous element. For example, if the desired cutoff frequency is 20 Hz, specify [20 4 0.8].

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the motion controller, EV_motion	Proportional gain, ba Angular gain, Ksa	Speed Controller
	Rotational gain, Kisa	

Bandwidth of the state filter, $EV_sf-Bandwidth$

scalar

State filter bandwidth, in Hz.

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the state filter, EV_sf	Speed time constant, Ksf	Speed Controller

Sample time for the motion control, Tsm — Time scalar

Sample time for the motion controller, in s.

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed** Control.

Parameter	Used to Derive		
	Parameter	Tab	
Sample time for the motion	Proportional gain, ba	Speed Controller	
control, Tsm	Angular gain, Ksa		
	Rotational gain, Kisa		

Calculate Speed Regulator Gains — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Speed Controller** tab, when you select **Calculate Speed Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

tah		Depends On	
		Parameter	Tab
Proportional gain, ba	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{sm}}$	Sample time for the motion control, Tsm	Speed Controller
		Bandwidth of the motion controller, EV_motion	
		Bandwidth of the state filter, EV_sf	
Angular gain, Ksa	$K_{sa} = \frac{J_p(p_1p_2 + p_2p_3 + p_3p_1)}{T_{sm}^2}$	Sample b_a^{time} for the torque control, Tst	Current Controller
Rotational gain, Kisa	$K_{isa} = \frac{-J_p (p_1 + p_2 + p_3) + 3J_p}{T_{sm}^3}$	Physical inertia, -0.15 ms -0	Motor Parameters
Speed time constant, Ksf	$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$	Mechanical	
Inertia compensatio n, Jcomp	$J_{comp} = J_p$	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Derived Parameter on Speed Controller		Depends On	
tab		Parameter	Tab
Viscous damping compensatio n, Fv	$F_{ u}$		
Static friction, Fs	F_s		

The equations use these variables.

P	Motor pole pairs
b_a	Speed regulator proportional gain
K_{sa}	Speed regulator integral gain
K_{isa}	Speed regulator double integral gain
K_{sf}	Speed regulator time constant
J_p	Motor inertia
T_{sm}	Motion controller sample time
EV_{sf}	State filter bandwidth
EV_{motion}	Motion controller bandwidth

Proportional gain, ba — Derived

scalar

Derived proportional gain, in $N \cdot m/(rad/s)$.

Dependencies

Parameter	Dependency	
	Parameter Tab	
	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Parameter	Dependency	
	Parameter	Tab
	Bandwidth of the motion controller, EV_motion	Speed Controller
	Sample time for the motion control, Tsm	

Angular gain, Ksa — Derived

scalar

Derived angular gain, in N·m/rad.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Angular gain, Ksa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller
	Sample time for the motion control, Tsm	

Rotational gain, Kisa — Derived

scalar

Derived rotational gain, in $N \cdot m/(rad*s)$.

Dependencies

Parameter	Dependency	
	Parameter	Tab
Rotational gain, Kisa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller
	Sample time for the motion control, Tsm	

Speed time constant, Ksf — Derived scalar

Derived speed time constant, in 1/s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
·	Sample time for the torque control, Tst	Current Controller
	Bandwidth of the state filter, EV_sf	Speed Controller

Inertia compensation, Jcomp — Derived scalar

Derived inertia compensation, in kg·m^2.

Dependencies

Parameter	Dependency	
	Parameter	Tab
Inertia compensation, Jcomp	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Viscous damping compensation, Fv — Derived scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

${\bf Static\ friction,\ Fs-Derived}$

scalar

Derived static friction, in $N \cdot m/(rad/s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) \mid Tabulated loss data \mid Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. • Converts the efficiency values you provide into losses
	and uses the tabulated losses for simulation.
	• Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff — Constant scalar

Overall inverter efficiency, *Eff*, in %.

Dependencies

To enable this parameter, for ${\bf Parameterize\ losses\ by},$ select ${\bf Tabulated\ loss\ data}.$

Vector of speeds (w) for tabulated loss, w_loss_bp — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Vector of torques (T) for tabulated loss, T_loss_bp — Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Corresponding losses, losses_table — Table

M-by-N matrix

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of speeds (w) for tabulated efficiency, w_eff_bp — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

Vector of torques (T) for tabulated efficiency, T_eff_bp — Breakpoints

1-bv-N matrix

Torque breakpoints for lookup table when calculating efficiency, in $N \cdot m$.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table — Table M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

References

- [1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." *Proceedings of the IEEE*, Vol. 82, Issue 8, August 1994, pp. 1215–1240.
- [2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." *IEEE Transactions on Industry Applications*, Vol. 30, Issue 4, July/ August 1994, pp. 920–926.
- [3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
- [4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." *IEEE Transactions on Industry Applications*, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
- [5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]." *IEEE Transactions on Industry Applications*, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42–50.

See Also

Flux-Based PM Controller | IM Controller | Interior PM Controller | Surface Mount PMSM

Introduced in R2017a

SI Controller

Spark-ignition engine controller that uses the driver torque request

Library: Powertrain Blockset / Propulsion / Combustion Engine

Controllers

Description

The SI Controller block implements a spark-ignition (SI) controller that uses the driver torque request to calculate the open-loop air, fuel, and spark actuator commands that are required to meet the driver demand.

You can use the SI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine, throttle, and turbocharger wastegate subsystems require the commands that are output from the SI Controller block.

The block uses the commanded torque and engine speed to determine these open-loop actuator commands:

- Throttle position percent
- Wastegate area percent
- · Injector pulse-width
- · Spark advance
- Intake cam phaser angle
- Exhaust cam phaser angle
- Exhaust gas recirculation (EGR) valve area percent

The SI Controller block has two subsystems:

- The Controller subsystem Determines the commands based on the commanded torque, measured engine speed, and estimated cylinder air mass.
- The Estimator subsystem Determines the estimated air mass flow, torque, and exhaust gas temperature from intake manifold gas pressure, intake manifold gas temperature, engine speed, and cam phaser positions.

The figure illustrates the signal flow.

The figure uses these variables.

N	Engine cheed
1 V	Engine speed

MAP Cycle average intake manifold pressure

IAT Intake air temperature

 $T_{in,EGR}$ Temperature at EGR valve inlet

MAT Cycle average intake manifold gas absolute temperature

Intake cam phaser angle and intake cam phaser angle command,

 $arphi_{ICP}$, respectively

 φ_{ICPCMD}

Exhaust cam phaser angle and exhaust cam phaser angle command,

 φ_{ECP} , respectively

 φ_{ECPCMD}

EGRap, EGR valve area percent and EGR valve area percent command,

 $EGRap_{cmd}$ respectively

 $\begin{array}{ll} \Delta P_{EGR} & \text{Pressure difference at EGR valve inlet and outlet} \\ WAP_{cmd} & \text{Turbocharger wastegate area percent command} \end{array}$

SA Spark advance

Fuel injector pulse-width

 Pw_{inj}

 TPP_{cmd} Throttle position percent command

The Model-Based Calibration Toolbox was used to develop the tables that are available with the Powertrain Blockset.

Controller

The block determines the commanded engine load (that is, normalized cylinder air mass) from a lookup table that is a function of commanded torque and measured engine speed.

$$L_{cmd} = f_{Lcmd} (T_{cmd}, N)$$

To achieve the commanded load, the controller sets the throttle position percent and turbocharger wastegate area percent using feed forward lookup tables. The lookup tables are functions of the commanded load and measured engine speed.

$$TAP_{cmd} = f_{TAPcmd} \left(L_{cmd}, N \right)$$

$$TPP_{cmd} = f_{TPPcmd} (TAP_{cmd})$$

$$WAP_{cmd} = f_{WAPcmd} (L_{cmd}, N)$$

To determine the cam phaser angle commands, the block uses lookup tables that are functions of estimated engine load and measured engine speed.

$$\varphi_{ICPCMD} = f_{ICPCMD}(L_{est}, N)$$

$$\varphi_{ECPCMD} = f_{ECPCMD} \left(L_{est}, N \right)$$

The block calculates the desired engine load using this equation.

$$L_{est} = \frac{CpsR_{air}T_{std}\dot{m}_{air,est}}{P_{std}V_dN}$$

The equations use these variables.

 L_{est} Estimated engine load L_{cmd} Commanded engine load

N Engine speed

 T_{cmd} Commanded engine torque TAP_{cmd} Throttle area percent command TPP_{cmd} Throttle position percent command

 $W\!AP_{cmd}$ Turbocharger wastegate area percent command

Cps Crankshaft revolutions per power stroke

 P_{std} Standard pressure

 T_{std} Standard temperature

 $R_{air} \hspace{1.5in} \hbox{Ideal gas constant for air and burned gas mixture} \\$

 $V_d \qquad \qquad {\rm Displaced\ volume}$

Estimated engine air mass flow

 $\dot{m}_{air.est}$

The controller subsystem uses these lookup tables for the air calculations.

The throttle area percent command lookup table, f_{TAPcmd} , is a function of commanded load and engine speed

$$TAP_{cmd} = f_{TAPcmd} (L_{cmd}, N)$$

where:

- TAP_{cmd} is throttle area percentage command, in percent.
- L_{cmd} =L is commanded engine load, dimensionless.
- *N* is engine speed, in rpm.

• To account for the non-linearity of the throttle position to throttle area, the throttle position percent lookup table linearizes the open-loop air mass flow control.

The throttle position percent command lookup table, $f_{TPP\,cmd}$, is a function of the throttle area percentage command

$$TPP_{cmd} = f_{TPPcmd} \left(TAP_{cmd} \right)$$

- *TPP*_{cmd} is throttle position percentage command, in percent.
- *TAP_{cmd}* is throttle area percentage command, in percent.

The wastegate area percent command lookup table, f_{WAPcmd} , is a function of the commanded engine load and engine speed

$$WAP_{cmd} = f_{WAPcmd} \left(L_{cmd}, N \right)$$

- $W\!AP_{cmd}$ is wastegate area percentage command, in percent.
- L_{cmd} =L is commanded engine load, dimensionless.
- N is engine speed, in rpm.

The commanded engine load lookup table, f_{Lcmd} , is a function of the commanded torque and engine speed

$$L_{cmd} = f_{Lcmd} \left(T_{cmd}, N \right)$$

where:

- L_{cmd} =L is commanded engine load, dimensionless.
- T_{cmd} is commanded torque, in N·m.
- *N* is engine speed, in rpm.

The intake cam phaser angle command lookup table, $f_{I\!C\!P\!C\!M\!D}$, is a function of the engine load and engine speed

$$\varphi_{ICPCMD} = f_{ICPCMD} \left(L_{est}, N \right)$$

- $arphi_{ICPCMD}$ is commanded intake cam phaser angle, in degrees crank advance.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

The exhaust cam phaser angle command lookup table, $f_{\it ECPCMD}$, is a function of the engine load and engine speed

$$\varphi_{ECPCMD} = f_{ECPCMD} \left(L_{est}, N \right)$$

where:

- $arphi_{ECPCMD}$ is commanded exhaust cam phaser angle, in degrees crank retard.
- L_{est} =L is estimated engine load, dimensionless.
- N is engine speed, in rpm.

EGR is typically expressed as a percent of total intake port flow.

$$EGR_{pct} = 100 \frac{\dot{m}_{EGR}}{\dot{m}_{EGR} + \dot{m}_{air}}$$

To calculate the EGR area percent command, the block uses equations and a lookup table.

Equations	$\dot{m}_{EGRstd,cmd} = \dot{m}_{EGR,cmd} \frac{P_{std}}{P_{in,EGR}} \sqrt{\frac{T_{in,EGR}}{T_{std}}}$
	$\dot{m}_{EGRstd,max} = f_{EGRstd,max} \left(\frac{P_{out,EGR}}{P_{in,EGR}} \right)$
	$\dot{m}_{EGR,cmd} = EGR_{pct,cmd}\dot{m}_{intk,est}$

Lookup The EGR area percent command, $EGRap_{cmd}$, lookup table is a function of table the normalized mass flow and pressure ratio $EGRap_{cmd} = f_{EGRap,cmd} \left(\frac{\dot{m}_{EGRstd,cmd}}{\dot{m}_{EGRstd,max}}, \frac{P_{out,EGR}}{P_{in,EGR}} \right)$ where: *EGRap_{cmd}* is commanded EGR area percent, dimensionless. $\dot{m}_{EGRstd,cmd}$ $\dot{m}_{EGRstd,max}$ is the normalized mass flow, dimensionless. $P_{out,EGR}$ $P_{in,EGR}$ is the pressure ratio, dimensionless. EGR Area Percent Command 80 Pressure ratio

The equations and table use these variables.

EGRap, EGR valve area percent and EGR valve area percent command, respectively

 $EGRap_{cmd}$

 $EGR_{pct,cmd}$ EGR percent command

 \dot{m}_{ECPotd} and Commanded standard mass flow

 $\dot{m}_{EGRstd.max}$ Maximum standard mass flow

 $\dot{m}_{EGR.cmd}$ Commanded mass flow

 $\dot{m}_{intk,est}$ Estimated intake port mass flow

 $T_{\it std},\, P_{\it std}$ Standard temperature and pressure

 $T_{in,EGR}$ Temperature at EGR valve inlet

 $P_{out,EGR}$, Pressure at EGR valve inlet and outlet, respectively

 $P_{in,EGR}$

The air-fuel ratio (AFR) impacts three-way-catalyst (TWC) conversion efficiency, torque production, and combustion temperature. The engine controller manages AFR by

commanding injector pulse-width from a desired relative AFR. The relative AFR, λ_{cmd} , is the ratio between the commanded AFR and the stoichiometric AFR of the fuel.

$$\lambda_{cmd} = \frac{AFR_{cmd}}{AFR_{stoich}}$$

$$AFR_{cmd} = \frac{\dot{m}_{air,est}}{\dot{m}_{fuel,cmd}}$$

The commanded lambda, λ_{cmd} , lookup table is a function of estimated engine load and measured engine speed

$$\lambda_{cmd} = f_{\lambda cmd} \left(L_{est}, N \right)$$

- λ_{cmd} is commanded relative AFR, dimensionless.
- L_{est} =L is estimated engine load, dimensionless.
- N is engine speed, in rpm.

The block calculates the estimated fuel mass flow rate using the commanded lambda, λ_{cmd} , stoichiometric AFR, and estimated air mass flow rate.

$$\dot{m}_{fuel,cmd} = \frac{\dot{m}_{air,est}}{AFR_{cmd}} = \frac{\dot{m}_{air,est}}{\lambda_{cmd}AFR_{stoich}}$$

The block assumes that the battery voltage and fuel pressure are at nominal settings where pulse-width correction is not necessary. The commanded fuel injector pulse-width is proportional to the fuel mass per injection. The fuel mass per injection is calculated from the commanded fuel mass flow rate, engine speed, and the number of cylinders.

$$Pw_{inj} = \begin{cases} \frac{\dot{m}_{fuel,cmd}Cps(\frac{60s}{min})\left(\frac{1000mg}{g}\right)\left(\frac{1000g}{kg}\right)}{NS_{inj}N_{cyl}} & \text{when } Trq_{cmd} > 0\\ 0 & \text{when } Trq_{cmd} \leq 0 \end{cases}$$

The SI Controller block accounts for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the startup engine cranking speed, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the engine coolant temperature at startup. The delta lambda exponentially decays to zero based on a time constant that is a function of the engine coolant temperature.

The equations use these variables.

Lambda command, relative AFR

 λ_{cmd}

 L_{est} Estimated engine load, based on normalized cylinder air mass

N Engine speed

 Trq_{cmd} Commanded engine torque AFR_{stoich} Stoichiometric fuel AFR

 AFR_{cmd} Commanded AFR

Estimated engine air mass flow

 $\dot{m}_{air,est}$

Commanded fuel mass flow

 $\dot{m}_{\it fuel,cmd}$

Number of engine cylinders

 N_{cyl}

Fuel injector slope

 S_{inj}

Fuel injector pulse-width

 Pw_{inj}

Relative AFR lookup table

 $f_{\lambda cmd}$

Spark advance is the crank angle before top dead center (BTDC) of the power stroke when the spark is delivered. The spark advance has an impact on engine efficiency, torque, exhaust temperature, knock, and emissions.

The spark advance lookup table is a function of estimated load and engine speed.

$$SA = f_{SA} \left(L_{est}, N \right)$$

- SA is spark advance, in crank advance degrees.
- L_{est} =L is estimated engine load, dimensionless.
- N is engine speed, in rpm.

The equations use these variables.

 L_{est} Estimated engine load, based on normalized cylinder air mass

N Engine speed

Lookup table for spark advance

 f_{SA}

N Spark advance

When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.

If	Idle Speed Controller
$Trq_{cmd,input} < Trq_{idlecmd,enable}$	Enabled
$Trq_{idlecmd,enable} \leq Trq_{cmd,input}$	Not enabled

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:

$$C_{idle}(z) = K_{p,idle} + K_{i,idle} \frac{t_s}{z-1}$$

The idle speed commanded torque must be less than the maximum commanded torque:

 $0 \le Trq_{idlecomd} \le Trq_{idlecmd,max}$

Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ($Trq_{cmd,input} < Trq_{idlecmd,enable}$), the commanded engine torque is given by:

 $Trq_{cmd} = \max(Trq_{cmd,input}, Trq_{idlecmd}).$

The equations use these variables.

Trq_{cmd} Commanded engine torque

Trq_{cmd,input} Input commanded engine torque

 $Trq_{idlecmd,enable}$ Threshold for enabling idle speed controller $Trq_{idlecmd}$ Idle speed controller commanded torque

Trq_{idlecmd,max} Maximum commanded torque

 N_{idle} Base idle speed

 $K_{p,idle}$ Idle speed controller proportional gain $K_{i,idle}$ Idle speed controller integral gain

Estimator

The estimator subsystem determines the estimated air mass flow, torque, EGR mass flow, and exhaust temperature based on sensor feedback and calibration parameters.

Estimated engine air mass flow

 $\dot{m}_{air.est}$

 Trq_{est} Estimated engine torque

 $T_{exh.est}$ Estimated engine exhaust temperature

Estimated low-pressure EGR mass flow

 $\dot{m}_{EGR,est}$

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
"SI Engine Speed-Density Air Mass Flow Model"	Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs.
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dual-independent cam phaser model uses: • Empirical calibration parameters developed from
	engine mapping measurements
	Desktop calibration parameters derived from engine computer-aided design (CAD) data
	In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers:
	Elimination of MAF sensors in dual cam-phased valvetrain applications
	Reasonable accuracy with changes in altitude
	Semiphysical modeling approach
	Bounded behavior
	• Suitable execution time for electronic control unit (ECU) implementation
	Systematic development of a relatively small number of calibration parameters

To determine the estimated air mass flow, the block uses the intake air mass fraction. The EGR mass fraction at the intake port lags the mass fraction near the EGR valve outlet. To model the lag, the block uses a first order system with a time constant.

$$y_{intk,EGR,est} = \frac{\dot{m}_{EGR,est}}{\dot{m}_{intk,est}} \frac{t_s z}{\tau_{EGR} z + t_s - \tau_{EGR}}$$

The remainder of the gas is air.

$$y_{intk,air,est} = 1 - y_{intk,EGR,est}$$

The equations use these variables.

 $y_{intk,EGR,est}$ Estimated intake manifold EGR mass fraction $y_{intk,air,est}$ Estimated intake manifold air mass fraction Estimated low-pressure EGR mass flow $\dot{m}_{EGR,est}$ $\dot{m}_{intk,est}$ Estimated intake port mass flow EGR time constant

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure Model"	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

The controller estimates low-pressure mass flow, EGR valve inlet pressure, and EGR valve outlet pressure using an algorithm developed by F. Liu and J. Pfeiffer. The estimator requires measured EGR valve differential pressure, EGR valve area percent, intake air temperature, and EGR valve inlet temperature.

To estimate the EGR valve commands, the block uses:

• Equations

$$\dot{m}_{air,std} = \dot{m}_{air,est} \frac{P_{std}}{P_{amb}} \sqrt{\frac{IAT}{T_{std}}}$$

$$P_{in,EGR} = P_{out,EGR} + \Delta P_{EGR}$$

$$\dot{m}_{EGR,est} = \dot{m}_{EGR,std} \, \frac{P_{in,EGR}}{P_{std}} \sqrt{\frac{T_{std}}{T_{in,EGR}}}$$

Tables

 The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio

$$\dot{m}_{EGR,std} = f_{EGR,std} \left(EGRap, \frac{P_{out,EGR}}{P_{in,EGR}} \right)$$

- $\dot{m}_{EGR,std}$ is EGR valve standard mass flow, dimensionless.
- ullet EGRap is EGR valve flow area percent, in percent.
- $rac{P_{out,EGR}}{P_{in,EGR}}$ is the pressure ratio, dimensionless.

· The pressure ratio is a function of the standard mass flow

$$\frac{P_{out,EGR}}{P_{amb}} = f_{intksys,pr}(\dot{m}_{air,std})$$

where:

- $\dot{m}_{air,std}$ is standard mass flow, in g/s.
- $rac{P_{out,EGR}}{P_{amb}}$ is pressure ratio, dimensionless.

The equations use these variables.

EGR valve area percent command

IAT Intake air temperature

 $\dot{m}_{air,std}$ Standard air and EGR valve mass flow, respectively

 $\dot{m}_{EGR,std}$

Estimated air and EGR valve mass flow, respectively

 $\dot{m}_{air,est}$, $\dot{m}_{EGR,est}$

 T_{std} , P_{std} Standard temperature and pressure T_{amb} , P_{amb} Ambient temperature and pressure

 ΔP_{EGR} Pressure difference at EGR valve inlet and outlet

 $T_{in,EGR}$, $T_{out,EGR}$ Temperature at EGR valve inlet and outlet, respectively

 $P_{in,EGR}$, $P_{out,EGR}$ Pressure at EGR valve inlet and outlet, respectively

The exhaust temperature lookup table, f_{Texh} , is a function of engine load and engine speed

$$T_{exh} = f_{Texh}(L, N)$$

where:

- T_{exh} is engine exhaust temperature, in K.
- L is normalized cylinder air mass or engine load, dimensionless.
- *N* is engine speed, in rpm.

Ports

Input

TrqCmd — Commanded engine torque

scalar

Commanded engine torque, $Trq_{cmd.input}$, in N·m.

EngSpd — Measured engine speed

scalar

Measured engine speed, *N*, in rpm.

AmbPrs — **Measured absolute ambient pressure**

scalar

Measured ambient pressure, P_{Amb} , in Pa.

Map — Measured intake manifold absolute pressure

scalar

Measured intake manifold absolute pressure MAP, in Pa.

Mat — Measured intake manifold absolute temperature

scalar

Measured intake manifold absolute temperature, MAT, in K.

IntkCamPhase — Intake cam phaser angle

scalar

Intake cam phaser angle, φ_{ICP} , in degCrkAdv, or degrees crank advance.

ExhCamPhase — Exhaust cam phaser angle

scalar

Exhaust cam phaser angle, φ_{ECP} , in degCrkRet, or degrees crank retard.

Iat — Intake air temperature

scalar

Intake air temperature, IAT, in K.

Ect — Engine cooling temperature

scalar

Engine cooling temperature, $T_{coolant}$, in K.

EgrVlvInTemp — **EGR** valve inlet temperature

scalar

EGR valve inlet temperature, $T_{in.EGR}$, in K.

EgrVlvAreaPct — EGR valve area percent

scalar

EGR valve area percent, EGRap, in %.

EgrVlvDeltaPrs — EGR valve delta pressure

scalar

EGR valve delta pressure, ΔP_{EGR} , in Pa.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
TrqCmd	Engine torque	Trq_{cmd}	N·m
LdCmd	Commanded load	L_{cmd}	N/A
ThrPosCmd	Throttle area percent command	TAP_{cmd}	%
WgAreaPctCmd	Wastegate area percent command	WAP_{cmd}	%
InjPw	Fuel injector pulse-width	Pw_{inj}	ms
SpkAdv	Spark advance	SA	degBTDC
IntkCamPhaseCmd	Intake cam phaser angle command	φ_{ICPCMD}	degCrkAdv
ExhCamPhaseCmd	Exhaust cam phaser angle command	$arphi_{ECPCMD}$	degCrkRet

Signal	Description	Variable	Units
EgrVlvAreaPctCmd	Exhaust cam phaser angle command	$EGRap_{cmd}$	%
FuelMassFlwCmd	EGR valve area percent command	$\dot{m}_{fuel,cmd}$	kg/s
AfrCmd	Commanded air-fuel ratio	AFR_{cmd}	N/A
EstEngTrq	Estimated engine torque	Trq_{est}	N·m
EstNrmlzdAirCharg	Estimated normalized cylinder air mass	N/A	N/A
EstIntkPortFlw	Estimated air mass flow rate	$\dot{m}_{air,est}$	kg/s
EstExhManGasTemp	Estimated exhaust manifold gas temperature	$T_{exh,est}$	K

$\label{eq:thm:command} \textbf{ThrPosPctCmd} - \textbf{Throttle area percent command}$

scalar

Throttle area percent command, TAP_{cmd} .

$\label{eq:wgAreaPctCmd} \textbf{WgAreaPctCmd} - \textbf{Wastegate} \ \textbf{area} \ \textbf{percent} \ \textbf{command}$

scalar

Wastegate area percent command, $W\!AP_{cmd}$.

InjPw — Fuel injector pulse-width

scalar

Fuel injector pulse-width, Pw_{inj} , in ms.

SpkAdv — Spark advance

scalar

Spark advance, SA, in degrees crank angle before top dead center (degBTDC).

${\bf IntkCamPhaseCmd-Intake\ cam\ phaser\ angle\ command}$

scalar

Intake cam phaser angle command, φ_{ICPCMD} .

ExhCamPhaseCmd — **Exhaust cam phaser angle command** scalar

Exhaust cam phaser angle command, φ_{ECPCMD} .

EgrVlvAreaPctCmd — **EGR valve area percent command** scalar

EGR valve area percent command, $EGRap_{cmd}$, in %.

Parameters

Configuration

Air mass flow estimation model — Select air mass flow estimation model Dual Variable Cam Phasing (default) | Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
	Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs.
	ongines with the condition and the condition

Air Mass Flow Model	Description
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dual-independent cam phaser model uses:
	Empirical calibration parameters developed from engine mapping measurements
	Desktop calibration parameters derived from engine computer-aided design (CAD) data
	In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers:
	Elimination of MAF sensors in dual cam-phased valvetrain applications
	Reasonable accuracy with changes in altitude
	Semiphysical modeling approach
	Bounded behavior
	• Suitable execution time for electronic control unit (ECU) implementation
	Systematic development of a relatively small number of calibration parameters

Dependencies

The table summarizes the parameter dependencies.

Air Mass Flow Estimation Model	Enables Parameters on Estimation > Air Tab
	Cylinder volume at intake valve close table, f_vivc
Cam Phasing	Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt
	Cylinder trapped mass correction factor, f_tm_corr
	Normalized density breakpoints, f_tm_corr_nd_bpt
	Engine speed breakpoints, f_tm_corr_n_bpt
	Air mass flow, f_mdot_air
	Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt
	Trapped mass flow breakpoints, f_mdot_trpd_bpt
	Air mass flow correction factor, f_mdot_air_corr
	Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt
	Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt
	Speed-density volumetric efficiency, f_nv
Density	Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt
	Speed-density engine speed breakpoints, f_nv_n_bpt

Torque estimation model — Select torque estimation model

Torque Structure (default) | Simple Torque Lookup

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure Model"	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

Dependencies

The table summarizes the parameter dependencies.

Torque Estimation Model	Enables Parameters on Estimation > Torque Tab
Torque Structure	Inner torque table, f_tq_inr
	Friction torque table, f_tq_fric
	Engine temperature modifier on friction torque, f_fric_temp_mod
	Engine temperature modifier breakpoints, f_fric_temp_bpt
	Pumping torque table, f_tq_pump
	Optimal spark table, f_sa_opt
	Inner torque load breakpoints, f_tq_inr_l_bpt
	Inner torque speed breakpoints, f_tq_inr_n_bpt
	Spark efficiency table, f_m_sa
	Spark retard from optimal, f_del_sa_bpt
	Lambda efficiency, f_m_lam
	Lambda breakpoints, f_m_lam_bpt

Torque Estimation Model	Enables Parameters on Estimation > Torque Tab
Simple Torque Lookup	Torque table, f_tq_nl Torque table load breakpoints, f_tq_nl_l_bpt
	Torque table speed breakpoints, f_tq_nl_n_bpt

Controls

Air

Engine commanded load table, f_{lcmd} — Lookup table array

The commanded engine load lookup table, f_{Lcmd} , is a function of the commanded torque and engine speed

$$L_{cmd} = f_{Lcmd} \left(T_{cmd}, N \right)$$

- L_{cmd} =L is commanded engine load, dimensionless.
- T_{cmd} is commanded torque, in N·m.
- *N* is engine speed, in rpm.

Torque command breakpoints, f_lcmd_tq_bpt — Breakpoints array

Torque command breakpoints, in N·m.

Speed breakpoints, f_lcmd_n_bpt — Breakpoints
array

Speed breakpoints, in rpm.

Throttle area percent, f_tap — Lookup table, % array

The throttle area percent command lookup table, f_{TAPcmd} , is a function of commanded load and engine speed

$$TAP_{cmd} = f_{TAPcmd} (L_{cmd}, N)$$

where:

- TAP_{cmd} is throttle area percentage command, in percent.
- L_{cmd} =L is commanded engine load, dimensionless.
- N is engine speed, in rpm.

Throttle area percent load breakpoints, f_tap_ld_bpt — Breakpoints array

Throttle area percent load breakpoints, dimensionless.

Throttle area percent speed breakpoints, f_tap_n_bpt — Breakpoints array

Throttle area percent speed breakpoints, in rpm.

Throttle area percent to position percent table, f_tpp — Lookup table array

The throttle position percent command lookup table, f_{TPPcmd} , is a function of the throttle area percentage command

$$TPP_{cmd} = f_{TPPcmd} (TAP_{cmd})$$

where:

- TPP_{cmd} is throttle position percentage command, in percent.
- TAP_{cmd} is throttle area percentage command, in percent.

Throttle area percent to position percent area breakpoints,
f_tpp_tap_bpt — Breakpoints
array

Throttle area percent to position percent area breakpoints, dimensionless.

Wastegate area percent, f_wap — Lookup table, %
array

The wastegate area percent command lookup table, f_{WAPcmd} , is a function of the commanded engine load and engine speed

$$WAP_{cmd} = f_{WAPcmd} (L_{cmd}, N)$$

where:

- $W\!AP_{cmd}$ is wastegate area percentage command, in percent.
- L_{cmd} =L is commanded engine load, dimensionless.
- *N* is engine speed, in rpm.

Load breakpoints, f_wap_ld_bpt — Breakpoints
array

Load breakpoints, dimensionless.

Speed breakpoints, f_wap_n_bpt — Breakpoints, rpm
array

Speed breakpoints, in rpm.

Intake cam phaser angle, f_icp — Lookup table
array

The intake cam phaser angle command lookup table, $f_{I\!CPC\!M\!D}$, is a function of the engine load and engine speed

$$\varphi_{ICPCMD} = f_{ICPCMD}(L_{est}, N)$$

where:

- $arphi_{ICPCMD}$ is commanded intake cam phaser angle, in degrees crank advance.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

Exhaust cam phaser angle, f_{ecp} — Lookup table array

The exhaust cam phaser angle command lookup table, $f_{\it ECPCMD}$, is a function of the engine load and engine speed

$$\varphi_{ECPCMD} = f_{ECPCMD} \left(L_{est}, N \right)$$

- $arphi_{ECPCMD}$ is commanded exhaust cam phaser angle, in degrees crank retard.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

 $\label{load_bpt} \textbf{Load_breakpoints, f_cp_ld_bpt-Breakpoints} \\ \textbf{array}$

Load breakpoints, dimensionless.

Speed breakpoints, in rpm.

$$\begin{array}{ll} \textbf{Commanded EGR percent, } \textbf{f_egrpct_cmd} - \textbf{Lookup table} \\ \textbf{array} \end{array}$$

The EGR percent command, $EGR_{pct,cmd}$, lookup table is a function of estimated engine load and engine speed

$$EGR_{pct,cmd} = f_{EGRpct,cmd}(L_{est}, N)$$

- $EGR_{pct,cmd}$ is commanded EGR percent, dimensionless.
- L_{est} =L is estimated engine load, dimensionless.
- N is engine speed, in rpm.

Load breakpoints, f_egrpct_ld_bpt — Breakpoints
vector

Engine load breakpoints, *L*, dimensionless.

Speed breakpoints, f_egrpct_n_bpt - Breakpoints
vector

Engine speed breakpoints, N, in rpm.

EGR valve area percent, $f_{egr_areapct_cmd} - Lookup table$ array

The EGR area percent command, $EGRap_{cmd}$, lookup table is a function of the normalized mass flow and pressure ratio

$$EGRap_{cmd} = f_{EGRap,cmd} \left(\frac{\dot{m}_{EGRstd,cmd}}{\dot{m}_{EGRstd,max}}, \frac{P_{out,EGR}}{P_{in,EGR}} \right)$$

- $EGRap_{cmd}$ is commanded EGR area percent, dimensionless.
- $\frac{\dot{m}_{EGRstd,cmd}}{\dot{m}_{EGRstd,max}}$ is the normalized mass flow, dimensionless.
- $\frac{P_{out,EGR}}{P_{in,EGR}}$ is the pressure ratio, dimensionless.

Open EGR valve standard flow, f_egr_max_stdflow — Breakpoints
vector

Maximum standard EGR valve mass flow breakpoints, $\dot{m}_{EGRstd,max}$, in N·m.

Normalized EGR valve standard flow breakpoints, f_egr_areapct_nrmlzdflow_bpt — Breakpoints vector

$$\dot{m}_{EGRstd,cmd}$$

Normalized mass flow breakpoints, $\dot{m}_{EGRstd,max}$, dimensionless.

EGR valve pressure ratio breakpoints, f_egr_areapct_pr_bpt — Breakpoints

vector

$$\frac{P_{out,EGR}}{P_{out}}$$

Pressure ratio breakpoints, $P_{in,EGR}$, dimensionless.

Fuel

Injector slope, Sinj — Slope

scalar

Fuel injector slope, S_{inj} , in mg/ms.

Stoichiometric air-fuel ratio, afr_stoich — Ratio scalar

Stoichiometric air-fuel ratio, AFR_{stoich}.

Relative air-fuel ratio lambda, f_lamcmd — Air-fuel-ratio (AFR) lookup table

array

The commanded lambda, λ_{emd} , lookup table is a function of estimated engine load and measured engine speed

$$\lambda_{cmd} = f_{\lambda cmd} (L_{est}, N)$$

where:

- λ_{cmd} is commanded relative AFR, dimensionless.
- L_{est} =L is estimated engine load, dimensionless.
- N is engine speed, in rpm.

Load breakpoints, f_lamcmd_ld_bpt — Breakpoints vector

Load breakpoints, dimensionless.

Speed breakpoints, f_lamcmd_n_bpt — Breakpoints
vector

Speed breakpoints, in rpm.

Engine cranking speed, CrankSpeed — Engine threshold to enrich optimal lambda with delta lambda

scalar

Engine cranking speed threshold, *CrankSpeed*, to enrich the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda, in rpm.

The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the **Engine cranking speed** parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the **Engine startup lambda enrichment delta vs coolant temperature** parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the **Engine startup lambda enrichment delta time constant vs coolant temperature** parameter.

Engine startup lambda enrichment delta vs coolant temperature, f_startup_lambda_delta — Lookup table

vector

Engine startup lambda enrichment delta as a function of coolant temperature, dimensionless.

The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the **Engine cranking speed** parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the **Engine startup lambda enrichment delta vs coolant temperature** parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the **Engine startup lambda enrichment delta time constant vs coolant temperature** parameter.

Engine startup lambda enrichment delta time constant vs coolant
temperature, f_startup_lambda_delta_timecnst — Lambda time constant
vector

Engine startup lambda enrichment delta time constant versus coolant temperature, in s.

The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the **Engine cranking speed** parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the **Engine startup lambda enrichment delta vs coolant temperature** parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the **Engine startup lambda enrichment delta time constant vs coolant temperature** parameter.

Engine startup coolant temperature breakpoints, f_startup_ect_bpt — Breakpoints

vector

Engine startup coolant temperature breakpoints, in C.

The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the **Engine cranking speed** parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the **Engine startup lambda enrichment delta vs coolant temperature** parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the **Engine startup lambda enrichment delta time constant vs coolant temperature** parameter.

Spark

The spark advance lookup table is a function of estimated load and engine speed.

$$SA = f_{SA} \left(L_{est}, N \right)$$

where:

- SA is spark advance, in crank advance degrees.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

Load breakpoints, f_sa_ld_bpt — Breakpoints
array

Load breakpoints, dimensionless.

Speed breakpoints, f_sa_n_bpt — Breakpoints
array

Speed breakpoints, in rpm.

Idle Speed

Target idle speed, N_idle — Speed
scalar

Target idle speed, N_{idle} , in rpm.

Enable torque command limit, Trq_idlecmd_enable — Torque
scalar

Torque to enable the idle speed controller, $Trq_{idlecmd,enable}$, in N·m.

Maximum torque command, Trq_idlecmd_max — Torque
scalar

Maximum idle controller commanded torque, $Trq_{idlecmd.max}$, in N·m.

Proportional gain, Kp_idle — PI Controller
scalar

Proportional gain for idle speed control, $K_{p,idle}$, in N·m/rpm.

Integral gain, Ki_idle — PI Controller scalar

Integral gain for idle speed control, $K_{i,idle}$, in N·m/(rpm·s).

Estimation

Air

Number of cylinders, NCyl — Engine cylinders scalar

Number of engine cylinders, N_{cyl} .

Crank revolutions per power stroke, Cps — Revolutions per stroke scalar

Crankshaft revolutions per power stroke, Cps, in rev/stroke.

Total displaced volume, Vd — Volume scalar

Displaced volume, V_d , in m³.

Ideal gas constant air, Rair — Constant scalar

Ideal gas constant, R_{air} , in J/(kg·K).

Air standard pressure, Pstd — Pressure scalar

Standard air pressure, P_{std} , in Pa.

Air standard temperature, Tstd — Temperature scalar

Standard air temperature, T_{std} , in K.

Speed-density volumetric efficiency, $f_nv - Lookup$ table array

The engine volumetric efficiency lookup table, f_{η_v} , is a function of intake manifold absolute pressure and engine speed

$$\eta_v = f_{\eta_v}(MAP, N)$$

where:

- η_v is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Simple Speed-Density.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt — Breakpoints

array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Simple Speed-Density.

Speed-density engine speed breakpoints, f_nv_n_bpt — Breakpoints array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Simple Speed-Density.

Cylinder volume at intake valve close table, $f_{vivc} - 2-D$ lookup table array

The cylinder volume at intake valve close table (IVC), f_{Vivc} is a function of the intake cam phaser angle

$$V_{IVC} = f_{Vivc}(\varphi_{ICP})$$

where:

- V_{IVC} is cylinder volume at IVC, in L.
- ϕ_{ICP} is intake cam phaser angle, in crank advance degrees.

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Engine speed breakpoints, f_tm_corr_n_bpt — Breakpoints
array

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, $f_vivc_icp_bpt$ —Breakpoints

array

Cylinder volume at intake valve close table breakpoints.

Dependencies

To enable this parameter, for the $\operatorname{\bf Air}$ mass flow estimation model parameter, select $\operatorname{\bf Dual}$ Variable $\operatorname{\bf Cam}$ Phasing.

Cylinder trapped mass correction factor, $f_tm_corr - Lookup$ table array

The trapped mass correction factor table, f_{TMcorr} , is a function of the normalized density and engine speed

$$TM_{corr} = f_{TMcorr}(\rho_{norm}, N)$$

where:

- ullet TM_{corr} , is trapped mass correction multiplier, dimensionless.
- ho_{norm} is normalized density, dimensionless.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Normalized density breakpoints, f_tm_corr_nd_bpt — Breakpoints array

Normalized density breakpoints.

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow

$$\dot{m}_{intkideal} = f_{intkideal}(\varphi_{ECP}, TM_{flow})$$

where:

- $\dot{m}_{intkideal}$ is engine intake port mass flow at arbitrary cam phaser angles, in g/s.
- φ_{ECP} is exhaust cam phaser angle, in degrees crank retard.
- TM_{flow} is flow rate equivalent to corrected trapped mass at the current engine speed, in g/s.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt — Breakpoints array

Exhaust cam phaser breakpoints for air mass flow lookup table.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Trapped mass flow breakpoints, f_mdot_trpd_bpt — Breakpoints
array

Trapped mass flow breakpoints for air mass flow lookup table.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Air mass flow correction factor, f_mdot_air_corr — Lookup table
array

The intake air mass flow correction lookup table, $f_{aircorr}$, is a function of ideal load and engine speed

$$\dot{m}_{air} = \dot{m}_{intkideal} f_{aircorr}(L_{ideal}, N)$$

where:

- L_{ideal} is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.
- \dot{m}_{air} is engine intake air mass flow final correction at steady-state cam phaser angles, in g/s.
- $\dot{m}_{intkideal}$ is engine intake port mass flow at arbitrary cam phaser angles, in g/s.

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Engine load breakpoints for air mass flow final correction.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

```
Engine speed breakpoints for air mass flow correction,
f_mdot_air_n_bpt — Breakpoints
vector
```

Engine speed breakpoints for air mass flow final correction.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

EGR flow time constant, tau_egr — Constant
scalar

EGR flow time constant, τ_{EGR} , in s.

Intake system pressure ratio table, f_intksys_stdflow_pr — Table
array

The pressure ratio is a function of the standard mass flow

$$\frac{P_{out,EGR}}{P_{amb}} = f_{intksys,pr}(\dot{m}_{air,std})$$

where:

- $\dot{m}_{air,std}$ is standard mass flow, in g/s.
- $rac{P_{out,EGR}}{P_{amb}}$ is pressure ratio, dimensionless.

Standard mass flow rate breakpoints for intake pressure ratio, f_intksys_stdflow_bpt — ${\bf Breakpoints}$

vector

Standard mass flow, $\dot{m}_{air,std}$, in g/s.

EGR valve standard mass flow rate, f_egr_stdflow — Table ${\tt array}$

The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio

$$\dot{m}_{EGR,std} = f_{EGR,std} \left(EGRap, \frac{P_{out,EGR}}{P_{in,EGR}} \right)$$

where:

- $\dot{m}_{EGR,std}$ is EGR valve standard mass flow, dimensionless.
- *EGRap* is EGR valve flow area percent, in percent.
- $\frac{P_{out,EGR}}{P_{in,EGR}}$ is the pressure ratio, dimensionless.

EGR valve standard flow pressure ratio breakpoints, f_egr_stdflow_pr_bpt — Breakpoints

vector

$$\frac{P_{out,EGR}}{P_{in,EGR}}$$
 EGR valve standard flow pressure ratio, $\frac{P_{out,EGR}}{P_{in,EGR}}$, dimensionless.

EGR valve standard flow area percent breakpoints, f_egr_stdflow_egrap_bpt — Breakpoints vector

EGR valve flow area percent, EGRap, in percent.

Torque

Torque table, f_tq_nl — Lookup table [L x N] array

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, $T_{brake} = f_{TnL}(L, N)$, where:

- T_{brake} is engine brake torque after accounting for spark advance, AFR, and friction effects, in N·m.
- L is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.

The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (L-by-N) contains the non-firing data in the first table row (1-by-N). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

To enable this parameter, for the **Torque model** parameter, select **Simple Torque Lookup**.

Engine load breakpoints, *L*, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque Lookup**.

Torque table speed breakpoints,
$$f_tq_nl_n_bpt - Breakpoints$$
 [1 \times N] vector

Engine speed breakpoints, N, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque Lookup**.

The inner torque lookup table, f_{Tqinr} , is a function of engine speed and engine load,

$$Tq_{inr} = f_{Tqinr}(L, N)$$
, where:

- Tq_{inr} is inner torque based on gross indicated mean effective pressure, in N·m.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Friction torque table, $f_tq_fric - Lookup$ table array

The friction torque lookup table, f_{Tfric} , is a function of engine speed and engine load,

$$T_{fric} = f_{Tfric}(L, N)$$
, where:

- T_{fric} is friction torque offset to inner torque, in N·m.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Engine temperature modifier on friction torque, f_fric_temp_mod — Lookup table

vector

Engine temperature modifier on friction torque, $f_{fric.temp}$, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Engine temperature modifier breakpoints, f_fric_temp_bpt — Breakpoints

vector

Engine temperature modifier breakpoints, in K.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Pumping torque table, f_tq_pump — Lookup table array

The pumping torque lookup table, f_{Tpump} , is a function of engine speed and injected fuel mass, $T_{pump} = f_{Tpump}(L, N)$, where:

- T_{pump} is pumping torque, in N·m.
- ullet L is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Optimal spark table, f_sa_opt — Lookup table array

The optimal spark lookup table, f_{SAopt} , is a function of engine speed and engine load,

$$SA_{opt} = f_{SAopt}(L, N)$$
, where:

- SA_{opt} is optimal spark advance timing for maximum inner torque at stoichiometric airfuel ratio (AFR), in deg.
- ullet L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Inner torque load breakpoints, f_tq_inr_l_bpt — Breakpoints array

Inner torque load breakpoints, dimensionless.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Inner torque speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Spark efficiency table,
$$f_m_sa - Lookup table$$
 array

The spark efficiency lookup table, f_{Msa} , is a function of the spark retard from optimal

$$\begin{split} M_{sa} &= f_{Msa}(\Delta SA) \\ \Delta SA &= SA_{opt} - SA \end{split}$$

where:

- ullet M_{sa} is the spark retard efficiency multiplier, dimensionless.
- $^{\bullet}$ ΔSA is the spark retard timing distance from optimal spark advance, in deg.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Spark retard from optimal inner torque timing breakpoints, in deg.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Lambda efficiency, f_m_lam — Lookup table array

The lambda efficiency lookup table, $f_{M\lambda}$, is a function of lambda, $M_{\lambda}=f_{M\lambda}(\lambda)$, where:

- M_{λ} is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- ullet λ is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Lambda effect on inner torque lambda breakpoints, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Exhaust

Exhaust temperature table,
$$f_t_{\rm exh} - Lookup$$
 table array

The exhaust temperature lookup table, f_{Texh} , is a function of engine load and engine speed

$$T_{exh} = f_{Texh}(L, N)$$

where:

- T_{exh} is engine exhaust temperature, in K.
- L is normalized cylinder air mass or engine load, dimensionless.
- *N* is engine speed, in rpm.

Load breakpoints, f_t_exh_l_bpt — Breakpoints
array

Engine load breakpoints used for exhaust temperature lookup table.

Speed breakpoints, f_t_exh_n_bpt — Breakpoints array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

References

- [1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems BOSCH ME7. SAE Technical Paper 980801, 1998.
- [2] Heywood, John B. *Internal Combustion Engine Fundamentals*. New York: McGraw-Hill, 1988.
- [3] Leone, T. Christenson, E., Stein, R., Comparison of Variable Camshaft Timing Strategies at Part Load. SAE Technical Paper 960584, 1996, doi:10.4271/960584.

[4] Liu, F. and Pfeiffer, J., Estimation Algorithms for Low Pressure Cooled EGR in Spark-Ignition Engines. SAE Int. J. Engines 8(4):2015, doi:10.4271/2015-01-1620.

See Also

Mapped SI Engine | SI Core Engine

Topics

"Engine Calibration Maps"

Introduced in R2017a

SI Core Engine

Spark-ignition engine from intake to exhaust port

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Core Engine

Description

The SI Core Engine block implements a spark-ignition (SI) engine from intake to exhaust port. You can use the block in larger vehicle models, hardware-in-the-loop (HIL) engine control design, or vehicle-level fuel economy and performance simulations.

The SI Core Engine block calculates:

- Brake torque
- · Fuel flow
- · Port gas mass flow, including exhaust gas recirculation (EGR)
- Air-fuel ratio (AFR)
- Exhaust temperature and exhaust mass flow rate
- Engine-out (EO) exhaust emissions
 - Hydrocarbon (HC)
 - Carbon monoxide (CO)
 - Nitric oxide and nitrogen dioxide (NOx)
 - Carbon dioxide (CO₂)
 - Particulate matter (PM)

Air Mass Flow

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
"SI Engine Speed-Density Air Mass Flow Model"	Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs.
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dual- independent cam phaser model uses: • Empirical calibration parameters developed from engine mapping measurements • Desktop calibration parameters derived from engine computer-aided design (CAD) data In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers: • Elimination of MAF sensors in dual cam-phased valvetrain applications • Reasonable accuracy with changes in altitude • Semiphysical modeling approach
	 Bounded behavior Suitable execution time for electronic control unit (ECU) implementation
	Systematic development of a relatively small number of calibration parameters

Brake Torque

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure Model"	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

Fuel Flow

To calculate the fuel flow, the SI Core Engine block uses fuel injector characteristics and fuel injector pulse-width.

$$\dot{m}_{fuel} = \frac{NS_{inj}Pw_{inj}N_{cyl}}{Cps\left(\frac{60s}{\min}\right)\!\!\left(\frac{1000mg}{g}\right)}$$

The equation uses these variables.

Engine fuel mass flow, g/s

 \dot{m}_{fuel}

 ω Engine rotational speed, rad/s

Crankshaft revolutions per power stroke, rev/stroke

Cps

Fuel injector slope, mg/ms

 S_{inj}

Fuel injector pulse-width, ms

 Pw_{inj}

Number of engine cylinders

 N_{cyl}

N Engine speed, rpm

Air-Fuel Ratio

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.

$$AFR = \frac{\dot{m}_{air}}{\dot{m}_{fuel}}$$

The CI Core Engine uses this equation to calculate the relative AFR.

$$\lambda = \frac{AFR}{AFR_s}$$

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.

$$EGR_{pct} = 100 \frac{\dot{\mathbf{m}}_{intk,b}}{\dot{\mathbf{m}}_{intk}} = 100 y_{intk,b}$$

The equations use these variables.

AFR Air-fuel ratio

AFR_s Stoichiometric air-fuel ratio

Engine air mass flow

 \dot{m}_{intk}

Fuel mass flow

 \dot{m}_{fuel}

 λ Relative AFR

 $y_{intk,b}$ Intake burned mass fraction

EGR_{pct} EGR percent

Recirculated burned gas mass flow rate

 $\dot{m}_{intk,b}$

Exhaust

The block calculates the:

- Exhaust gas temperature
- Exhaust gas-specific enthalpy
- Exhaust gas mass flow rate

- Engine-out (EO) exhaust emissions:
 - Hydrocarbon (HC)
 - Carbon monoxide (CO)
 - Nitric oxide and nitrogen dioxide (NOx)
 - Carbon dioxide (CO₂)
 - Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.

$$h_{exh} = Cp_{exh}T_{exh}$$

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.

$$\dot{m}_{exh} = \dot{m}_{intake} + \dot{m}_{fuel}$$

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.

$$\begin{aligned} y_{exh,i} &= f_{i_frac}(T_{brake}, N) \\ \dot{m}_{exh,i} &= \dot{m}_{exh} y_{exh,i} \end{aligned}$$

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.

$$y_{exh,air} = \max \left[y_{in,air} - \frac{\dot{m}_{fuel} + y_{in,fuel} \dot{m}_{intake}}{\dot{m}_{fuel} + \dot{m}_{intake}} AFR_s \right]$$

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.

$$y_{exh,b} = \max \left[(1 - y_{exh,air} - y_{exh,HC}), 0 \right]$$

The equations use these variables.

Engine exhaust temperature

 T_{exh}

Exhaust manifold inlet-specific enthalpy

 h_{exh}

Exhaust gas specific heat

 Cp_{exh}

Intake port air mass flow rate

 \dot{m}_{intk}

Fuel mass flow rate

 \dot{m}_{fuel}

Exhaust mass flow rate

 \dot{m}_{exh}

Intake fuel mass fraction

 $y_{in,fuel}$

 $y_{exh,i}$ Exhaust mass fraction for $i = CO_2$, CO, HC, NOx, air, burned gas, and PM

Exhaust mass flow rate for $i = CO_2$, CO, HC, NOx, air, burned gas, and PM

 $\dot{m}_{exh,i}$

 T_{brake} Engine brake torque

N Engine speed

 $y_{exh.air}$ Exhaust air mass fraction

 $y_{exh,b}$ Exhaust air burned mass fraction

Ports

Input

InjPw — Fuel injector pulse-width

scalar

Fuel injector pulse-width, Pw_{inj} , in ms.

SpkAdv — Spark advance

scalar

Spark advance, SA, in degrees crank angle before top dead center (degBTDC).

To create this port, for the **Torque model** parameter, select **Torque Structure**.

ICP — Intake cam phase angle command

scalar

Intake cam phase angle command, φ_{ICPCMD} , in degCrkAdv, or degrees crank advance.

Dependencies

To create this port, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

ECP — Exhaust cam phase angle command

scalar

Exhaust cam phase angle command, φ_{ECPCMD} , in degCrkRet, or degrees crank retard.

Dependencies

To create this port, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

AmbPrs — Ambient pressure

scalar

Ambient pressure, P_{Amb} , in Pa.

Dependencies

To create this port, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

EngSpd — Engine speed

scalar

Engine speed, N, in rpm.

Ect — Engine cooling temperature

scalar

Engine cooling temperature, $T_{coolant}$, in K.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intk — Intake port pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the upstream:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Intake port mass fractions, dimensionless. EGR mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Exh — Exhaust port pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the exhaust:

- Prs Pressure, in Pa
- Temp Temperature, in K

- Enth Specific enthalpy, in J/kg
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
IntkGasMass Flw	Engine intake air mass flow.	\dot{m}_{air}	kg/s
IntkAirMass Flw	Engine intake port mass flow.	\dot{m}_{intk}	kg/s
NrmlzdAirCh rg	Engine load (that is, normalized cylinder air mass) corrected for final steady-state cam phase angles	L	N/A

Signal	Description	Variable	Units
Afr	Air-fuel ratio at engine exhaust port	AFR	N/A
FuelMassFlw	Fuel flow into engine	\dot{m}_{fuel}	kg/s
ExhManGasTe mp	Exhaust gas temperature at exhaust manifold inlet	T_{exh}	K
EngTrq	Engine brake torque	T_{brake}	N·m
EngSpd	Engine speed	N	rpm
IntkCamPhas e	Intake cam phaser angle	$arphi_{ICP}$ i	degrees crank advance
ExhCamPhase	Exhaust cam phaser angle	$arphi_{ECP}$	degrees crank retard
CrkAng	Engine crankshaft absolute angle	$\int\limits_{0}^{(360)Cps}EngSpd\frac{180}{30}d\theta$ where Cps is crankshaft revolutions per power stroke	degrees crank angle
EgrPct	EGR percent	EGR_{pct}	N/A
EoAir	EO air mass flow rate	\dot{m}_{exh}	kg/s
EoBrndGas	EO burned gas mass flow rate	$y_{exh,b}$	kg/s
EoHC	EO hydrocarbon emission mass flow rate	y _{exh,HC}	kg/s
EoC0	EO carbon monoxide emission mass flow rate	Yexh,CO	kg/s
EoN0x	EO nitric oxide and nitrogen dioxide emissions mass flow rate	Y _{exh,NOx}	kg/s

Signal	Description	Variable	Units
EoC02	EO carbon dioxide emission mass flow rate	𝔰exh,CO2	kg/s
EoPm	EO particulate matter emission mass flow rate	Y exh,PM	kg/s

EngTrq — Engine brake torque

scalar

Engine brake torque, T_{brake} , in N·m.

Intk — Intake port mass flow rate, heat flow rate, temperature, mass fraction two-way connector port

Bus containing:

- MassFlwRate Intake port mass flow rate, in kg/s
- HeatFlwRate Intake port heat flow rate, in J/s
- Temp Intake port temperature, in K
- MassFrac Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- $\bullet \quad {\tt NO2MassFrac} {\tt Nitrogen\ dioxide}$
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Exh — Exhaust port mass flow rate, heat flow rate, temperature, mass fraction two-way connector port

Bus containing:

- MassFlwRate Exhaust port mass flow rate, in kg/s
- HeatFlwRate Exhaust heat flow rate, in J/s
- Temp Exhaust temperature, in K
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Air mass flow model — Select air mass flow model

Dual-Independent Variable Cam Phasing (default) | Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
"SI Engine Speed-Density Air Mass Flow Model"	Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs.
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dual-independent cam phaser model uses: • Empirical calibration parameters developed from
	engine mapping measurements
	Desktop calibration parameters derived from engine computer-aided design (CAD) data
	In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers:
	Elimination of MAF sensors in dual cam-phased valvetrain applications
	Reasonable accuracy with changes in altitude
	Semiphysical modeling approach
	Bounded behavior
	• Suitable execution time for electronic control unit (ECU) implementation
	Systematic development of a relatively small number of calibration parameters

The table summarizes the parameter dependencies.

Air Mass Flow Model	Enables Parameters	
Dual-	Cylinder volume at intake valve close table, f_vivc	
Independent Variable Cam	Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt	
Phasing	Cylinder trapped mass correction factor, f_tm_corr	
	Normalized density breakpoints, f_tm_corr_nd_bpt	
	Engine speed breakpoints, f_tm_corr_n_bpt	
	Air mass flow, f_mdot_air	
	Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt	
	Trapped mass flow breakpoints, f_mdot_trpd_bpt	
	Air mass flow correction factor, f_mdot_air_corr	
	Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt	
	Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt	
Simple Speed	Speed-density volumetric efficiency, f_nv	
Density	Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt	
	Speed-density engine speed breakpoints, f_nv_n_bpt	

Torque model — Select torque model

Torque Structure (default) | Simple Torque Lookup

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure Model"	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

The table summarizes the parameter dependencies.

Torque Model	Enables Parameters	
Torque Structure	Inner torque table, f_tq_inr	
	Friction torque table, f_tq_fric	
	Engine temperature modifier on friction torque, f_fric_temp_mod	
	Engine temperature modifier breakpoints, f_fric_temp_bpt	
	Pumping torque table, f_tq_pump	
	Optimal spark table, f_sa_opt	
	Inner torque load breakpoints, f_tq_inr_l_bpt	
	Inner torque speed breakpoints, f_tq_inr_n_bpt	
	Spark efficiency table, f_m_sa	
	Spark retard from optimal, f_del_sa_bpt	
	Lambda efficiency, f_m_lam	
	Lambda breakpoints, f_m_lam_bpt	

Torque Model	Enables Parameters	
Simple Torque Lookup	Torque table, f_tq_nl Torque table load breakpoints, f_tq_nl_l_bpt	
	Torque table speed breakpoints, f_tq_nl_n_bpt	

Air

Number of cylinders, NCyl — Engine cylinders scalar

Number of engine cylinders, N_{cyl} .

Crank revolutions per power stroke, Cps — Revolutions per stroke scalar

Crankshaft revolutions per power stroke, *Cps* , in rev/stroke.

Total displaced volume, Vd — Volume scalar

Displaced volume, V_d , in m³.

Ideal gas constant air, Rair — Constant scalar

Ideal gas constant, R_{air} , in J/(kg·K).

Air standard pressure, Pstd — Pressure scalar

Standard air pressure, P_{std} , in Pa.

Air standard temperature, Tstd — Temperature scalar

Standard air temperature, T_{std} , in K.

Speed-density volumetric efficiency, $f_nv - Lookup$ table array

The engine volumetric efficiency lookup table, f_{η_v} , is a function of intake manifold absolute pressure and engine speed

$$\eta_v = f_{\eta_v}(MAP, N)$$

where:

- η_v is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select **Simple** Speed-Density.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt — Breakpoints

array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select **Simple** Speed-Density.

Speed-density engine speed breakpoints, f_nv_n_bpt — Breakpoints array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select **Simple** Speed-Density.

Cylinder volume at intake valve close table, $f_{vivc} - 2-D$ lookup table array

The cylinder volume at intake valve close table (IVC), f_{Vive} is a function of the intake cam phaser angle

$$V_{IVC} = f_{Vivc}(\varphi_{ICP})$$

where:

- V_{IVC} is cylinder volume at IVC, in L.
- φ_{ICP} is intake cam phaser angle, in crank advance degrees.

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt — Breakpoints

array

Cylinder volume intake cam phase breakpoints, in L.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Cylinder trapped mass correction factor, $f_tm_corr - Lookup$ table array

The trapped mass correction factor table, f_{TMcorr} , is a function of the normalized density and engine speed

$$TM_{corr} = f_{TMcorr}(\rho_{norm}, N)$$

where:

- TM_{corr} , is trapped mass correction multiplier, dimensionless.
- ho_{norm} is normalized density, dimensionless.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Normalized density breakpoints, f_tm_corr_nd_bpt — Breakpoints array

Normalized density breakpoints, dimensionless.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Engine speed breakpoints, f_tm_corr_n_bpt — Breakpoints
array

Engine speed breakpoints, in rpm.

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow

$$\dot{m}_{intkideal} = f_{intkideal}(\varphi_{ECP}, TM_{flow})$$

where:

- $\dot{m}_{intkideal}$ is engine intake port mass flow at arbitrary cam phaser angles, in g/s.
- φ_{ECP} is exhaust cam phaser angle, in degrees crank retard.
- TM_{flow} is flow rate equivalent to corrected trapped mass at the current engine speed, in g/s.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt — Breakpoints array

Exhaust cam phaser breakpoints for air mass flow lookup table, in degrees crank retard.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Trapped mass flow breakpoints, f_mdot_trpd_bpt — Breakpoints array

Trapped mass flow breakpoints for air mass flow lookup table, in g/s.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Air mass flow correction factor, f_mdot_air_corr — Lookup table array

The intake air mass flow correction lookup table, $f_{aircorr}$, is a function of ideal load and engine speed

$$\dot{m}_{air} = \dot{m}_{intkideal} f_{aircorr}(L_{ideal}, N)$$

where:

- L_{ideal} is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.
- \dot{m}_{air} is engine intake air mass flow final correction at steady-state cam phaser angles, in g/s.
- $\dot{m}_{intkideal}$ is engine intake port mass flow at arbitrary cam phaser angles, in g/s.

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Engine load breakpoints for air mass flow final correction, dimensionless.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Engine speed breakpoints for air mass flow correction,
f_mdot_air_n_bpt — Breakpoints
array

Engine speed breakpoints for air mass flow final correction, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Torque

Torque table,
$$f_tq_nl - Lookup$$
 table $[L \times N]$ array

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, $T_{brake} = f_{TnL}(L, N)$, where:

- T_{brake} is engine brake torque after accounting for spark advance, AFR, and friction effects, in N·m.
- *L* is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.

The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (L-by-N) contains the non-firing data in the first table row (1-by-N). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque Lookup**.

Torque table load breakpoints, f_tq_nl_l_bpt — Breakpoints $[1 \times L]$ vector

Engine load breakpoints, *L*, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque Lookup**.

Torque table speed breakpoints,
$$f_tq_nl_n_bpt - Breakpoints$$
 [1 x N] vector

Engine speed breakpoints, N, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque Lookup**.

The inner torque lookup table, f_{Tqinr} , is a function of engine speed and engine load,

$$Tq_{inr} = f_{Tainr}(L, N)$$
 , where:

- Tq_{inr} is inner torque based on gross indicated mean effective pressure, in N·m.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Friction torque table, $f_tq_fric - Lookup$ table array

The friction torque lookup table, f_{Tfric} , is a function of engine speed and engine load,

$$T_{fric} = f_{Tfric}\left(L,N\right)$$
 , where:

- T_{fric} is friction torque offset to inner torque, in N·m.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Engine temperature modifier on friction torque, f_fric_temp_mod — Lookup table

vector

Engine temperature modifier on friction torque, $f_{fric.temp}$, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Engine temperature modifier breakpoints, f_fric_temp_bpt — Breakpoints

vector

Engine temperature modifier breakpoints, in K.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Pumping torque table, f_tq_pump — Lookup table array

The pumping torque lookup table, f_{Tpump} , is a function of engine speed and injected fuel mass, $T_{pump} = f_{Tpump}(L,N)$, where:

- T_{pump} is pumping torque, in N·m.
- ullet L is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Optimal spark table, f_sa_opt — Lookup table array

The optimal spark lookup table, f_{SAopt} , is a function of engine speed and engine load,

$$SA_{opt} = f_{SAopt}(L, N)$$
, where:

- SA_{opt} is optimal spark advance timing for maximum inner torque at stoichiometric airfuel ratio (AFR), in deg.
- ullet L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Inner torque load breakpoints, f_tq_inr_l_bpt — Breakpoints array

Inner torque load breakpoints, dimensionless.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Inner torque speed breakpoints, f_tq_inr_n_bpt — Breakpoints
array

Inner torque speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

The spark efficiency lookup table, f_{Msa} , is a function of the spark retard from optimal

$$\begin{split} M_{sa} &= f_{Msa}(\Delta SA) \\ \Delta SA &= SA_{opt} - SA \end{split}$$

where:

- ullet M_{sa} is the spark retard efficiency multiplier, dimensionless.
- $^{\bullet}$ ΔSA is the spark retard timing distance from optimal spark advance, in deg.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Spark retard from optimal inner torque timing breakpoints, in \deg .

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Lambda efficiency, f_m_lam — Lookup table array

The lambda efficiency lookup table, $f_{M\lambda}$, is a function of lambda, $M_{\lambda}=f_{M\lambda}(\lambda)$, where:

- M_{λ} is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- ullet λ is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Lambda effect on inner torque lambda breakpoints, dimensionless.

Dependencies

To enable this parameter, for the $\bf Torque\ model$ parameter, select $\bf Torque\ Structure.$

Exhaust

Exhaust temperature table, $f_t_{\rm exh} - Lookup$ table array

The exhaust temperature lookup table, f_{Texh} , is a function of engine load and engine speed

$$T_{exh} = f_{Texh}(L, N)$$

where:

- T_{exh} is engine exhaust temperature, in K.
- L is normalized cylinder air mass or engine load, dimensionless.
- *N* is engine speed, in rpm.

Load breakpoints, f_t_exh_l_bpt — Breakpoints
array

Engine load breakpoints used for exhaust temperature lookup table, dimensionless.

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

Exhaust gas specific heat at constant pressure, cp_exh — Specific heat scalar

Exhaust gas-specific heat, Cp_{exh} , in $J/(kg \cdot K)$.

CO2 mass fraction table, f_{CO2} frac — Carbon dioxide (CO_{2}) emission lookup table

array

The SI Core Engine CO_2 emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:

- *CO2 Mass Fraction* is the CO₂ emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

To enable this parameter, on the $\bf Exhaust$ tab, select $\bf CO2$.

CO mass fraction table, f_CO_frac — Carbon monoxide (CO) emission lookup table

array

The SI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:

- *CO Mass Fraction* is the CO emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in $N \cdot m$.

To enable this parameter, on the **Exhaust** tab, select **CO**.

${\tt HC}$ mass fraction table, ${\tt f_HC_frac-Hydrocarbon}$ (HC) emission lookup table

array

The SI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction = f(Speed, Torque), where:

- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $N \cdot m$.

To enable this parameter, on the **Exhaust** tab, select **HC**.

N0x mass fraction table, f_N0x_frac — Nitric oxide and nitrogen dioxide (NOx) emission lookup table ${\tt array}$

The SI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, $NOx\ Mass\ Fraction = f(Speed,\ Torque)$, where:

- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $N \cdot m$.

To enable this parameter, on the Exhaust tab, select NOx.

PM mass fraction table, $f_PM_frac - Particulate matter (PM) emission lookup table$

array

The SI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:

- *PM* is the PM emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $N \cdot m$.

Dependencies

To enable this parameter, on the **Exhaust** tab, select **PM**.

Engine speed breakpoints, f_exhfrac_n_bpt — Breakpoints vector

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

To enable this parameter, on the **Exhaust** tab, select **CO2**, **CO**, **NOx**, **HC**, or **PM**.

Engine torque breakpoints, f_exhfrac_trq_bpt — Breakpoints vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in N·m.

Dependencies

To enable this parameter, on the **Exhaust** tab, select **CO2**, **CO**, **NOx**, **HC**, or **PM**.

Fuel

Injector slope, Sinj — Slope scalar

Fuel injector slope, S_{ini} , mg/ms.

Stoichiometric air-fuel ratio, afr_stoich — Air-fuel ratio scalar

Air-fuel ratio, AFR.

References

- [1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems BOSCH ME7. SAE Technical Paper 980801, 1998.
- [2] Heywood, John B. *Internal Combustion Engine Fundamentals*. New York: McGraw-Hill, 1988.

See Also

Mapped SI Engine | SI Controller

Topics

"SI Core Engine Air Mass Flow and Torque Production"

"Engine Calibration Maps"

Introduced in R2017a

Turbine

Turbine for boosted engines

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Boost

Description

The Turbine block uses the conservation of mass and energy to calculate mass and heat flow rates for turbines with either fixed or variable geometry. You can configure the block with a wastegate valve to bypass the turbine. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. You can specify the lookup tables to calculate the mass flow rate and turbine efficiency. Typically, turbine manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to outlet control volume.

The Turbine block implements equations to model the performance, wastegate flow, and combined flow.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import turbine data	Import this turbine data from a file. For more information, see "I Data" (Model-Based Calibration Toolbox).		
	Turbine type	Data	
	Fixed	Pressure ratio, dimensionless	
	geometry	Speed, rad/s	
		Efficiency, dimensionless	
		Corrected mass flow rate, kg/s	
	Variable	Pressure ratio, dimensionless	
	geometry	Speed, rad/s	
		Rack position, dimensionless	
		Efficiency, dimensionless	
		Corrected mass flow rate, kg/s	
		Include data for several test points at each rack position operating point.	
	Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file.		
		ne data, select Edit in Application . The Model- n Toolbox Data Editor opens.	

Task	Description		
Generate response models	Model-Based Calibration Toolbox fits the imported data and generates response models.		
	Turbine type	Description	1
	Fixed geometry	Data	Response Model
		Corrected mass flow rate	Square root turbine flow model described in <i>Modeling and Control of Engines and Drivelines</i> ²
		Efficiency	Blade speed ratio (BSR) model described in <i>Modeling and Control</i> of Engines and Drivelines ²
	Variable geometry	Model-Based Calibration Toolbox uses a point-by- point test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.	
		Data	Response Model
		Corrected mass flow rate	Square root turbine flow model described in <i>Modeling and Control of Engines and Drivelines</i> ²
		Efficiency	Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines ²
	Application . The	e Model-Based information, s	se model fit, select Edit in l Calibration Toolbox Model Browser ee "Model Assessment" (Model-Based

Task	Description	Description	
Generate calibration	Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables.		
	Turbine type	Description	
	Fixed geometry	Model-Based Calibration Toolbox uses the response models for the corrected mass flow rate and efficiency tables.	
	Variable geometry	Model-Based Calibration Toolbox fills the corrected mass flow rate and efficiency tables for each rack position. Model-Based Calibration Toolbox then combines the rack position-dependent tables into 3D lookup tables for corrected mass flow rate and efficiency.	
	Model-Based Cal	ast the calibration, select Edit in Application . The libration Toolbox CAGE Browser opens. For more "Calibration Tables" (Model-Based Calibration	

Task	Description	
Update block parameters	Update these corrected mass flow rate and efficiency parameters with the calibration.	
	Turbine type	Parameters
	Fixed geometry	Corrected mass flow rate table, mdot_corrfx_tbl
		Efficiency table, eta_turbfx_tbl
		 Corrected speed breakpoints, w_corrfx_bpts1
		Pressure ratio breakpoints, Pr_fx_bpts2
	Variable geometry	Corrected mass flow rate table, mdot_corrvr_tbl
		Efficiency table, eta_turbvr_tbl
		 Corrected speed breakpoints, w_corrvr_bpts2
		Pressure ratio breakpoints, Pr_vr_bpts2
		Rack breakpoints, L_rack_bpts3

Thermodynamics

The block uses these equations to model the thermodynamics.

Calculation	Equations
Forward mass flow	$\dot{m}_{turb} > 0$
	$p_{01} = p_{inlet}$
	$p_{02} = p_{outlet}$
	$T_{01} = T_{inlet}$
	$h_{01} = h_{inlet}$
First law of thermodynamics	$\dot{W}_{turb} = \dot{m}_{turb} c_p \left(T_{01} - T_{02} \right)$
Isentropic efficiency	
	$\eta_{turb} = \frac{h_{01} - h_{02}}{h_{01} - h_{02}} = \frac{T_{01} - T_{02}}{T_{01} - T_{02}}$
Isentropic outlet temperature, assuming ideal gas, and constant specific heats	$T_{02s} = T_{01} \left(\frac{p_{02}}{p_{01}} \right)^{\frac{\gamma - 1}{\gamma}}$
Specific heat ratio	p_{01}
	$\gamma = \frac{c_p}{c_p - R}$
Outlet temperature	c_p - t
	$T_{02} = T_{01} + \eta_{turb} T_{01} \left\{ 1 - \left(\frac{p_{02}}{p_{01}} \right)^{\frac{\gamma - 1}{\gamma}} \right\}$
Heat flows	$q_{in,turb} = \dot{m}_{turb}c_p T_{01}$
	$q_{out,turb} = \dot{m}_{turb}c_p T_{02}$
Drive shaft torque	
	$ au_{turb} = rac{\dot{W}_{turb}}{\omega}$

The equations use these variables.

Inlet control volume total pressure

 $p_{
m inlet}$, p_{01}

 T_{inlet} , T_{01} Inlet control volume total temperature

Inlet control volume total specific enthalpy

 h_{inlet} , h_{01}

Outlet control volume total pressure

 p_{outlet} , p_{02}

Outlet control volume total temperature

 T_{outlet}

Outlet control volume total specific enthalpy

 h_{outlet}

Drive shaft power

 \dot{W}_{turb}

Temperature exiting the turbine

 T_{02}

Outlet total specific enthalpy

 h_{02}

Turbine mass flow rate

 \dot{m}_{turb}

Turbine inlet heat flow rate

 $q_{in,turb}$

Turbine outlet heat flow rate

 $q_{out,turb}$

Turbine isentropic efficiency

 η_{turb}

Isentropic outlet total temperature

 T_{02s}

Isentropic outlet total specific enthalpy

 h_{02s}

R Ideal gas constant

Specific heat at constant pressure

 c_p

 γ Specific heat ratio

Drive shaft torque

 au_{turb}

$$\dot{W}_{turb}$$

Drive shaft power

Performance Lookup Tables

The block implements lookup tables based on these equations.

Calculation	Equation	
Corrected mass flow rate	$\dot{m}_{corr} = \dot{m}_{turb} \frac{\sqrt{T_{01} / T_{ref}}}{p_{01} / p_{ref}}$	
Corrected speed	P01 / Pref	
	$\omega_{corr} = \frac{\omega}{\sqrt{T_{01} / T_{ref}}}$	
Pressure	$\sqrt{r_{01}/r_{ref}}$	
expansion ratio	$p_r = \frac{p_{01}}{p_{00}}$	
Efficiency lookup	Fixed geometry (3-D table)	
table		$\eta_{turbfx,tbl} = f(\omega_{corr}, p_r)$
	Variable geometry (3-D table)	
		$\eta_{turbvr,tbl} = f(\omega_{corr}, p_r, L_{rack})$
Corrected mass flow lookup table	Fixed geometry (3-D table)	$\dot{m}_{corrfx,tbl} = f\left(\omega_{corr}, p_r\right)$
	Variable geometry (3-D table)	$\dot{m}_{corrvr,tbl} = f(\omega_{corr}, p_r, L_{rack})$

The equations use these variables.

p_{01}	Inlet control volume total pressure
p_r	Pressure expansion ratio
p_{02}	Outlet control volume total pressure
	Lookup table reference pressure
P_{ref}	

Inlet control volume total temperature T_{01}

Lookup table reference temperature

 T_{ref}

Turbine mass flow rate

 \dot{m}_{turb}

ω

Drive shaft speed

 ω_{corr}

Corrected drive shaft speed

 L_{rack}

Variable geometry turbine rack position

Efficiency 3-D lookup table for fixed geometry

 $\eta_{turbfx,tbl}$

Corrected mass flow rate 3-D lookup table for fixed geometry

 $m_{corrfx,tbl}$

Efficiency 3-D lookup table for variable geometry

 $\eta_{turbvr,tbl}$

Corrected mass flow rate 3-D lookup table for variable geometry

 $\dot{m}_{corrvr.tbl}$

Wastegate

To calculate the wastegate heat and mass flow rates, the Turbine block uses a Flow Restriction block. The Flow Restriction block uses the wastegate flow area.

$$A_{wg} = A_{wgpctcmd} \, \frac{A_{wgopen}}{100}$$

The equation uses these variables.

Wastegate valve area percent command

 $A_{wgpctcmd}$

Wastegate valve area

 A_{wg}

Wastegate valve area when fully open

 A_{wgopen}

Combined Flow

To represent flow through the wastegate valve and turbine, the block uses these equations.

Calculation	Equations
Blocks not configured with a wastegate valve	$\dot{m}_{wg} = q_{wg} = 0$
Total mass flow rate	$\dot{m}_{total} = \dot{m}_{turb} + \dot{m}_{wg}$
Total heat flow rate	$q_{inlet} = q_{in,turb} + q_{wg}$
Combined temperature exiting the wastegate valve and turbine	$q_{outlet} = q_{out,turb} + q_{wg}$
varve and sarsine	$T_{outflw} = egin{cases} rac{q_{outlet}}{\dot{m}_{total}c_p} & \dot{m}_{total} > \dot{m}_{thresh} \ T_{02} + T_{outflw,wg} & oldown$
The equations use these	

Wastegate valve heat flow rate

 q_{wg}

Temperature exiting the turbine

 T_{02}

Total temperature exiting the block

 T_{outflw}

Temperature exiting the wastegate valve

 $T_{outflw,wg}$

Mass flow rate threshold to prevent dividing by zero

 \dot{m}_{thresh}

Specific heat at constant pressure

 c_p

Ports

Input

Ds — Drive shaft speed

two-way connector port

 ${\tt ShaftSpd}-{\tt Signal}$ containing the drive shaft angular speed, ω , in rad/s.

A — Inlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the inlet control volume:

- InPrs Pressure, $p_{
 m inlet}$, in Pa
- In Temperature, T_{inlet} , in K
- InEnth Specific enthalpy, h_{inlet} , in J/kg

$\ensuremath{\mathsf{B}}-\ensuremath{\mathsf{Outlet}}$ pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the outlet control volume:

- OutPrs Pressure, p_{outlet} , in Pa
- ullet OutTemp Temperature, T_{outlet} , in K
- OutEnth Specific enthalpy, h_{outlet} , in J/kg

RackPos — Rack position

scalar

Variable geometry turbine rack position, L_{rack} .

Dependencies

To create this port, select Variable geometry for the **Turbine type** parameter.

WgAreaPct — Wastegate area percent

scalar

Wastegate valve area percent, $A_{wgpctcmd}$.

Dependencies

To create this port, select ${\bf Include\ wastegate}.$

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
TurbOutletTemp	Temperature exiting the turbine	T_{02}	K
DriveshftPwr	Drive shaft power	\dot{W}_{turb}	W
DriveshftTrq	Drive shaft torque	$ au_{turb}$	N·m

Signal	Description	Variable	Units
TurbMassFlw	Turbine mass flow rate	\dot{m}_{turb}	kg/s
PrsRatio	Pressure ratio	p_r	N/A
DriveshftCorrSpd	Corrected drive shaft speed	ω_{corr}	rad/s
TurbEff	Turbine isentropic efficiency	η_{turb}	N/A
CorrMassFlw	Corrected mass flow rate	\dot{m}_{corr}	kg/s
WgArea	Wastegate valve area	A_{wg}	m^2
WgMassFlw	Mass flow rate through the wastegate valve	\dot{m}_{wg}	kg/s
WgOutletTemp	Temperature exiting the wastegate valve	$T_{outflw,wg}$	K

Ds — Drive shaft torque

two-way connector port

 ${\rm Trq}-{\rm Signal}$ containing the drive shaft torque, τ_{turb} , in N·m.

${\bf A}-{\bf Inlet}$ mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate Total mass flow rate through wastegate valve and turbine, \dot{m}_{total} , in kg/s
- ${\sf HeatFlwRate} {\sf Total} \ {\sf inlet} \ {\sf heatflow} \ {\sf rate}$, in ${\sf J/s}$
- Temp Total inlet temperature, T_{inlet} , in K
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate Turbine mass flow rate through wastegate valve and turbine, \dot{m}_{turb} , in kg/s
- HeatFlwRate Total outlet heat flow rate, q_{outlet} , in J/s
- $\mathsf{Temp}-\mathsf{Total}$ outlet temperature, T_{outflw} , in K
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide

- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Turbine type — Select turbine type

Fixed geometry (default) | Variable geometry

Turbine type.

Dependencies

The table summarizes the parameter and port dependencies.

Value	Enables Parameters	Creates Ports
Fixed geometry	Corrected mass flow rate table, mdot_corrfx_tbl	None
	Efficiency table, eta_turbfx_tbl	
	Corrected speed breakpoints, w_corrfx_bpts1	
	Pressure ratio breakpoints, Pr_fx_bpts2	

Value	Enables Parameters	Creates Ports
Variable geometry	Corrected mass flow rate table, mdot_corrvr_tbl	RP
	Efficiency table, eta_turbvr_tbl	
	Corrected speed breakpoints, w_corrvr_bpts2	
	Pressure ratio breakpoints, Pr_vr_bpts2	
	Rack breakpoints, L_rack_bpts3	

Include wastegate — Select

on (default) | off | off

Dependencies

Selecting the **Include wastegate** parameter enables:

- · Wastegate flow area, A_wgopen
- · Pressure ratio linearize limit, Plim_wg

Performance Tables

Calibrate Performance Maps — Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import turbine data	Import this turbine data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).		
	Turbine type	Data	
	Fixed	Pressure ratio, dimensionless	
	geometry	Speed, rad/s	
		Efficiency, dimensionless	
		Corrected mass flow rate, kg/s	
	Variable geometry	Pressure ratio, dimensionless	
		Speed, rad/s	
		Rack position, dimensionless	
		Efficiency, dimensionless	
		Corrected mass flow rate, kg/s	
		Include data for several test points at each rack position operating point.	
		bration Toolbox limits the speed and pressure ratio s to the maximum values in the file.	
		ne data, select Edit in Application . The Model- n Toolbox Data Editor opens.	

Task	Description			
Generate response models	Model-Based Calibration Toolbox fits the imported data and generates response models.			
	Turbine type	Description		
	Fixed	Data	Response Model	
	geometry	Corrected mass flow rate	Square root turbine flow model described in <i>Modeling and Control of Engines and Drivelines</i> ²	
		Efficiency	Blade speed ratio (BSR) model described in <i>Modeling and Control of Engines and Drivelines</i> ²	
	Variable geometry	Model-Based Calibration Toolbox uses a point-by- point test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.		
		Data	Response Model	
		Corrected mass flow rate	Square root turbine flow model described in <i>Modeling and Control of Engines and Drivelines</i> ²	
		Efficiency	Blade speed ratio (BSR) model described in <i>Modeling and Control</i> of Engines and Drivelines ²	
	Application . The	e Model-Based information, s	te model fit, select Edit in I Calibration Toolbox Model Browser ee "Model Assessment" (Model-Based	

Task	Description	Description		
Generate calibration		Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables.		
	Turbine type	Description		
	Fixed geometry	Model-Based Calibration Toolbox uses the response models for the corrected mass flow rate and efficiency tables.		
	Variable geometry	Model-Based Calibration Toolbox fills the corrected mass flow rate and efficiency tables for each rack position. Model-Based Calibration Toolbox then combines the rack position-dependent tables into 3D lookup tables for corrected mass flow rate and efficiency.		
	Model-Based Cal	ast the calibration, select Edit in Application . The libration Toolbox CAGE Browser opens. For more "Calibration Tables" (Model-Based Calibration		

Task	Description			
Update block parameters	Update these corthee calibration.	pdate these corrected mass flow rate and efficiency parameters with ne calibration.		
	Turbine type	bine type Parameters		
	Fixed geometry	Corrected mass flow rate table, mdot_corrfx_tbl		
		Efficiency table, eta_turbfx_tbl		
		 Corrected speed breakpoints, w_corrfx_bpts1 		
		Pressure ratio breakpoints, Pr_fx_bpts2		
	Variable geometry	Corrected mass flow rate table, mdot_corrvr_tbl		
		Efficiency table, eta_turbvr_tbl		
		 Corrected speed breakpoints, w_corrvr_bpts2 		
		Pressure ratio breakpoints, Pr_vr_bpts2		
		Rack breakpoints, L_rack_bpts3		

Corrected mass flow rate table, $mdot_corrfx_tbl - Lookup table$ array

Corrected mass flow rate lookup table for fixed geometry, $\dot{m}_{corrfx,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , in kg/s.

Dependencies

To enable this parameter, select Fixed geometry for the **Turbine type** parameter.

Efficiency table, eta_turbfx_tb — Lookup table array

Efficiency lookup table for fixed geometry, $\eta_{turbfx,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , dimensionless.

Dependencies

To enable this parameter, select Fixed geometry for the **Turbine type** parameter.

Corrected speed breakpoints, w_corrfx_bpts1 — Fixed geometry array

Corrected drive shaft speed breakpoints for fixed geometry, $\omega_{corrfx,bpts1}$, in rad/s.

Dependencies

To enable this parameter, select Fixed geometry for the **Turbine type** parameter.

Pressure ratio breakpoints, $Pr_fx_bpts2 - Fixed geometry$ array

Pressure ratio breakpoints for fixed geometry, $p_{rfx,bpts2}$.

Dependencies

To enable this parameter, select Fixed geometry for the **Turbine type** parameter.

Corrected mass flow rate table, mdot_corrvr_tbl — Lookup table
array

Corrected mass flow rate lookup table for variable geometry, $\dot{m}_{corrvr,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , in kg/s.

Dependencies

To enable this parameter, select Variable geometry for the **Turbine type** parameter.

Efficiency table, eta_turbvr_tbl — Lookup table array

Efficiency lookup table for variable geometry, $\eta_{turbvr,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , dimensionless.

Dependencies

To enable this parameter, select Variable geometry for the **Turbine type** parameter.

Corrected speed breakpoints, w_corrvr_bpts2 — Variable geometry array

Corrected drive shaft speed breakpoints for variable geometry, $\omega_{corrvr,bpts1}$, in rad/s.

Dependencies

To enable this parameter, select Variable geometry for the **Turbine type** parameter.

Pressure ratio breakpoints, $Pr_vr_bpts2 - Variable$ geometry array

Pressure ratio breakpoints for variable geometry.

Dependencies

To enable this parameter, select Variable geometry for the **Turbine type** parameter.

Rack breakpoints, L_rack_bpts3 — Variable geometry array

Rack position breakpoints for variable geometry, $L_{rack.bpts3}$.

Dependencies

To enable this parameter, select Variable geometry for the **Turbine type** parameter.

Reference temperature, T_ref — Temperature scalar

Performance map reference temperature, T_{ref} , in K.

Reference pressure, P_ref — Pressure scalar

Performance map reference pressure, P_{ref} , in Pa.

Wastegate

Wastegate flow area, A_wgopen — Area scalar

Area of fully opened wastegate valve, A_{wgopen} , in m².

Dependencies

To enable Wastegate flow area, A wgopen, select the Include wastegate parameter.

Pressure ratio linearize limit, Plim_wg — Area, m^2
scalar

Dependencies

Flow restriction linearization limit, $p_{lim,wg}$.

To enable **Pressure ratio linearize limit, Plim_wg**, select the **Include wastegate** parameter.

Properties

Ideal gas constant, R — Constant
scalar

Ideal gas constant R, in $J/(kg \cdot K)$.

Specific heat at constant pressure, cp — Specific heat scalar

Specific heat at constant pressure, c_p , in J/(kg·K).

References

- [1] Heywood, John B. *Internal Combustion Engine Fundamentals*. New York: McGraw-Hill, 1988.
- [2] Eriksson, Lars and Lars Nielsen. *Modeling and Control of Engines and Drivelines*. Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2014.

See Also

Two-Way Connection | Boost Drive Shaft | Compressor

Topics"Model-Based Calibration Toolbox"

Introduced in R2017a

Mapped Core Engine

Steady-state core engine model using lookup tables

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Core Engine

Description

The Mapped Core Engine block implements a steady-state core engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design.
- · Vehicle-level fuel economy and performance simulations.

The block enables you to specify lookup tables for these engine characteristics. The lookup tables are functions of engine load, L, and engine speed N.

- Power
- Air
- Fuel
- Temperature
- Efficiency
- Emissions
 - Hydrocarbon (HC)
 - Carbon monoxide (CO)
 - Nitric oxide and nitrogen dioxide (NOx)
 - Carbon dioxide (CO₂)
 - Particulate matter (PM) emissions

To bound the Mapped Core Engine block output, the block does not extrapolate the lookup table data.

Ports

Input

<TrqCmd> — Engine load

TrqCmd (default)

Engine load, *L.* Examples of engine load include:

- Commanded torque
- Commanded indicated mean effective pressure (IMEP) in the engine cylinder
- · Normalized cylinder air mass
- Injected fuel mass

Dependencies

To specify an engine load port name, on the **Configuration** tab, enter a name in the **Load** input port name parameter field.

< EngSpd> — Engine speed

EngSpd (default)

Engine speed, N.

Dependencies

To specify an engine load port name, on the **Configuration** tab, enter a name in the **Speed input port name** parameter field.

Output

< EngTrq> — Power

EngTrq (default)

Engine power, T_{brake} .

Dependencies

- To create this port, on the **Configuration** tab, select **Power**.
- To specify the port name, on the Power tab, enter a name in the Power output port name parameter field.

<IntkAirMassFlw> — Air mass flow

IntkAirMassFlw (default)

Engine air mass flow, \dot{m}_{intk} .

Dependencies

- To create this port, on the **Configuration** tab, select **Air**.
- To specify the port name, on the Air tab, enter a name in the Air output port name parameter field.

<FuelMassFlw> — Fuel flow

FuelMassFlw (default)

Engine fuel flow, \dot{m}_{fuel} .

Dependencies

- To create this port, on the Configuration tab, select Fuel.
- To specify the port name, on the Fuel tab, enter a name in the Fuel output port name parameter field.

<ExhManGasTemp> — Exhaust temperature

ExhManGasTemp (default)

Engine exhaust temperature, $\mathit{T_{exh}}$.

Dependencies

- To create this port, on the **Configuration** tab, select **Temperature**.
- To specify the port name, on the **Temperature** tab, enter a name in the **Temperature** output port name parameter field.

<Bsfc> — Efficiency

Bsfc (default)

Brake-specific fuel consumption (BSFC), Eff.

Dependencies

- To create this port, on the **Configuration** tab, select **Efficiency**.
- To specify the port name, on the Efficiency tab, enter a name in the Efficiency output port name parameter field.

< EoHC > — Hydrocarbon emissions

EoHC (default)

Hydrocarbon emissions, HC.

Dependencies

- To create this port, on the **Configuration** tab, select **HC**.
- To specify the port name, on the HC tab, enter a name in the HC output port name parameter field.

< EoCO > — Carbon monoxide emissions

EoCO (default)

Carbon monoxide emissions, CO.

Dependencies

- To create this port, on the **Configuration** tab, select **CO**.
- To specify the port name, on the CO tab, enter a name in the CO output port name parameter field.

<EoN0x> — Nitric oxide and nitrogen dioxide emissions

EoNOx (default)

Nitric oxide and nitrogen dioxide emissions, NOx.

Dependencies

- To create this port, on the **Configuration** tab, select **NOx**.
- To specify the port name, on the NOx tab, enter a name in the NOx output port name parameter field.

< EoCO2 > - Carbon dioxide emissions

EoC02 (default)

Carbon dioxide emissions, CO2.

Dependencies

- To create this port, on the **Configuration** tab, select **CO2**.
- To specify the port name, on the CO2 tab, enter a name in the CO2 output port name parameter field.

< EoPm> — Particulate matter emissions

EoPm (default)

Particulate matter emissions, PM.

Dependencies

- To create this port, on the **Configuration** tab, select **PM**.
- To specify the port name, on the PM tab, enter a name in the PM output port name parameter field.

Parameters

Configuration

Engine Type — Type of engine image

Compression-ignition (CI) (default) | Spark-ignition (SI)

Type of mapped internal combustion engine image to use in the block.

Load input port name — Name

TrqCmd (default)

Engine load input port name.

Breakpoints for load input — Breakpoints

vector

Breakpoints for engine load input.

Speed input port name — Name

EngSpd (default)

Speed input port name.

Breakpoints for speed input — Breakpoints

vector

Breakpoints for engine speed input.

Output — Create output ports

power on (default)

Create the output ports.

Dependencies

The table summarizes the output ports that are created for each **Output** parameter selection.

Output Selection	Creates Port	Creates Tab
Power	EngTrq	Power
Air	IntkAirMassFlw	Air
Fuel	FuelMassFlw	Fuel
Temperature	ExhManGasTemp	Temperature
Efficiency	Bsfc	Efficiency
НС	ЕоНС	нс
CO	EoC0	СО
NOx	EoN0x	NOx
CO2	EoC02	CO2
PM	EoPm	PM

Power

Power output port name — Power

BrkTrq (default)

Power output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **Power**.

Power table — Power

array

Power table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Power**.

Air

Air output port name — Air

AirFlw (default)

Air mass flow output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **Air**.

Air table - Air

array

Air mass flow table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Air**.

Fuel

Fuel output port name — Fuel

FuelFlw (default)

Fuel output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **Fuel**.

Fuel table — Fuel

array

Fuel table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Fuel**.

Temperature

Temperature output port name — Temperature

Texh (default)

Temperature output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **Temperature**.

Temperature table — Temperature

array

Temperature table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Temperature**.

Efficiency

Efficiency output port name — Efficiency

BSFC (default)

Efficiency output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **Efficiency**.

Efficiency table — Efficiency

array

Efficiency table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Efficiency**.

HC

$\label{eq:hc} \mbox{HC output port name} - \mbox{Hydrocarbon}$

EO HC (default)

Hydrocarbon output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **HC**.

HC table — Hydrocarbon

array

Hydrocarbon table.

Dependencies

To create this parameter, on the **Configuration** tab, select **HC**.

CO

CO output port name — Carbon dioxide

E0 C0 (default)

Carbon monoxide output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **CO**.

CO table — Carbon dioxide

array

Carbon dioxide table.

Dependencies

To create this parameter, on the **Configuration** tab, select **CO**.

NOx

NOx output port name — Nitric oxide NO and nitrogen dioxide NO₂ EO NOx (default)

NOx output port name. NOx is nitric oxide NO and nitrogen dioxide NO_2 .

Dependencies

To create this parameter, on the Configuration tab, select NOx.

NOx table — Nitric oxide NO and nitrogen dioxide NO₂ array

NOx emissions table. NOx is nitric oxide NO and nitrogen dioxide NO_2 .

Dependencies

To create this parameter, on the **Configuration** tab, select **NOx**.

CO2

CO2 output port name — Carbon dioxide

E0 C02 (default)

Carbon dioxide output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **CO2**.

CO2 table — Carbon dioxide

array

Carbon dioxide table.

Dependencies

To create this parameter, on the **Configuration** tab, select **CO2**.

PΜ

PM output port name — Particulate matter

EO PM (default)

Particulate matter output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **PM**.

PM table — Particulate matter

array

Particulate matter table.

Dependencies

To create this parameter, on the **Configuration** tab, select **PM**.

See Also

CI Core Engine | SI Core Engine

Introduced in R2017a

Mapped CI Engine

Compression-ignition engine model using lookup tables

Library: Powertrain Blockset / Propulsion / Combustion

Engines

Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped CI Engine block implements a mapped compression-ignition (CI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- · Hardware-in-the-loop (HIL) engine control design
- · Vehicle-level fuel economy and performance simulations

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of either injected fuel mass, F, or engine torque, T, and engine speed, N.

Input Command Setting	Lookup Tables
Fuel mass	f(F,N)
Torque	f(T,N)

The block enables you to specify lookup tables for these engine characteristics:

- Power
- Air
- Fuel
- Temperature
- Efficiency
- Hydrocarbon (HC) emissions
- Carbon monoxide (CO) emissions

- Nitric oxide and nitrogen dioxide (NOx) emissions
- Carbon dioxide (CO₂) emissions
- Particulate matter (PM) emissions

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup tables using measured data.

To bound the Mapped CI Engine block output, the block does not extrapolate the lookup table data.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description			
Import firing data	Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).			
	Input command	Required Data	Optional Data	
	Fuel mass	Engine speed, rpm	Air mass flow rate, kg/s	
		Commanded fuel mass per injection, mg	• Brake specific fuel consumption, g/(kW·h)	
		• Engine torque, N·m	CO2 mass flow rate,	
	Torque	Engine speed, rpm	kg/s	
		• Engine torque, N·m	CO mass flow rate, kg/s	
			Exhaust temperature, K	
			Fuel mass flow rate, kg/s	
			HC mass flow rate, kg/s	
			NOx mass flow rate, kg/s	
			Particulate matter mass flow rate, kg/s	
	deliver the fue operating ran boundary as t To filter or ed	el. Data should cover the en	n Toolbox uses the firing data pplication. The Model-	

Task	Description
Import non-firing data	Import this non-firing data from a file.
	Engine speed, rpm
	• Engine torque, N·m
	Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).

Task	Description	Description		
Update block parameters	Update these parameters with the calibration.			
	Input command	Parameters		
	Fuel mass	Breakpoints for commanded fuel mass input, f_tbrake_f_bpt		
	Torque	 Breakpoints for commanded torque input, f_tbrake_t_bpt 		
	 Breakpoints for engine speed input, f_tbrake_n_bpt Brake torque map, f_tbrake Air mass flow map, f_air 			
	• Fuel flow map, f_fuel			
	 Exhaust temperature map, f_texh BSFC map, f_eff			
	EO HC map, f_hcEO CO map, f co			
	• EO NOx map, f_nox			
	EO CO2 map, f_co2EO PM map, f_pm			

Cylinder Air Mass

The block calculates the normalized cylinder air mass using these equations.

$$\begin{split} M_{Nom} &= \frac{P_{std}V_d}{N_{cyl}R_{air}T_{std}} \\ L &= \frac{\left(\frac{60s}{min}\right)Cps\cdot\dot{m}_{air}}{\left(\frac{1000g}{Kg}\right)N_{cyl}\cdot N\cdot M_{Nom}} \end{split}$$

The equations use these variables.

L	Normalized cylinder air mass
M_{Nom}	Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps	Crankshaft revolutions per power stroke, rev/stroke
P_{std}	Standard pressure
T_{std}	Standard temperature
R_{air}	Ideal gas constant for air and burned gas mixture
V_d	Displaced volume
$N_{c \nu l}$	Number of engine cylinders
N	Engine speed
\dot{m}_{intk}	Engine air mass flow, in g/s

Turbocharger Lag

To model turbocharger lag, select **Include turbocharger lag effect**. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified **Input command** setting.

Calculation	Input command Parameter Setting		
	Fuel mass	Torque	
Dynamic torque	$\frac{dF_{max}}{dt} = \frac{1}{\tau_{eng}} \left(F_{cmd} - F_{max} \right)$	$\frac{dT_{max}}{dt} = \frac{1}{\tau_{eng}} (T_{cmd} - T_{max})$	
Fuel mass per injection or torque - with turbocharger lag	$F = \begin{cases} F_{cmd} & \text{when } F_{cmd} < \\ F_{max} & \text{when } F_{cmd} \ge \end{cases}$	$F_{\max} T_{target} = \begin{cases} T_{cmd} & \text{when } T_{cmd} < T_{cmd} \\ T_{max} & \text{when } T_{cmd} \ge T_{cmd} \end{cases}$	

Calculation	Input command Parameter Setting		
	Fuel mass	Torque	
Fuel mass per injection or torque- without turbocharger lag	$F = F_{cmd} = F_{max}$	$T_{target} = T_{cmd} = T_{max}$	
Boost time constant	$\tau_{bst} = \begin{cases} \tau_{bst, rising} & \text{when } F \\ \tau_{bst, falling} & \text{when } F \end{cases}$	$ \tau_{cmd} > F_{\max} = \begin{cases} \tau_{bst, rising} & \text{when } T_{cmd} \\ \tau_{bst} = \tau_{bst, falling} \end{cases} $ when $T_{cmd} > T_{cmd} >$	$> T_{\text{max}}$ $\leq T_{\text{max}}$
Final time constant	$ au_{eng} = egin{cases} au_{nat} & ext{when } T_{brake} \ au_{bst} & ext{when } T_{brake} \end{cases}$	$f(s) < f_{bst}(N)$ $f(s) \geq f_{bst}(N)$	

The equations use these variables.

 T_{brake} Brake torque

F Fuel mass per injection

 $F_{\it cmd}$, $F_{\it max}$ Commanded and maximum fuel mass per injection, respectively

 T_{target} , T_{cmd} , T_{max} Target, commanded, and maximum torque, respectively

 au_{bst} Boost time constant

 $au_{\textit{bst,rising}}, \, au_{\textit{bst,falling}}$ Boost rising and falling time constant, respectively

 au_{enq} Final time constant

 $au_{\it nat}$ Time constant below the boost torque speed line

 $f_{bst}(N)$ Boost torque/speed line

N Engine speed

Ports

Input

FuelMassCmd — Injected fuel mass command

scalar

Injected fuel mass command, *F*, in mg/inj.

Dependencies

To create this port, for **Input command**, select Fuel mass.

TrqCmd — Torque command

scalar

Torque command, T, in N·m.

Dependencies

To create this port, for **Input command**, select **Torque**.

EngSpd — Engine speed

scalar

Engine speed, N, in rpm.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
IntkGasMassFlw	Engine air mass flow output	kg/s
NrmlzdAirChrg	Normalized engine cylinder air mass	N/A
Afr	Air-fuel ratio (AFR)	N/A
FuelMassFlw	Engine fuel flow output	kg/s
ExhManGasTemp	Engine exhaust gas temperature	K
EngTrq	Engine torque output	N·m
EngSpd	Engine speed	rpm

Signal	Description	Units
CrkAng	Engine crankshaft absolute angle	degrees crank angle
	$\int\limits_{0}^{(360)Cps}EngSpd\frac{180}{30}d\theta$	
	where Cps is crankshaft revolutions per power stroke.	
Bsfc	Engine brake-specific fuel consumption (BSFC)	g/kWh
ЕоНС	Engine out hydrocarbon emission mass flow	kg/s
EoC0	Engine out carbon monoxide emission mass flow rate	kg/s
EoN0x	Engine out nitric oxide and nitrogen dioxide emissions mass flow	kg/s
EoC02	Engine out carbon dioxide emission mass flow	kg/s
EoPM	Engine out particulate matter emission mass flow	kg/s

EngTrq — Power

scalar

Engine power, T_{brake} , in N·m.

Parameters

Block Options

Input command — Table functions

Fuel mass (default) | Torque

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of either injected fuel mass, F, or engine torque, T, and engine speed, N.

Input Command Setting	Lookup Tables
Fuel mass	f(F,N)
Torque	f(T,N)

- Selecting Fuel mass enables Breakpoints for commanded fuel mass input, f_tbrake_f_bpt.
- Selecting Torque enables Breakpoints for commanded torque input, f_tbrake_t_bpt.

Include turbocharger lag effect — Increase time constant off (default)

To model turbocharger lag, select **Include turbocharger lag effect**. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified **Input command** setting.

Calculation	Input command Parameter Setting		
	Fuel mass	Torque	
Dynamic torque	$\frac{dF_{max}}{dt} = \frac{1}{\tau_{eng}} \left(F_{cmd} - F_{max} \right)$	$\frac{dT_{max}}{dt} = \frac{1}{\tau_{eng}} (T_{cmd} - T_{max})$	
Fuel mass per injection or torque - with turbocharger lag	$F = \begin{cases} F_{cmd} & \text{when } F_{cmd} < \\ F_{max} & \text{when } F_{cmd} \ge \end{cases}$	$F_{\max} T_{target} = \begin{cases} T_{cmd} & \text{when } T_{cmd} < T_{cmd} \\ T_{max} & \text{when } T_{cmd} \ge T_{max} \end{cases}$	
Fuel mass per injection or torque- without turbocharger lag	$F = F_{cmd} = F_{max}$	$T_{target} = T_{cmd} = T_{max}$	

Calculation	Input command Parameter Setting		
	Fuel mass	Torque	
Boost time constant	$\tau_{bst} = \begin{cases} \tau_{bst, rising} & \text{when } F \\ \tau_{bst, falling} & \text{when } F \end{cases}$	$ \begin{array}{ll} $	$ > T_{\text{max}} $ $ \leq T_{\text{max}} $
Final time constant	$ au_{eng} = egin{cases} au_{nat} & ext{when } T_{brake} \ au_{bst} & ext{when } T_{brake} \end{cases}$	$< f_{bst}(N)$ $\geq f_{bst}(N)$	

The equations use these variables.

 T_{brake} Brake torque

F Fuel mass per injection

 F_{cmd} , F_{max} Commanded and maximum fuel mass per injection, respectively

 T_{target} , T_{cmd} , T_{max} Target, commanded, and maximum torque, respectively

 τ_{bst} Boost time constant

 $au_{\textit{bst,rising}}, \, au_{\textit{bst,falling}}$ Boost rising and falling time constant, respectively

 au_{eng} Final time constant

 au_{nat} Time constant below the boost torque speed line

 $f_{bst}(N)$ Boost torque/speed line

N Engine speed

Dependencies

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_nat
- · Rising maximum fuel mass boost time constant, tau_bst_rising
- Falling maximum fuel mass boost time constant, tau_bst_falling

Configuration

Calibrate Maps — Calibrate tables with measured data

selection

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import firing data		ring data from a file. For mo Based Calibration Toolbox).	
	Input command	Required Data	Optional Data
	Fuel mass Torque	 Engine speed, rpm Commanded fuel mass per injection, mg Engine torque, N·m Engine speed, rpm Engine torque, N·m 	 Air mass flow rate, kg/s Brake specific fuel consumption, g/(kW·h) CO2 mass flow rate, kg/s CO mass flow rate, kg/s Exhaust temperature, K Fuel mass flow rate, kg/s HC mass flow rate, kg/s NOx mass flow rate, kg/s Particulate matter mass flow rate, kg/s
	deliver the fue operating ran boundary as t To filter or ed:	el. Data should cover the en	n Toolbox uses the firing data pplication. The Model-

Task	Description
Import non-firing data	Import this non-firing data from a file.
uata	Engine speed, rpm
	Engine torque, N·m
	Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate	For both firing and non-firing data, the Model-Based Calibration
response models	Toolbox uses test plans to fit data to Gaussian process models (GPMs).
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).

Task	Description			
Update block parameters	Update these p	Update these parameters with the calibration.		
	Input command	Parameters		
	Fuel mass	Breakpoints for commanded fuel mass input, f_tbrake_f_bpt		
	Torque	 Breakpoints for commanded torque input, f_tbrake_t_bpt 		
	 Breakpoints for engine speed input, f_tbrake_n_bpt Brake torque map, f_tbrake Air mass flow map, f_air 			
	• Fuel flow n	nap, f_fuel		
	Exhaust te	mperature map, f_texh		
	BSFC map,	, f_eff		
	• EO HC maj	p, f_hc		
	• EO CO maj	o, f co		
	• EO NOx ma	ap, f nox		
	• EO CO2 ma	- -		
	• EO PM ma			

Breakpoints for commanded fuel mass input, f_tbrake_f_bpt — Breakpoints

vector

Breakpoints, in mg/inj.

Dependencies

Setting ${\bf Input\ command}$ to Fuel $\ {\bf mass\ enables}$ this parameter.

Breakpoints for commanded torque input, f_tbrake_t_bpt — Breakpoints vector

Breakpoints, in $N{\cdot}m.$

Setting **Input command** to **Torque** enables this parameter.

Breakpoints for engine speed input, f_tbrake_n_bpt — Breakpoints
vector

Breakpoints, in rpm.

Number of cylinders, NCyl — Number scalar

Number of cylinders.

Crank revolutions per power stroke, Cps — Crank revolutions scalar

Crank revolutions per power stroke.

Total displaced volume, Vd — Volume scalar

Volume displaced by engine, in m³.

Ideal gas constant air, Rair — Constant
scalar

Ideal gas constant of air and residual gas entering the engine intake port, in J/(kg·K).

Air standard pressure, Pstd — Pressure scalar

Standard air pressure, in Pa.

Air standard temperature, Tstd — Temperature scalar

Standard air temperature, in K.

Boost torque line, f_tbrake_bst — Boost lag
vector

Boost torque line, $f_{bst}(N)$, in N·m.

To enable this parameter, select **Include turbocharger lag effect**.

Time constant below boost line — Time constant below scalar

Time constant below boost line, τ_{nat} , in s.

Dependencies

To enable this parameter, select **Include turbocharger lag effect**.

Rising maximum fuel mass boost time constant, tau_bst_rising — Rising time constant

scalar

Rising maximum fuel mass boost time constant, $\tau_{bst.rising}$, in s.

Dependencies

To enable this parameter, select **Include turbocharger lag effect**.

Falling maximum fuel mass boost time constant, tau_bst_falling — Falling time constant

scalar

Falling maximum fuel mass boost time constant, $\tau_{bst,falling}$, in s.

Dependencies

To enable this parameter, select **Include turbocharger lag effect**.

Power

Brake torque map, f_tbrake — Torque table array

Input Command Setting	Description	
Fuel mass	The engine brake torque lookup table is a function of	
	commanded fuel mass and engine speed, $T_{brake} = f(F, N)$, where:	
	 T_{brake} is engine torque, in N·m. F is commanded fuel mass, in mg per injection. N is engine speed, in rpm. 	
	Engine Speed (RPM) 300 4000 200 200 4000 Commanded Fuel (mg/inj)	
Torque	The engine brake torque lookup table is a function of target	
	torque and engine speed, $T_{brake} = f(T_{target}, N)$, where:	
	ullet T_{brake} is engine torque, in N·m.	
	• T_{target} is target torque, in N·m.	
	• N is engine speed, in rpm.	

Plot brake torque map — Plot table button

Click to plot table.

Air

Air mass flow map, f_air — Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	The air mass flow lookup table is a function of commanded fuel
	mass and engine speed, $\dot{m}_{intk} = f(F_{max}, N)$, where:
	\dot{m}_{intk} is engine air mass flow, in kg/s.
	• F_{max} is commanded fuel mass, in mg per injection.
	• N is engine speed, in rpm.
	0.15 (S) 0.11 (S) 0.05 (S) 0.0
Torque	The air mass flow lookup table is a function of maximum torque
	and engine speed, $\dot{m}_{intk} = f(T_{max}, N)$, where:
	• \dot{m}_{intk} is engine air mass flow, in kg/s.
	• T_{max} is maximum torque, in N·m.
	• N is engine speed, in rpm.

Plot air mass map — Plot table

button

Click to plot table.

Fuel

Fuel flow map, f_fuel — Lookup table array

Dependencies

Plot fuel flow map — Plot table

button

Click to plot table.

Temperature

Exhaust temperature map, f_texh — Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	The engine exhaust temperature table is a function of commanded fuel mass and engine speed, $T_{exh} = f(F, N)$, where: • T_{exh} is exhaust temperature, in K. • F is commanded fuel mass, in mg per injection. • N is engine speed, in rpm.
Torque	The engine exhaust temperature table is a function of target torque and engine speed, $T_{exh} = f(T_{target}, N)$, where: • T_{exh} is exhaust temperature, in K. • T_{target} is target torque, in N·m.
	N is engine speed, in rpm.

Plot exhaust temperature map — Plot table

button

Click to plot table.

Efficiency

BSFC map, f_eff — Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	 The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, BSFC= f(F, N), where: BSFC is BSFC, in g/kWh. F is commanded fuel mass, in mg per injection. N is engine speed, in rpm.
	280 280 280 260 200 200 200 200 200 200 20
Torque	The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, $BSFC = f(T_{target}, N)$, where: • $BSFC$ is BSFC, in g/kWh.
	 T_{target} is target torque, in N·m. N is engine speed, in rpm.

Plot BSFC map — Plot table

button

Click to plot table.

HC

EO HC map, f_hc — Lookup table

array

Dependencies

Input Command Setting	Description
Fuel mass	The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, $EO\ HC = f(F, N)$, where:
	• <i>EO HC</i> is engine-out hydrocarbon emissions, in kg/s.
	• F is commanded fuel mass, in mg per injection.
	• N is engine speed, in rpm.
	Engine Speed (RPM) Commanded Fuel (mg/inj)
Torque	The engine-out hydrocarbon emissions are a function of target torque and engine speed, $EO\ HC = f(T_{target},\ N)$, where:
	• EO HC is engine-out hydrocarbon emissions, in kg/s.
	• T_{target} is target torque, in N·m.
	• N is engine speed, in rpm.

Plot EO HC map — Plot table

button

Click to plot table.

co

E0 C0 map, f_co — Lookup table

array

Dependencies

Input Command Setting	Description
Fuel mass	The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, $EO\ CO = f(F, N)$, where: • $EO\ CO$ is engine-out carbon monoxide emissions, in kg/s. • F is commanded fuel mass, in mg per injection. • N is engine speed, in rpm.

Input Command Setting	Description	
Torque	The engine-out carbon monoxide emissions are a function of target torque and engine speed, $EO\ CO = f(T_{target}, N)$, where:	
	• EO CO is engine-out carbon monoxide emissions, in kg/s.	
	• T_{target} is target torque, in N·m.	
	• N is engine speed, in rpm.	

Plot E0 C0 map — Plot table

button

Click to plot table.

NOx

E0 N0x map, f_nox — Lookup table array

Input Command Setting	Description	
Fuel mass	The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass and engine speed, EO NOx=f(F, N), where: • EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s. • F is commanded fuel mass, in mg per injection. • N is engine speed, in rpm.	
	Commanded Fuel (mg/inj)	
Torque	The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque and engine speed, $EO\ NOx = f(T_{target}, N)$, where:	
	EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.	
	• T_{target} is target torque, in N·m.	
	N is engine speed, in rpm.	

Plot E0 NOx map — Plot table

button

Click to plot table.

CO2

E0 C02 map, f_co2 — Lookup table

array

Dependencies

Input Command Setting	Description
Fuel mass	The engine-out carbon dioxide emissions are a function of commanded fuel mass and engine speed, $EO\ CO2 = f(F, N)$, where:
	• EO CO2 is engine-out carbon dioxide emissions, in kg/s.
	• F is commanded fuel mass, in mg per injection.
	• N is engine speed, in rpm.
	0.025 0.025 0.005 0.015 0.005 0.000 Engine Speed (RPM) 0 0 Commanded Fuel (mg/inj)
Torque	The engine-out carbon dioxide emissions are a function of target torque and engine speed, $EO\ CO2 = f(T_{target},\ N)$, where:
	• EO CO2 is engine-out carbon dioxide emissions, in kg/s.
	• T_{target} is target torque, in N·m.
	• <i>N</i> is engine speed, in rpm.

Plot CO2 map — Plot table

button

Click to plot table.

PM

EO PM map, f_pm — Lookup table array

Dependencies

Input Command Setting	Description	
Fuel mass	The engine-out PM emissions are a function of commanded fuel mass and engine speed, where:	
	• EO PM is engine-out PM emissions, in kg/s.	
	F is commanded fuel mass, in mg per injection.	
	• N is engine speed, in rpm.	
Torque	The engine-out PM emissions are a function of target torque and engine speed, $EO\ PM = f(T_{target},\ N)$, where:	
	• EO PM is engine-out PM emissions, in kg/s.	
	• T_{target} is target torque, in N·m.	
	• N is engine speed, in rpm.	

Plot E0 PM map — Plot table

button

Click to plot table.

See Also

CI Core Engine

Topics

"Generate Mapped CI Engine from a Spreadsheet"

Introduced in R2017a

[&]quot;Model-Based Calibration Toolbox"

Mapped SI Engine

Spark-ignition engine model using lookup tables

Library: Powertrain Blockset / Propulsion / Combustion

Engines

Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped SI Engine block implements a mapped spark-ignition (SI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- · Hardware-in-the-loop (HIL) engine control design
- · Vehicle-level fuel economy and performance simulations

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, T_{cmd} , brake torque, T_{brake} , and engine speed, N.

- Power $-f(T_{cmd},N)$
- Air $-f(T_{brake}, N)$
- Fuel $-f(T_{brake},N)$
- Temperature $-f(T_{brake}, N)$
- Efficiency $-f(T_{brake}, N)$
- Hydrocarbon (HC) emissions $-f(T_{brake},N)$
- Carbon monoxide (CO) emissions $-f(T_{brake},N)$
- Nitric oxide and nitrogen dioxide (NOx) emissions $-f(T_{brake},N)$
- Carbon dioxide (CO₂) emissions $-f(T_{brake},N)$
- Particulate matter (PM) emissions $-f(T_{brake},N)$

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup tables using measured data.

To bound the Mapped SI Engine block output, the block does not extrapolate the lookup table data.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description			
Import firing data	Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).			
	Required Data Optional Data			
	Engine speed, rpm	Air mass flow rate, kg/s		
	• Engine torque, N·m	Brake specific fuel consumption, g/ (kW·h)		
		CO2 mass flow rate, kg/s		
		CO mass flow rate, kg/s		
		Exhaust temperature, K		
		Fuel mass flow rate, kg/s		
		HC mass flow rate, kg/s		
		NOx mass flow rate, kg/s		
		Particulate matter mass flow rate, kg/s		
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens.			

Task	Description
Import non-firing data	Import this non-firing data from a file.
	Engine speed, rpm
	• Engine torque, N·m
	Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).

Task	Description	
Update block	Update these parameters with the calibration.	
parameters	Breakpoints for commanded torque input, f_tbrake_t_bpt	
	Breakpoints for engine speed input, f_tbrake_n_bpt	
	Brake torque map, f_tbrake	
	Air mass flow map, f_air	
	Fuel flow map, f_fuel	
	Exhaust temperature map, f_texh	
	BSFC map, f_eff	
	• EO HC map, f_hc	
	• EO CO map, f_co	
	EO NOx map, f_nox	
	• EO CO2 map, f_co2	
	• EO PM map, f_pm	

Cylinder Air Mass

The block calculates the normalized cylinder air mass using these equations.

$$\begin{split} M_{Nom} &= \frac{P_{std}V_d}{N_{cyl}R_{air}T_{std}} \\ L &= \frac{\left(\frac{60s}{min}\right)Cps\cdot\dot{m}_{air}}{\left(\frac{1000g}{Kg}\right)N_{cyl}\cdot N\cdot M_{Nom}} \end{split}$$

The equations use these variables.

L Normalized cylinder air mass

 M_{Nom} Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg

Cps Crankshaft revolutions per power stroke, rev/stroke

 P_{std} Standard pressure

 T_{std} Standard temperature

Ideal gas constant for air and burned gas mixture

 R_{air} Displaced volume

 V_d Displaced volume

 $N_{cvl} \qquad \qquad \text{Number of engine cylinders}$ N_{cvl}

N Engine speed

Engine air mass flow, in g/s

 \dot{m}_{intk}

Turbocharger Lag

To model turbocharger lag, select **Include turbocharger lag effect**. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

Dynamic torque	$\frac{dT_{brake}}{dt} = \frac{1}{\tau_{eng}} (T_{stdy} - T_{brake})$
Boost time constant	$\tau_{bst} = \begin{cases} \tau_{bst,rising} & \text{when } T_{stdy} > T_{brake} \\ \tau_{bst,falling} & \text{when } T_{stdy} \leq T_{brake} \end{cases}$
Final time constant	$\tau_{eng} = \begin{cases} \tau_{thr} & \text{when } T_{brake} < f_{bst}(N) \\ \tau_{bst} & \text{when } T_{brake} \ge f_{bst}(N) \end{cases}$

The equations use these variables.

 T_{brake} Brake torque

 T_{stdy} Steady-state target torque

 τ_{bst} Boost time constant

 $\tau_{bst,rising}$, Boost rising and falling time constant, respectively

 $au_{bst,falling}$

 au_{eng} Final time constant

 au_{thr} Time constant during throttle control

 $f_{bst}(N)$ Boost torque speed line

N Engine speed

Ports

Input

TrqCmd — Commanded torque

scalar

Torque, T_{cmd} , in N·m.

EngSpd — **Engine speed**

scalar

Engine speed, N, in rpm.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
IntkGassMassFlw	Engine air mass flow output	kg/s
NrmlzdAirChrg	Normalized engine cylinder air mass	N/A
Afr	Air-fuel ratio (AFR)	N/A
FuelMassFlw	Engine fuel flow output	kg/s

Signal	Description	Units
ExhManGasTemp	Engine exhaust gas temperature	K
EngTrq	Engine torque output	N·m
EngSpd	Engine speed	rpm
CrkAng	Engine crankshaft absolute angle	degrees crank angle
	$\int\limits_{0}^{(360)Cps}EngSpd\frac{180}{30}d\theta$	
	where Cps is crankshaft revolutions per power stroke.	
Bsfc	Engine brake-specific fuel consumption (BSFC)	g/kWh
ЕоНС	Engine out hydrocarbon emission mass flow	kg/s
EoC0	Engine out carbon monoxide emission mass flow rate	kg/s
EoN0x	Engine out nitric oxide and nitrogen dioxide emissions mass flow	kg/s
EoC02	Engine out carbon dioxide emission mass flow	kg/s
ЕоРМ	Engine out particulate matter emission mass flow	kg/s

EngTrq — Engine brake torque scalar

Engine brake torque, T_{brake} , in N·m.

Parameters

Block Options

Include turbocharger lag effect — Increase time constant off (default)

To model turbocharger lag, select **Include turbocharger lag effect**. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

Dynamic torque	$\frac{dT_{brake}}{dt} = \frac{1}{\tau_{eng}} (T_{stdy} - T_{brake})$
Boost time constant	$\tau_{bst} = \begin{cases} \tau_{bst,rising} & \text{when } T_{stdy} > T_{brake} \\ \tau_{bst,falling} & \text{when } T_{stdy} \leq T_{brake} \end{cases}$
Final time constant	$\tau_{eng} = \begin{cases} \tau_{thr} & \text{when } T_{brake} < f_{bst}(N) \\ \tau_{bst} & \text{when } T_{brake} \ge f_{bst}(N) \end{cases}$

The equations use these variables.

 T_{brake} Brake torque

 T_{stdy} Steady-state target torque

 au_{bst} Boost time constant

 $\tau_{bst.rising}$, Boost rising and falling time constant, respectively

 $\tau_{bst,falling}$

 au_{eng} Final time constant

 au_{thr} Time constant during throttle control

 $f_{bst}(N)$ Boost torque speed line

N Engine speed

Dependencies

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_thr
- · Rising torque boost time constant, tau_bst_rising
- Falling torque boost time constant, tau bst falling

Configuration

Calibrate Maps — Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import firing data	Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).		
	Required Data	Optional Data	
	Engine speed, rpm	Air mass flow rate, kg/s	
	• Engine torque, N·m	Brake specific fuel consumption, g/ (kW·h)	
		CO2 mass flow rate, kg/s	
		CO mass flow rate, kg/s	
		Exhaust temperature, K	
		Fuel mass flow rate, kg/s	
		HC mass flow rate, kg/s	
		NOx mass flow rate, kg/s	
		Particulate matter mass flow rate, kg/s	
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque.		
	To filter or edit the data, s Based Calibration Toolbox	select Edit in Application . The Model- ta Data Editor opens.	

Task	Description
Import non-firing data	Import this non-firing data from a file.
uata	Engine speed, rpm
	• Engine torque, N·m
	Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate	For both firing and non-firing data, the Model-Based Calibration
response models	Toolbox uses test plans to fit data to Gaussian process models (GPMs).
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).

Task	Description
Update block parameters	Update these parameters with the calibration.
	Breakpoints for commanded torque input, f_tbrake_t_bpt
	Breakpoints for engine speed input, f_tbrake_n_bpt
	Brake torque map, f_tbrake
	Air mass flow map, f_air
	Fuel flow map, f_fuel
	Exhaust temperature map, f_texh
	BSFC map, f_eff
	• EO HC map, f_hc
	• EO CO map, f_co
	EO NOx map, f_nox
	• EO CO2 map, f_co2
	• EO PM map, f_pm

Breakpoints for commanded torque, f_tbrake_t_bpt — Breakpoints
vector

Breakpoints, in N·m.

Breakpoints for engine speed input, f_tbrake_n_bpt — Breakpoints
vector

Breakpoints, in rpm.

Number of cylinders, NCyl — Number scalar

Number of cylinders.

 $\begin{array}{c} \textbf{Crank revolutions per power stroke, Cps--Crank revolutions} \\ \textbf{scalar} \end{array}$

Crank revolutions per power stroke.

Total displaced volume, Vd — Volume scalar

Volume displaced by engine, in m³.

Ideal gas constant air, Rair — Constant scalar

Ideal gas constant of air and residual gas entering the engine intake port, in J/(kg*K).

Air standard pressure, Pstd — Pressure scalar

Scatai

Standard air pressure, in Pa.

Air standard temperature, Tstd — Temperature scalar

Standard air temperature, in K.

Boost torque line, f_tbrake_bst - Boost lag vector

Boost torque line, $f_{bst}(N)$, in N·m.

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Time constant below boost line — Time constant below scalar

Time constant below boost line, τ_{thr} , in s.

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Rising torque boost time constant, tau_bst_rising — Rising time constant

scalar

Rising torque boost time constant, $\tau_{bst,rising}$, in s.

Dependencies

To enable this parameter, select **Include turbocharger lag effect**.

Falling torque boost time constant, tau_bst_falling — Falling time constant

scalar

Falling torque boost time constant, $\tau_{bst,falling}$, in s.

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Power

Brake torque map, f_tbrake — Torque table array

The engine torque lookup table is a function of commanded engine torque and engine speed, $T = f(T_{cmd}, N)$, where:

- T is engine torque, in N·m.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Plot brake torque map — Plot table button

Click to plot table.

Air

Air mass flow map, f_air — Lookup table array

The engine air mass flow lookup table is a function of commanded engine torque and engine speed, $\dot{m}_{intk} = f(T_{cmd}, N)$, where:

- \dot{m}_{intk} is engine air mass flow, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Plot air mass map — Plot table

button

Click to plot table.

Fuel

Fuel flow map, f_fuel — Lookup table array

The engine fuel mass flow lookup table is a function of commanded engine torque and engine speed, $MassFlow = f(T_{cmd}, N)$, where:

- MassFlow is engine fuel mass flow, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.

Plot fuel flow map — Plot table

button

Click to plot table.

Temperature

Exhaust temperature map, $f_{\text{texh}} - \text{Lookup table}$ array

The engine exhaust temperature lookup table is a function of commanded engine torque and engine speed, $T_{exh} = f(T_{cmd}, N)$, where:

- T_{exh} is exhaust temperature, in K.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Plot exhaust temperature map — Plot table button

Click to plot table.

Efficiency

BSFC map, f_eff — Lookup table array

The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque and engine speed, $BSFC = f(T_{cmd}, N)$, where:

- BSFC is BSFC, in g/kWh.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Plot BSFC map — Plot table

button

Click to plot table.

HC

EO HC map, f_hc — Lookup table

array

The engine-out hydrocarbon emissions are a function of commanded engine torque and engine speed, $EO\ HC = f(T_{cmd},\ N)$, where:

- EO HC is engine-out hydrocarbon emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Plot EO HC map — Plot table

button

Click to plot table.

CO

array

The engine-out carbon monoxide emissions are a function of commanded engine torque and engine speed, $EO\ CO = f(T_{cmd},\ N)$, where:

- *EO CO* is engine-out carbon monoxide emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Plot E0 C0 map — Plot table

button

Click to plot table.

NOx

EO NOx map, f_nox — Lookup table array

The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque and engine speed, $EO\ NOx = f(T_{cmd},\ N)$, where:

- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Plot E0 NOx map — Plot table

button

Click to plot table.

CO₂

E0 C02 map, $f_{co2} - Lookup table$

array

The engine-out carbon dioxide emissions are a function of commanded engine torque and engine speed, $EO\ CO2 = f(T_{cmd}, N)$, where:

- $\bullet~$ EO CO2 is engine-out carbon dioxide emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- N is engine speed, in rpm.

Plot CO2 map — Plot table

button

Click to plot table.

PM

EO PM map, f_pm — Lookup table

array

The engine-out particulate matter emissions are a function of commanded engine torque and engine speed, where:

- *EO PM* is engine-out PM emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Plot E0 PM map — Plot table

button

Click to plot table.

See Also

SI Core Engine

Topics

"Generate Mapped SI Engine from a Spreadsheet"

"Model-Based Calibration Toolbox"

Introduced in R2017a

Scenario Creation Blocks — Alphabetical List

Drive Cycle Source

Standard or specified longitudinal drive cycle

Library: Powertrain Blockset / Vehicle Scenario Builder

Vehicle Dynamics Blockset / Vehicle Scenarios / Drive

Cycle and Maneuvers

Description

The Drive Cycle Source block generates a standard or user-specified longitudinal drive cycle. The block output is the specified vehicle longitudinal speed, which you can use to:

- Predict the engine torque and fuel consumption that a vehicle requires to achieve desired speed and acceleration for a given gear shift reference.
- Produce realistic velocity and shift references for closed loop acceleration and braking commands for vehicle control and plant models.
- Study, tune, and optimize vehicle control, system performance, and system robustness over multiple drive cycles.

For the drive cycles, you can use:

- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To install additional drive cycles from a support package, see "Install Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration start time, and final reference speed.

To achieve the goals listed in the table, use the specified Drive Cycle Source block parameter options.

Goal	Action
Repeat the drive cycle if the simulation run time exceeds the drive cycle length.	Select Repeat cyclically.
Output the acceleration, as calculated by Savitzky-Golay differentiation.	Select Output acceleration .
Specify a sample period for discrete applications.	Specify a Output sample period (0 for continuous), dt parameter.
Update the simulation run time so that it equals the length of the drive cycle.	Click Update simulation time . If a model configuration reference exists, the block does not enable this option.
Plot the drive cycle in a MATLAB® figure.	Click Plot drive cycle.
Specify the drive cycle using a workspace variable.	 Click Specify variable. The block: Sets the Drive cycle source parameter to Workspace variable. Enables the From workspace parameter. Specify the workspace variable so that it contains time, velocity, and, optionally, the gear shift schedule.
Specify the drive cycle using a file.	 Click Select file. The block: Sets the Drive cycle source parameter to .mat, .xls, .xlsx or .txt file. Enables the Drive cycle source file parameter. Specify a file that contains time, velocity, and, optionally, the gear shift schedule.

Goal	Action
Output drive cycle gear.	Specify a drive cycle that contains a gear shift schedule. You can use:
	A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
	Workspace variables.
	• .mat, .xls, .xlsx, or .txt files.
	Click Output gear shift data .
Install additional drive cycles from a support package.	Click Install additional drive cycles . The block enables the parameter if you can install additional drive cycles from a support package.

Ports

Output

Speed — Vehicle reference speed

scalar

Vehicle reference speed, in units that you specify. To specify the units, use the **Output velocity units** parameter.

Acceleration — Vehicle reference acceleration

scalar

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

Dependencies

To create the output acceleration port, select **Output acceleration**. Selecting **Output acceleration** enables the **Output acceleration units** parameter.

Gear — Vehicle gear

scalar

To create this port:

- **1** Specify a drive cycle that contains a gear shift schedule. You can use:
 - A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
 - Workspace variables.
 - .mat, .xls, .xlsx, or .txt files.
- 2 Select Output gear shift data.

Parameters

Drive Cycle

Drive cycle source — Select the drive cycle source

```
FTP75 (default) | Wide Open Throttle (WOT) | Workspace variable | .mat, .xls, .xlsx or .txt file
```

- FTP75 Load the FTP75 drive cycle from a .mat file into a 1-D Lookup Table block. The FTP75 represents a city drive cycle that you can use to determine tailpipe emissions and fuel economy of passenger cars. To install additional drive cycles from a support package, see "Install Drive Cycle Data".
- Wide Open Throttle (WOT) Use WOT parameters to specify a drive cycle for performance testing.
- Workspace variable Specify time, speed, and, optionally, gear data as a structure, 2-D array, or time series object.
- .mat, .xls, .xlsx or .txt file Specify a file that contains time, speed and, optionally, gear data in column format.

Once you have installed additional cycles, you can use set_param to set the drive cycle. For example, to use drive cycle US06:

```
set param([gcs '/Drive Cycle Source'],'cycleVar','US06')
```

Dependencies

The table summarizes the parameter dependencies.

Drive Cycle Source	Enables Parameter
Wide Open Throttle (WOT)	Start time, t_wot1
	Initial reference speed, xdot_woto
	Nominal reference speed, xdot_wot1
	Time to start deceleration, wot2
	Final reference speed, xdot_wot2
	WOT simulation time, t_wotend
	Source velocity units
Workspace variable	From workspace
	Source velocity units
	Output gear shift data, if drive cycle includes gear shift schedule
.mat, .xls, .xlsx or .txt	Drive cycle source file
file	Source velocity units
	Output gear shift data, if drive cycle includes gear shift schedule

From workspace — Workspace

variable

Monotonically increasing time, velocity, and, optionally, gear data, specified by a structure, 2-D array, or time series object. Enter units for velocity in the **Source velocity units** parameter field.

A valid point must exist for each corresponding time value. You cannot specify inf, empty, or NaN.

Workspace Variable	ce Veloc	Outp ut Veloc ity Unit	Drive Cycle Plot	
2-D array without a gear shift schedule. From workspace set to myCycleA. t = 0:1:100; xdot = 5.*sin(t)+5; myCycleA = [t',xdot'];	m/s	mph	Custom Data 25 20 [ydw] 15 40 5 0 0 20 40 Time [s]	Set 60

Workspace Variable	ce Veloc ity	ut	Drive Cycle Plot	
Time series object without a gear shift schedule. From workspace set to myCycleT. myCycleT = timeseries; t = 0:1:100; xdot = 5.*sin(t)+20; myCycleT.Data = xdot'; myCycleT.Time = t;	n m/s	mph	Custom Data \$ 60 55 [\qdw] \text{ 45} - \text{ 45} - \text{ 30} \text{ 30} \text{ 7 me [s]}	Set 1

To enable this parameter, select Workspace variable from **Drive cycle source**.

Drive cycle source file — File name .mat, .xls, .xlsx or .txt

File containing monotonically increasing time, velocity, and, optionally, gear in column or comma-separated format. The block ignores units in the file. Enter units for velocity in the **Source velocity units** parameter field.

File	ce	Outp ut Veloc ity Unit	Drive Cycle Plot	
An .xls or .xlsx file with time in column A and velocity in column B. A B B C C C C C C C C C C C C C C C C C	mph	mph	Custom Data Set	t
			Time [s]	

Fil	File			ce	Outp ut Veloc ity Unit	Drive (Cycle Plot	
	.xls or			mph	mph		Custom Data Se	et
col	time in column A, velocity in column B, and gear in column C. The block:				50			
•	Ignores file.	the uni	ts in the			40		
•	Converts the gear information to integers:N to 0				Velocity [mph]			
	• D to	2 B	С			/elocit	/ /	
1	sec	mph	gear				/	
2	0	. 0	N					
3	0.5	0	N			10	· /	
4	1	0	N					
5	1.5	0	N					
6	2	1	D					
7	2.5	5 10	D			0	0 2 4 6	
9	3.5	20	D D			,		
10	3.3	30	D				Time [s]	
11	4.5	40	D					
12	5	50	D					

If you provide the gear schedule using P, R, N, D, L, OD, the block maps the gears to integers.

Gear	Integer
P	80
R	-1
N	0

Gear	Integer
L	1
D	2
OD	Next integer after highest specified gear.

For example, the block converts the gear schedule P P N L D 3 4 5 6 5 4 5 6 7 0D 7 to 80 80 0 1 2 3 4 5 6 5 4 5 6 7 8 7.

Dependencies

To enable this parameter, select .mat, .xls, .xlsx or .txt file from **Drive cycle** source.

Repeat cyclically — Repeat drive cycle

off (default)

Repeat the drive cycle if the simulation run time exceeds the length of the drive cycle.

Output acceleration — Output the acceleration off (default)

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

Dependencies

To create the output acceleration port, select **Output acceleration**. Selecting **Output acceleration** enables the **Output acceleration units** parameter.

Output gear shift data — Output the gear off (default)

Dependencies

- Specify a drive cycle that contains a gear shift schedule. You can use:
 - A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
 - Workspace variables.
 - .mat, .xls, .xlsx, or .txt files.
- Clicking this parameter creates input port **Gear**.

WOT

Start time, t_wot1 — Drive cycle start time scalar

Drive cycle start time, in s. For example, this plot shows a drive cycle with a start time of 10 s.

Dependencies

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

Initial reference speed, xdot_woto — Speed scalar

Initial reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with an initial reference speed of 4 m/s.

To enable this parameter, select the ${f Drive\ cycle\ source}$ parameter ${f Wide\ Open\ Throttle\ (WOT)}$.

Nominal reference speed, xdot_wot1 — Speed scalar

Nominal reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with a nominal reference speed of 30 m/s.

To enable this parameter, select the ${f Drive\ cycle\ source}$ parameter Wide Open Throttle (WOT).

Time to start deceleration, wot2 — Time scalar

Time to start vehicle deceleration, in s. For example, this plot shows a drive cycle with vehicle deceleration starting at $25~\rm s.$

To enable this parameter, select the ${f Drive\ cycle\ source}$ parameter Wide Open Throttle (WOT).

Final reference speed, xdot_wot2 — Speed scalar

Final reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with a final reference speed of $2 \, \text{m/s}$.

To enable this parameter, select the $\bf Drive\ cycle\ source$ parameter Wide Open Throttle (WOT).

WOT simulation time, t_wotend — Time scalar

Drive cycle WOT simulation time, in s. For example, this plot shows a drive cycle with a simulation time of $50 \, \text{s}$.

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

Units and Sample Period

Source velocity units — Specify velocity units m/s (default)

Input velocity units.

Dependencies

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT), Workspace variable, or .mat, .xls, .xlsx or .txt file.

Output velocity units — Specify velocity units m/s (default)

Output velocity units.

Output acceleration units — Specify acceleration units m/s^2 (default)

Specify the output acceleration units.

Dependencies

To enable this parameter, select **Output acceleration**.

Output sample period (0) for continuous — Sample rate scalar

Sample rate. Set to $\boldsymbol{0}$ for continuous sample period. For a discrete period, specify a non-zero rate.

See Also

Longitudinal Driver

Topics

"Time Series Objects" (MATLAB)

Introduced in R2017a

Longitudinal Driver

Longitudinal speed-tracking controller

Library: Powertrain Blockset / Vehicle Scenario Builder

Vehicle Dynamics Blockset / Vehicle Scenarios /

Driver

Description

The Longitudinal Driver block implements a longitudinal speed-tracking controller. Based on reference and feedback velocities, the block generates normalized acceleration and braking commands that can vary from 0 through 1. You can use the block to model the dynamic response of a driver or to generate the commands necessary to track a longitudinal drive cycle.

Configurations

Use the **Control type, cntrlType** parameter to specify one of these control options.

Setting	Block Implementation
	Proportional-integral (PI) control with tracking windup and feed-forward gains.
	PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.

Setting	Block Implementation	
Predictive	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam ^{1, 2, 3} . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block: • Represents the dynamics as a linear single track (bicycle)	
	vehicle	
	• Minimizes the previewed error signal at a single point T^* seconds ahead in time	
	Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms	

Use the **Shift type**, **shftType** parameter to specify one of these shift options.

Setting	Block Implementation
None	No transmission. Block outputs a constant gear of 1.
	Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.
Reverse, Neutral, Drive	Block uses a Stateflow [®] chart to model reverse, neutral, and drive gear shift scheduling.
	Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral.
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.

Setting	Block Implementation
Scheduled	Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.
	Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N-speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:
	Initial gear
	Upshift and downshift accelerator pedal positions
	Upshift and downshift velocity
	Timing for shifting and engaging forward and reverse from neutral
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.
External	Block uses the input gear, vehicle state, and velocity feedback to generate acceleration and braking commands to track forward and reverse vehicle motion.
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.

Controller: PI Speed-Tracking

If you set the control type to PI or Scheduled PI, the block implements proportional-integral (PI) control with tracking windup and feed-forward gains. For the Scheduled PI configuration, the block uses feed forward gains that are a function of vehicle velocity.

To calculate the speed control output, the block uses these equations.

Setting	Equation
PI	$y = \frac{K_{ff}}{v_{nom}}v_{ref} + \frac{K_{p}e_{ref}}{v_{nom}} + \left(\frac{K_{i}}{v_{nom}} + K_{aw}e_{out}\right)\int e_{ref} dt + K_{g}\theta$
Scheduled PI	$y = \frac{K_{ff}(v)}{v_{nom}}v_{ref} + \frac{K_p(v)e_{ref}}{v_{nom}} + \left(\frac{K_i}{v_{nom}}(v) + K_{aw}e_{out}\right)\int e_{ref}dt + K_g(v)\theta$

where:

$$e_{ref} = v_{ref} - v$$

 $e_{out} = y_{sat} - y$

$$y_{sat} = \begin{cases} -1 & y < -1 \\ y & -1 \le y \le 1 \\ 1 & 1 < y \end{cases}$$

The velocity error low-pass filter uses this transfer function.

$$H(s) = \frac{1}{\tau_{err} s + 1} \quad \text{for} \quad \tau_{err} > 0$$

To calculate the acceleration and braking commands, the block uses these equations.

$$y_{acc} = \begin{cases} 0 & y_{sat} < 0 \\ y_{sat} & 0 \le y_{sat} \le 1 \\ 1 & 1 < y_{sat} \end{cases}$$

$$y_{dec} = \begin{cases} 0 & y_{sat} > 0 \\ -y_{sat} & -1 \le y_{sat} \le 0 \\ 1 & y_{sat} < -1 \end{cases}$$

The equations use these variables.

 K_{ff} Velocity feed-forward gain K_q Grade feed-forward gain

 θ Grade angle

 $au_{
ho rr}$ Error filter time constant

y Nominal control output magnitude y_{sat} Saturated control output magnitude

 e_{ref} Velocity error

 e_{out} Difference between saturated and nominal control outputs

 y_{acc} Acceleration signal y_{dec} Braking signal

 $egin{array}{lll} oldsymbol{v} & & ext{Velocity feedback signal} \ oldsymbol{v}_{ref} & & ext{Reference velocity signal} \ \end{array}$

Controller: Predictive Speed-Tracking

If you set the **Control type**, **cntrlType** parameter to **Predictive**, the block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam¹, ², ³. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:

- Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T* seconds ahead in time
- Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

For longitudinal motion, the block implements these linear dynamics.

$$x_1 = v$$

$$\dot{x} = x_2 = \frac{K_{pt}}{m} - g\sin(\theta) + F_r x_1$$

In matrix notation:

$$\dot{x} = Fx + g\overline{u}$$

where:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$F = \begin{bmatrix} 0 & 1 \\ \frac{F_r}{m} & 0 \end{bmatrix}$$

$$\mathbf{g} = \begin{bmatrix} 0 \\ \frac{K_{pt}}{m} \end{bmatrix}$$

$$\overline{u} = u - \frac{m^2}{K_{pt}} g \sin(\gamma)$$

The block uses this equation for the rolling resistance.

$$F_r = -\left[\tanh(x_1)(\frac{a_r}{x_1} + c_r x_1) + b_r\right]$$

The single-point model assumes a minimum previewed error signal at a single point T^* seconds ahead in time. a^* is the driver ability to predict the future vehicle response based on the current steering control input. b^* is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.

$$a^* = (T^*)m^T \left[I + \sum_{n=1}^{\infty} \frac{F^n (T^*)^n}{(n+1)!}\right]ge$$

$$\boldsymbol{b}^* = \boldsymbol{m}^T \left[\boldsymbol{I} + \sum_{n=1}^{\infty} \frac{\boldsymbol{F}^n (T^*)^n}{n!} \right]$$

where:

$$\mathbf{m}^T = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

The equations use these variables.

a, b	Forward and rearward tire location, respectively
m	Vehicle mass
I	Vehicle rotational inertia
a*, b *	Driver prediction scalar and vector gain, respectively
X	Predicted vehicle state vector
ν	Longitudinal velocity
\boldsymbol{F}	System matrix
K_{pt}	Tractive force and brake limit
\boldsymbol{g}	Control coefficient vector
g	Gravitational constant
T^*	Preview time window
$f(t+T^*)$	Previewed path input T* seconds ahead
U	Forward vehicle velocity
m^T	Constant observer vector; provides vehicle lateral position
F_r	Rolling resistance
a_r	Static rolling and driveline resistance
b_r	Linear rolling and driveline resistance

Aerodynamic rolling and driveline resistance

The single-point model implemented by the block finds the steering command that minimizes a local performance index, J, over the current preview interval, (t, t+T).

$$J = \frac{1}{T} \int_{t}^{t+T} [f(\eta) - y(\eta)]^{2} d\eta$$

To minimize J with respect to the steering command, this condition must be met.

$$\frac{dJ}{du} = 0$$

 C_r

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error T^* seconds ahead^{1, 2, 3}.

$$u^{o}(t) = u(t) + \frac{e(t+T^*)}{a^*}$$

The equations use these variables.

$f(t+T^*)$	Previewed path input T^* sec ahead
$y(t+T^*)$	Previewed plant output T^* sec ahead
$e(t+T^*)$	Previewed error signal T^* sec ahead
$u(t), u^{o}(t)$	Steer angle and optimal steer angle, respectively
J	Performance index

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.

$$H(s) = e^{-s\tau}$$

The equations use these variables.

τ	Driver transport delay
$y(t+T^*)$	Previewed plant output T^* sec ahead
$e(t+T^*)$	Previewed error signal T^* sec ahead
$u(t), u^o(t)$	Steer angle and optimal steer angle, respectively
J	Performance index

Ports

Input

VelRef — **Reference vehicle velocity**

scalar

Reference velocity, v_{ref} , in m/s.

VelFdbk — Longitudinal vehicle velocity

scalar

Longitudinal vehicle velocity, \it{U} , in vehicle-fixed frame, in m/s.

Grade — **Road** grade angle

scalar

Road grade angle, θ , in deg.

ExtGear — Gear

scalar

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To create this port, set **Shift type**, **shftType** to External.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Variable	Description
Accel	y_{acc}	Commanded vehicle acceleration, normalized from 0 through 1
Decel	Ydec	Commanded vehicle deceleration, normalized from 0 through 1
Gear		Integer value of commanded gear
Clutch		Clutch command
Err	e_{ref}	Difference in reference vehicle speed and vehicle speed
ErrSqrSum	$\int_{0}^{t} e_{ref}^{2} dt$	Integrated square of error
ErrMax	$\max(e_{ref}(t))$	Maximum error during simulation
ErrMin	$\min(e_{ref}(t))$	Minimum error during simulation

AccelCmd — Commanded vehicle acceleration

scalar

Commanded vehicle acceleration, y_{acc} , normalized from 0 through 1.

DecelCmd — **Commanded vehicle deceleration**

scalar

Commanded vehicle deceleration, y_{dec} , normalized from 0 through 1.

Gear — Commanded vehicle gear

scalar

Integer value of commanded vehicle gear.

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To create this port, select **Output gear signal**.

Parameters

Control type, cntrlType — Longitudinal control

PI (default) | Scheduled PI | Predictive

Type of longitudinal control.

Setting	Block Implementation
	Proportional-integral (PI) control with tracking windup and feed-forward gains.
Scheduled PI	PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.

Setting	Block Implementation
Predictive	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam ^{1, 2, 3} . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block: • Represents the dynamics as a linear single track (bicycle)
	vehicle
	• Minimizes the previewed error signal at a single point T^* seconds ahead in time
	Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

Shift type, shftType — Shift type
None (default) | Reverse, Neutral, Drive | Scheduled | External

Shift type.

Setting	Block Implementation
None	No transmission. Block outputs a constant gear of 1.
	Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.

Setting	Block Implementation
Reverse, Neutral, Drive	Block uses a Stateflow chart to model reverse, neutral, and drive gear shift scheduling.
	Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral.
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.
Scheduled	Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.
	Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N-speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:
	Initial gear
	Upshift and downshift accelerator pedal positions
	Upshift and downshift velocity
	Timing for shifting and engaging forward and reverse from neutral
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.

Setting	Block Implementation
External	Block uses the input gear, vehicle state, and velocity feedback to generate acceleration and braking commands to track forward and reverse vehicle motion. For neutral gears, the block uses braking commands to control the
	vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.

Reference and feedback units, velUnits — Velocity units m/s (default)

Vehicle velocity reference and feedback units.

Dependencies

If you set **Control type, cntrlType** control type to Scheduled or Scheduled PI, the block uses the **Reference and feedback units, velUnits** for the **Nominal speed, vnom** parameter dimension.

If you set **Shift Type**, **shftType** to Scheduled, the block uses the **Longitudinal velocity units**, **velUnits** for these parameter dimensions:

- Upshift velocity data table, upShftTbl
- · Downshift velocity data table, dwnShftTbl

Control

Longitudinal Nominal Gains

 ${\bf Proportional\ gain,\ Kp-Gain}$

scalar

Proportional gain, K_p , dimensionless.

Dependencies

To create this parameter, set **Control type** to PI.

Integral gain, Ki — Gain

scalar

Proportional gain, K_i , dimensionless.

Dependencies

To create this parameter, set **Control type** to PI.

Velocity feed-forward, Kff — Gain scalar

Velocity feed-forward gain, K_{ff} , dimensionless.

Dependencies

To create this parameter, set **Control type** to PI.

Grade feed-forward, Kg — Gain scalar

Grade feed-forward gain, K_a , in 1/deg.

Dependencies

To create this parameter, set **Control type** to PI.

Velocity gain breakpoints, VehVelVec — Breakpoints array

Velocity gain breakpoints, VehVelVec, dimensionless.

Dependencies

To create this parameter, set **Control type** to Scheduled PI.

Velocity feed-forward gain values, KffVec — Gain array

Velocity feed-forward gain values, *KffVec*, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set Control type to Scheduled PI.

Proportional gain values, KpVec — Gain array

Proportional gain values, *KpVec*, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set **Control type** to **Scheduled PI**.

Integral gain values, KiVec — Gain

array

Integral gain values, *KiVec*, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set **Control type** to Scheduled PI.

Grade feed-forward values, KgVec — Grade gain

array

Grade feed-forward values, *KgVec*, as a function of vehicle velocity, in 1/deg.

Dependencies

To create this parameter, set **Control type** to Scheduled PI.

Nominal speed, vnom — Nominal vehicle speed

scalar

Nominal vehicle speed, v_{nom} , in units specified by the **Reference and feedback units**, **velUnits** parameter. The block uses the nominal speed to normalize the controller gains.

Dependencies

To create this parameter, set Control type to PI or Scheduled PI.

Anti-windup, Kaw — Gain

scalar

Anti-windup gain, K_{aw} , dimensionless.

Dependencies

To create this parameter, set **Control type** to PI or Scheduled PI.

Error filter time constant, tauerr — Filter

scalar

Error filter time constant, τ_{err} , in s. To disable the filter, enter 0.

Dependencies

To create this parameter, set Control type to PI or Scheduled PI.

Predictive

Vehicle mass, m — Mass

scalar

Vehicle mass, m, in kg.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Effective vehicle total tractive force, Kp — Tractive force scalar

Effective vehicle total tractive force, K_p , in N.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Driver response time, tau — Tau

scalar

Driver response time, τ , in s.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Preview distance, L — Distance

scalar

Driver preview distance, L, in m.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Rolling resistance coefficient, aR — Resistance

scalar

Static rolling and driveline resistance coefficient, a_R , in N. Block uses the parameter to estimate the constant acceleration or braking effort.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Rolling and driveline resistance coefficient, bR — Resistance scalar

Rolling and driveline resistance coefficient, b_R , in N·s/m. Block uses the parameter to estimate the linear velocity-dependent acceleration or braking effort.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Aerodynamic drag coefficient, cR — Drag scalar

Aerodynamic drag coefficient, c_R , in N·s^2/m^2. Block uses the parameter to estimate the quadratic velocity-dependent acceleration or braking effort.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Gravitational constant, g — Gravitational constant scalar

Gravitational constant, g, in m/s^2.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Shift

Reverse, Neutral, Drive

Initial gear, GearInit — Initial gear scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the **Initial Gear, GearInit** parameter value can be only -1, 0, or 1.

Time required to shift, tShift — Time scalar

Time required to shift, *tShift*, in s. The block uses the time required to shift to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, and drive gear shift scheduling.

Dependencies

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive.

Scheduled

Initial gear, GearInit — Initial gear scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

Gear	Integer
Park	80
Reverse	-1
Neutral	0

Gear	Integer	
Drive	1	
Gear	Gear number	

Dependencies

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the **Initial Gear, GearInit** parameter value can be only -1, 0, or 1.

Up and down shift accelerator pedal positions, pdlVec — Pedal position breakpoints

Pedal position breakpoints for lookup tables when calculating upshift and downshift velocities, dimensionless. Vector dimensions are 1 by the number of pedal position breakpoints, m.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

Upshift velocity data as a function of pedal position and gear, in units specified by the **Reference and feedback units, velUnits** parameter. Upshift velocities indicate the vehicle velocity at which the gear should increase by 1.

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1, is the upshift velocity for the neutral gear.

Dependencies

To create this parameter, set **Shift type**, **shftType** to Scheduled.

Downshift velocity data table, dwnShftTbl — Table [m-by-n] array

Downshift velocity data as a function of pedal position and gear, in units specified by the **Reference and feedback units, velUnits** parameter. Downshift velocities indicate the vehicle velocity at which the gear should decrease by 1.

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1, is the downshift velocity for the neutral gear.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

Time required to shift, tClutch — Time scalar

Time required to shift, t_{Clutch} , in s.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

Time required to engage reverse from neutral, tRev — Time scalar

Time required to engage reverse from neutral, t_{Rev} , in s.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

Time required to engage park from neutral, tPark — Time scalar

Time required to engage park from neutral, t_{Park} , in s.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

References

- [1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". *Journal of Dynamic Systems, Measurement, and Control.* Vol. 102, Number 3, Sept. 1980.
- [2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving ". *IEEE Transactions on Systems, Man, and Cybernetics*. Vol. 11, Issue 6, June 1981.

[3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.

See Also

Drive Cycle Source | Vehicle Body Total Road Load

Introduced in R2017a

Transmission Blocks — Alphabetical List

Automated Manual Transmission

Ideal automated manual transmission

Library: Powertrain Blockset / Transmission / Transmission

Systems

Description

The Automated Manual Transmission block implements an ideal automated transmission (AMT). An AMT is a manual transmission with additional actuators and an electronic control unit (ECU) to regulate clutch and gear selection based on commands from a controller. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable.

Use the block for:

- Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Automated Manual Transmission block calculates:

- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.

Setting	Block Implementation
Gear, input torque, input speed, and temperature	Efficiency determined from a 4D lookup table that is a function of: Gear Input torque Input speed Oil temperature

Clutch Control

The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select **Control type** parameter **Ideal** integrated controller, the block generates idealized clutch pressure signals. To use your own clutch control signals, select **Control type** parameter External control.

Clutch Lock-Up and Clutch Friction

Based on the clutch lock-up condition, the block implements one of these friction models.

If	Clutch Condition	Friction Model
	Unlocked	
$\omega_i \neq N\omega_d$		
or		
$\left T_{S}<\left T_{f}-Nw_{i}b_{i}\right ight $		$T_f = T_k$
		where,
		$T_k = F_c R_{eff} \mu_k \tanh \left[4 \left(\frac{w_i}{N} - w_d \right) \right]$
	Locked	$T_{s} = T_{c}$ $T_{s} = \hat{F}_{c}R_{eff}\mu_{s}$ $R_{eff} = \frac{2(R_{o}^{3} - R_{i}^{3})}{3(R_{o}^{2} - R_{i}^{2})}$
$\omega_i = N \omega_t$		$R_{off} = \frac{2(R_o^3 - R_i^3)}{2}$
and		$3(R_o^2 - R_i^2)$

$$T_S \ge |T_f - Nb_i\omega_i|$$

The equations use these variables.

ω_t	Output drive shaft speed
ω_i	Input drive shaft speed
ω_d	Drive shaft speed
b_i	Viscous damping
F_c	Applied clutch force
N	Engaged gear
T_f	Frictional torque
T_k	Kinetic frictional torque
T_s	Static frictional torque
$R_{e\!f\!f}$	Effective clutch radius
R_o	Annular disk outer radius
R_i	Annular disk inner radius
μ_s	Coefficient of static friction
μ_k	Coefficient of kinetic friction

Locked Rotational Dynamics

To model the rotational dynamics when the clutch is locked, the block implements these equations.

$$\begin{split} \dot{\omega}_d J_N &= \eta_N T_d - \frac{\omega_i}{N} b_N + N T_i \\ \omega_i &= N \omega_d \end{split}$$

The block determines the input torque, T_i , through differentiation.

The equations use these variables.

Input drive shaft speed ω_i Drive shaft speed ω_d Engaged gear Ν Engaged gear viscous damping b_N Engaged gear inertia J_N Engaged gear efficiency η_N T_d Drive shaft torque T_i Applied input torque

Unlocked Rotational Dynamics

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.

$$\dot{\omega}_d J_N = N T_f - \omega_d b_N + T_d$$

where:

ω_d	Drive shaft speed
N	Engaged gear
b_N	Engaged gear viscous damping
J_N	Engaged gear inertia
T_d	Drive shaft torque
T_i	Applied input torque

Ports

Input

${\bf Gear-Gear\ number\ to\ engage}$

scalar

Integer value of gear number to engage.

CltchCmd — Clutch command

scalar

Clutch pressure command.

Dependencies

To create this port, select **Control type** parameter External control.

EngTrq — Applied input torque

scalar

Applied input torque, T_i , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

DiffTrq — Applied load torque

scalar

Applied load torque, T_d , typically from the differential or driveshaft, in N·m.

Temp — Oil temperature

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- · Input torque
- Input speed
- Oil temperature

Dependencies

To create this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Output

Info — Bus signal

bus

Bus signal contains these block calculations.

Signal		Description	Variable	Units
Eng	EngTrq	Input applied torque	T_i	N·m
	EngSpd	Input drive shaft speed	ω_i	rad/s
Diff	DiffTrq	Output drive shaft torque	T_t	N·m
	DiffSpd	Output drive shaft speed	ω_t	rad/s
Cltch	CltchForce	Applied clutch force	F_c	N
	CltchLocked	Clutch lock status, Boolean:	N/A	N/A
		• Locked — 0		
		• Unlocked — 1		
Trans	TransSpdRatio	Speed ratio at time t	$\phi(t)$	N/A
	TransEta	Ratio of output power to input power	η	N/A
	TransGearCmd	Commanded gear	N_{cmd}	N/A
	TransGear	Engaged gear	N	N/A

EngSpd — Angular speed

scalar

Applied drive shaft angular speed input, ω_i , in rad/s.

DiffSpd — Angular speed

scalar

Drive shaft angular speed output, ω_d , in rad/s.

Parameters

Control type — Specify control type

Ideal integrated controller (default) | External control

The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select **Control type** parameter **Ideal** integrated controller, the

block generates idealized clutch pressure signals. To use your own clutch control signals, select **Control type** parameter External control.

Dependencies

This table summarizes the port configurations.

Control Mode	Creates Ports
External control	CltchCmd

Efficiency factors — Specify efficiency calculation

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.
Gear, input torque, input speed, and temperature	Efficiency determined from a 4D lookup table that is a function of: • Gear • Input torque • Input speed • Oil temperature

Dependencies

Setting Parameter To	Enables
Gear only	Efficiency vector, eta
Gear, input torque, input speed, and temperature	Efficiency torque breakpoints, Trq_bpts Efficiency speed breakpoints, omega_bpts
	Efficiency temperature breakpoints, Temp_bpts
	Efficiency lookup table, eta_tbl

Transmission

Input shaft inertia, Jin — Inertia scalar

Input shaft inertia, in kg·m^2.

Input shaft damping, bin — Damping scalar

Input shaft damping, in N·m·s/rad.

Initial input velocity, omegain_o — Angular velocity scalar

Angular velocity, in rad/s.

Gear number vector, G — Specify number of transmission speeds vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is θ . For example, you can set these parameter values.

To Specify	Set Gear number, G To
Four transmission speeds, including neutral	[0,1,2,3,4]
Three transmission speeds, including neutral and reverse	[-1,0,1,2,3]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency torque breakpoints, Trq_bpts — Breakpoints vector

Torque breakpoints for efficiency table, in $N \cdot m$.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts — Breakpoints vector

Speed breakpoints for efficiency table, rad/s.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts — Breakpoints vector

Temperature breakpoints for efficiency table, in K.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Gear ratio vector, N — Ratio of input speed to output speed ${\tt vector}$

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

To Specify Gear Ratios For	Set Gear number, G To	Set Gear ratio, N To
Four transmission speeds, including neutral	[0,1,2,3,4]	[1,4.47,2.47,1.47,1]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]	[-4.47,1,4.47,2.47,1.47,1,0 .8]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Transmission inertia vector, Jout — Gear rotational inertia vector

Vector of gear rotational inertias, with indices corresponding to the inertias specified in **Gear number, G**, in $kg \cdot m^2$. For example, you can set these parameter values.

To Specify Inertia For	Set Gear number, G To	Set Inertia, J To
Four gears, including neutral	[0,1,2,3,4]	[0.01,2.28,2.04,0.32,0.028]
Inertia for five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[2.28,0.01,2.28,2.04,0.32,0 .028,0.01]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Transmission damping vector, bout — Gear viscous damping coefficient vector

Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in **Gear number**, \mathbf{G} , in N·m·s/rad. For example, you can set these parameter values.

To Specify Damping For	Set Gear number, G To	Set Damping, b To
Four gears, including neutral	[0,1,2,3,4]	[0.001,0.003,0.0025, 0.002,0.001]
Five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[0.003,0.001,0.003, 0.0025,0.002,0.001,0.001]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency vector, eta — Gear efficiency vector

Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

To Specify Efficiency For	Set Gear number, G To	Set Efficiency, eta To
Four gears, including neutral	[0,1,2,3,4]	[0.9,0.9,0.9,0.95]
Five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[0.9,0.9,0.9, 0.9,0.9,0.95,0.95]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear only.

Efficiency lookup table, eta_tbl — Gear efficiency array

Table of gear mechanical efficiency, η_N as a function of gear, input torque, input speed, and temperature.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Initial output velocity, omega_o — Transmission scalar

Transmission initial output rotational velocity, ω_{to} , in rad/s. If you select **Clutch initially locked**, the block ignores the **Initial output velocity**, **omega_o** parameter value.

Initial gear, G_o — Engaged gear scalar

Initial gear to engage, G_o .

Clutch and Synchronizer

Clutch pressure time constant, tauc — Time

scalar

Time required to engage and disengage the clutch during shift events, t_c , in s.

Sychronization time, ts — Time

scalar

Time required for gear selection and synchronization, t_s , in s.

Clutch time, tc — Time

scalar

Time required to engage and disengage the clutch during shift events, t_c , in s.

Dependencies

To create this parameter, select **Control type** parameter **Ideal** integrated controller.

Effective clutch radius, R — Radius

scalar

The effective radius, $R_{\it eff}$, used with the applied clutch friction force to determine the friction force, in m. The effective radius is defined as:

$$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$$

The equation uses these variables.

 R_o Annular disk outer radius

 R_i Annular disk inner radius

Clutch force gain, K_c — Force

scalar

Open loop lock-up clutch gain, K_c , in N.

Clutch static friction coefficient, mus — Coefficient scalar

Dimensionless clutch disc coefficient of static friction, μ_s .

Clutch kinematic friction coefficient, muk — Coefficient scalar

Dimensionless clutch disc coefficient of kinetic friction, μ_k .

Clutch initially locked — Select to initially lock clutch off (default)

Select to lock clutch initially.

Dependencies

To create this parameter, select **Control type** parameter **Ideal** integrated controller.

Synchronizer initially locked — Select to initially lock synchronizer off (default)

Select to initially lock synchronizer.

See Also

AMT Controller | Continuously Variable Transmission | Dual Clutch Transmission | Ideal Fixed Gear Transmission

Introduced in R2017a

AMT Controller

Automated manual transmission controller with clutch open, close, and synchronization timing

Library: Powertrain Blockset / Transmission / Transmission

Controllers

Description

The AMT Controller block implements an automated manual transmission (AMT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

Ports

Inputs

GearReq — Gear number to engage

scalar

Gear number request, G_{req} .

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable
GearReq	Gear number request	G_{req}
GearEngd	Nominal gear commanded by the controller	G_o
Cltch	Clutch pressure command for gears, between 0 and 1	NA

GearEffct — **Effective gear for shifting**

scalar

Effective gear for shifting. The block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

Cltch — Command for clutch pressure

scalar

Clutch pressure command, between 0 and 1.

Parameters

Initial gear, G_o — Engaged gear

scalar

Initial gear to engage, G_o .

Clutch actuation time, tc — Time

scalar

Time required to engage and disengage the clutch during shift events, t_c , in s.

Synchronizer time, ts — Time

scalar

Time required for gear selection and synchronization, t_s , in s.

Sample period, dt — Time

scalar

Sample period, dt, in s.

Clutch initially locked — Select to initially lock clutch off (default)

Selecting this parameter initially locks the clutch.

Synchronizer initially locked — Select to initially lock synchronizer off (default)

Selecting this parameter initially locks the synchronizer.

See Also

Automated Manual Transmission

Introduced in R2017a

Continuously Variable Transmission

Push belt continuously variable transmission with independent radii control

Library: Powertrain Blockset / Transmission / Transmission Systems

> Dir Info
PilyRatioReq
> EngTrq
Diffspd

Description

The Continuously Variable Transmission block implements a push belt continuously variable transmission (CVT) with independent radii control. Use the block for control system design, powertrain matching, and fuel economy studies. You can configure the block for internal or external control:

- Internal Input direction and pulley ratio requests
- External Input direction and pulley displacement requests

The table summarizes the pulley kinematic, speed reduction, and dynamic calculations made by the Continuously Variable Transmission block.

Calculation	Pulley Kinematics	Reverse and Final Speed Reduction	Dynamics
Final angular speed ratio	✓	✓	✓
Belt torque applied to the secondary and primary pulleys			√
Torque applied to the secondary and primary pulleys		√	
Angular velocity of secondary and primary pulleys	✓	✓	√

Calculation	Pulley Kinematics	Reverse and Final Speed Reduction	Dynamics
Belt and pulley geometry	✓		
Belt linear speed			✓
Wrap angle on secondary and primary pulley	✓		
Primary and secondary pulley radii	✓		

The figure shows the CVT variator with two configurations. In the first configuration, which illustrates speed reduction, the variator is set to decrease the primary pulley radius and increase the secondary pulley radius. In the second configuration, which illustrates overdrive, the variator is set to increase the primary pulley radius and decrease the secondary pulley radius.

Pulley Kinematics

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.

$$\begin{split} &C_{dist} = rp_{max} + r_{gap} + r_{sec_max} \\ &L_0 = f\left(rp_{max}, rs_{max}, rp_{min}, rs_{min}, C_{dist}\right) \\ ∶_{command} = f\left(ratio_{request}, ratio_{max}, ratio_{min}\right) \\ &r_{pri} = f\left(r_0, ratio_{command}, C_{dist}\right) \\ &r_{sec} = f\left(r_0, ratio_{command}, C_{dist}\right) \\ &x_{pri} = f\left(r_0, r_{pri}, \theta_{wedge}\right) \\ &x_{sec} = f\left(r_0, r_{sec}, \theta_{wedge}\right) \end{split}$$

The equations use these variables.

ratio_{reauest} Pulley gear ratio request

ratio_{command} Pulley gear ratio command, based on request and physical limitations

 r_{gap} Gap distance between variator pulleys C_{dist} Distance between variator pulley centers rp_{max} Maximum variator primary pulley radius rs_{max} Maximum variator secondary pulley radius rp_{min} Minimum variator primary pulley radius rs_{min} Minimum variator secondary pulley radius rs_{min} Minimum variator secondary pulley radius r_{o} Initial pulley radii with gear ratio of 1

*L*₀ Initial belt length, resulting from variator specification

 x_{pri} Variator primary pulley displacement, resulting from controller request x_{sec} Variator secondary pulley displacement, resulting from controller request

 r_{pri} Variator primary pulley radius, resulting from controller request r_{sec} Variator secondary pulley radius, resulting from controller request

 Θ_{wedge} Variator wedge angle

 Φ Angle of belt to pulley contact point

L Belt length, resulting from variator position

Reverse and Final Speed Reduction

The CVT input shaft connects to a planetary gear set that drives the primary pulley. The shift direction determines the input gear inertia, efficiency, and gear ratio. The shift direction is the filtered commanded direction:

$$\frac{Dir_{shift}}{Dir}(s) = \frac{1}{\tau_s s + 1}$$

For forward motion ($Dir_{shift} = 1$):

$$N_i=1$$

$$\eta_i = \eta_{fwd}$$

$$J_i = J_{fwd}$$

For reverse motion ($Dir_{shift} = -1$):

$$N_i = -N_{rev}$$
$$\eta_i = \eta_{rev}$$

$$J_i = J_{rev}$$

The gear ratio and efficiency determine the input drive shaft speed and torque applied to the primary pulley:

$$T_{app_pri} = \eta_i N_i T_i$$

The block reduces the secondary pulley speed and applied torque using a fixed gear ratio.

$$T_{app_sec} = \frac{T_o}{\eta_o N_o}$$

$$\omega_o = \frac{\omega_{sec}}{N_o}$$

The final gear ratio, without slip, is given by:

$$N_{final} = \frac{\omega_i}{\omega_o} = N_i N_o \, \frac{r_{sec}}{r_{pri}}$$

The equations use these variables.

 Dir_{shift} Direction used to determine planetary inertia, efficiency, and ratio

 au_s Direction shift time constant

 η_{fwd} , η_{rev} Forward and reverse gear efficiency, respectively J_{fwd} , J_{rev} Forward and reverse gear inertia, respectively

 N_{rev} Reverse gear ratio

 $T_{app\ pri},\,T_{app\ sec}$ Torque applied to primary and secondary pulleys, respectively

 T_i Input drive shaft torque

 ω_{i}, ω_{o} Input and output drive shaft speed, respectively $\omega_{pri}, \omega_{sec}$ Primary and secondary pulley speed, respectively

 N_{final} Total no-slip gear ratio

Dynamics

The maximum torque that the CVT can transmit depends on the friction between the pulleys and belt. According to *Prediction of Friction Drive Limit of Metal V-Belt*, the torque friction is defined as:

$$T_{fric}(r_p, \mu) = \frac{2\mu F_{ax}r_p}{\cos(\vartheta_{wedge})}$$

Without macro slip, the tangential acceleration of the pulley is assumed to be equal to the belt acceleration. Once the torque reaches the static friction limit, the belt begins to slip, and the pulley and belt acceleration are independent. During slip, the torque transmitted by the belt is a function of the kinetic friction factor. During the transition from slip to non-slip conditions, the belt and tangential pulley velocities are equal.

The block implements these equations for four different slip conditions.

Condition	Equations
Belt slips on both secondary and primary pulleys	$\begin{split} &(J_{pri}+J_i)\dot{\omega}_{pri}=T_{app_pri}-T_{BoP_pri}-b_{pri}\omega_{pri}\\ &J_{sec}\dot{\omega}_{sec}=T_{app_sec}-T_{BoP_sec}-b_{sec}\omega_{sec}\\ &m_b\dot{v}_b=\frac{T_{BoP_pri}}{r_{pri}}+\frac{T_{BoP_sec}}{r_{sec}}-b_bv_b\\ &r_{pri}\omega_{pri}\neq v_b\\ &r_{sec}\omega_{sec}\neq v_b \end{split}$

Condition	Equations	
Belt slips on only the primary pulley	$(J_{pri} + J_i)\dot{\omega}_{pri} = T_{app_pri} - T_{BoP_pri} - b_{pri}\omega_{pri}$	
	$\left(m_b + \frac{J_{sec}}{r_{sec}^2}\right) \dot{v}_b = \frac{T_{BoP_pri}}{r_{pri}} + \frac{T_{BoP_sec}}{r_{sec}} \cdot \left(b_b + \frac{b_{sec}}{r_{sec}^2}\right) v_b$	
	$\omega_{\mathrm sec} = rac{v_b}{r_{\mathrm sec}}$	
	$r_{pri}\omega_{pri} \neq v_b$	
	$T_{BoP_pri} = \operatorname{sgn}(r_{pri}\omega_{pri} - v_b)T_{fric}(r_{pri}, \mu_{kin})$	
	$\left T_{BoP_sec}\right < T_{fric}(r_{sec}, \mu_{static})$	
Belt slips on only the secondary pulley	$(m_b + \frac{J_{pri} + J_i}{r^2_{pri}})\dot{v}_b = \frac{T_{app_pri}}{r_{pri}} + \frac{T_{BoP_sec}}{r_{sec}} \cdot \left(b_b + \frac{b_{pri}}{r^2_{pri}}\right)v_b$	
	$J_{sec}\dot{\omega}_b = T_{app_sec} + T_{BoP_sec} - b_{sec}\omega_{sec}$	
	$\omega_{pri} = \frac{v_b}{r_{pri}}$	
	$r_{sec}\omega_{sec} \neq v_b$	
	$T_{BoP_sec} = \operatorname{sgn}(r_{sec}\omega_{sec} - v_b)T_{fric}(r_{sec}, \mu_{kin})$	
	$\left T_{BoP_pri} ight < T_{fric}(r_{pri},\mu_{static})$	
Belt does not slip	$\left(m_b + \frac{J_{sec}}{r^2_{sec}} + \frac{J_{pri} + J_i}{r^2_{pri}}\right) \dot{v}_b = \frac{T_{app_pri}}{r_{pri}} + \frac{T_{app_sec}}{r_{sec}} \cdot \left(b_b + \frac{b_{sec}}{r^2_{sec}}\right)$	$\left\{ + rac{b_{pri}}{r^2_{\ pri}} ight\}$
	$\omega_{pri} = \frac{v_b}{r_{pri}}$	
	$\omega_{sec} = rac{v_b}{r_{sec}}$	
	$\left T_{BoP_pri} ight < T_{fric}(r_{pri},\mu_{static})$	
	$ig T_{BoP\ sec}ig < T_{fric}(r_{sec},\mu_{static})$	
	Dot_sec fine secon summer	

Condition	Equations
Slip direction	$PriSlipDir = \begin{cases} 0 & r_{pri}\omega_{pri} = v_b \\ 1 & r_{pri}\omega_{pri} > v_b \\ -1 & r_{pri}\omega_{pri} < v_b \end{cases}$ $SecSlipDir = \begin{cases} 0 & r_{sec}\omega_{sec} = v_b \\ 1 & r_{sec}\omega_{sec} > v_b \\ -1 & r_{sec}\omega_{sec} < v_b \end{cases}$

The equations use these variables.

T_{BoP_pri} , T_{BoP_sec}	Belt torque acting on the primary and secondary pulleys, respectively
T_{app_pri} , T_{app_sec}	Torque applied to primary and secondary pulleys, respectively
$J_{ m pri}$, $J_{ m sec}$	Primary and secondary pulley rotational inertias, respectively
b_{pri} , b_{sec}	Primary and secondary pulley rotational viscous damping, respectively
F_{ax}	Pulley clamp force
μ	Coefficient of friction
μ_{kin} , μ_{static}	Coefficient of kinetic and static friction
v_b , a_b	Linear speed and acceleration of the belt, respectively
m_b	Total belt mass
r_{pri} , r_{sec}	Radii of the primary and secondary pulleys, respectively
Φ_{wrap}	Wrap angle of belt to pulley contact point
Φ_{wrap_pri} , Φ_{wrap_sec}	Primary and secondary pulley wrap angles, respectively

Ports

Inputs

Dir — Direction request

scalar

Direction request, Dir_{req} , controlling the direction. The block filters the request to determine the direction, forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.

$$Dir = \begin{cases} 1 & \text{when } Dir_{req} \ge 0 \\ -1 & \text{when } Dir_{req} < 0 \end{cases}$$

PllyRatioReq — Pulley ratio request

scalar

CVT pulley ratio request, *ratio*_{request}.

Dependencies

To create this port, for the **Control mode** parameter, select **Ideal integrated** controller.

PriDisp — Primary pulley displacement

scalar

Variator primary pulley displacement, x_{pri} , in m.

Dependencies

To create this port, for the **Control mode** parameter, select External control.

SecDisp — Secondary pulley displacement

scalar

Variator secondary pulley displacement, $x_{sec.}$ in m.

Dependencies

To create this port, for the **Control mode** parameter, select External control.

EngTrq — Input drive shaft torque

scalar

External torque applied to the input drive shaft, T_i , in N·m.

DiffTrq — Output drive shaft torque

scalar

External torque applied to the output drive shaft, T_o , in N·m.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description		Units
EngTrq	Input shaft torque	T_i	N·m
DiffTrq	Output shaft torque	T_o	N·m
EngSpd	Input shaft speed	ω_i	rad/s
DiffSpd	Output shaft speed	ω_o	rad/s
PriRadius	Primary pulley radius	r_{pri}	m
PriPhi	Primary pulley wrap angle	Φ_{pri}	rad
SecRadius	Secondary pulley radius	r_{sec}	m
SecPhi	Secondary pulley wrap angle	Φ_{sec}	rad
BltLngthDelta	Change in belt length	ΔL	m
BltLngth	Belt length	L	m
BltLngthInit	Initial belt length	L_o	m
Blt0nPriTrq	Belt torque acting on the primary pulley	T_{BoP_pri}	N·m
Blt0nSecTrq	Belt torque acting on the secondary pulley	T_{BoP_sec}	N·m
BltVel	Linear speed of the belt	v_b	m/s
PriAngVel	Primary pulley speed	ω_{pri}	rad/s
SecAngVel	Secondary pulley speed	ω_{sec}	rad/s
PriSlipDir	Primary pulley slip direction indicator	PriSlipDir	N/A
SecSlipDir	Secondary pulley slip direction indicator	SecSlipDir	N/A

Signal	Description	Variable	Units
TransSpdRatio Total no-slip gear ratio		N_{final}	N/A

EngSpd — Input drive shaft speed

scalar

Input drive shaft angular speed, ω_i , in rad/sec.

DiffSpd — Output drive shaft speed

scalar

Output drive shaft angular speed, ω_o , in rad/sec.

Parameters

Control mode — External or internal

Ideal integrated controller (default) | External control

Specify the control method, either internal or external.

Dependencies

This table summarizes the port and input model configurations.

Control Mode	Creates Ports
Ideal integrated controller	PllyRatioReq
External control	PriDisp
	SecDisp

Kinematics

Maximum variator primary pulley radius, rp_max — Radius scalar

Maximum variator primary pulley radius, rp_{max} , in m.

Maximum variator secondary pulley radius, rs_max — Radius
scalar

Maximum variator secondary pulley radius, rs_{max} , in m.

Minimum variator primary pulley radius, rp_min — Radius scalar

Minimum variator primary pulley radius, rp_{min} , in m.

Minimum variator secondary pulley radius, rs_min — Radius scalar

Minimum variator secondary pulley radius, rs_{min} , in m.

Gap distance between variator pulleys, rgap — Specify crown wheel connection

scalar

The gap between the secondary and primary pulleys, r_{gap} , in m. The figure shows the pulley geometry.

Variator wedge angle, thetawedge — Specify crown wheel connection scalar

Variator wedge angle, Θ_{wedge} , in deg.

Dynamics

Primary pulley inertia, J_pri — Inertia scalar

Primary pulley inertia, J_{pri} , in kg·m^2.

Secondary pulley inertia, J_sec — Inertia scalar

Secondary pulley inertia, J_{sec} , in kg·m².

Primary pulley damping coefficient, b_pri — Damping scalar

Primary pulley damping coefficient, b_{pri} , in N·m·s/rad.

Secondary pulley damping coefficient, b_sec — Damping scalar

Secondary pulley damping coefficient, b_{sec} , in N·m·s/rad.

Belt damping coefficient, b_b - Damping scalar

Belt damping coefficient, b_b , in kg/s.

Static friction coefficient, mu_static — Friction

scalar

Static friction coefficient between the belt and primary pulley, μ_{static} , dimensionless.

${\bf Kinetic\ friction\ coefficient,\ mu_kin-Friction}$

scalar

Kinetic friction coefficient between the belt and primary pulley, μ_{kin} , dimensionless.

Belt mass, m_b — Mass

scalar

Belt mass, m_b , in kg.

Pulley clamp force, F_ax — Pulley clamp force

scalar

Pulley clamp force, F_{ax} , in N.

Reverse and Output Ratio

Forward inertia, J_fwd — Inertia

scalar

Forward inertia, J_{fwd} , in kg·m^2.

Reverse inertia, J_rev — Inertia

scalar

Reverse inertia, J_{rev} , in kg·m².

Forward efficiency, eta_fwd — Efficiency

scalar

Forward efficiency, η_{fwd} , dimensionless.

Reverse efficiency, eta_rev — Efficiency

scalar

Reverse efficiency, η_{rev} , dimensionless.

Reverse gear ratio, N_rev — Ratio

scalar

Reverse gear ratio, N_{rev} , dimensionless.

Shift time constant, tau_s — Constant scalar

Shift time constant, τ_s , in s.

Output gear ratio, N_o — Ratio scalar

Output gear ratio, N_o , dimensionless.

Output gear efficiency, eta_o — Efficiency scalar

Output gear efficiency, η_o , dimensionless.

References

- [1] Ambekar, Ashok G. *Mechanism and Machine Theory*. New Delhi: Prentice-Hall of India, 2007.
- [2] Bonsen, B. *Efficiency optimization of the push-belt CVT by variator slip control*. Ph.D. Thesis. Eindhoven University of Technology, 2006.
- [3] CVT How Does It Work. CVT New Zealand 2010 Ltd, 10 Feb. 2011. Web. 25 Apr. 2016. http://www.cvt.co.nz/cvt_how_does_it_work.htm
- [4] Klaassen, T. W. G. L. *The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT.* Ph.D. Thesis. Eindhoven University of Technology, 2007.
- [5] Sakagami, K. *Prediction of Friction Drive Limit of Metal V-Belt*. Warrendale, PA: SAE International Journal of Engines 8(3):1408-1416, 2015.

See Also

CVT Controller

Introduced in R2017a

CVT Controller

Continuously variable transmission controller

Library: Powertrain Blockset / Transmission / Transmission

Controllers

Description

The CVT Controller block implements a push belt continuously variable transmission (CVT) controller. The block uses standard pulley and geometric equations to calculate the kinematic setpoints for the CVT variator. You can use the block to control a CVT.

Pulley Kinematics

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.

$$\begin{split} &C_{dist} = rp_{max} + r_{gap} + r_{sec_max} \\ &L_0 = f\left(rp_{max}, rs_{max}, rp_{min}, rs_{min}, C_{dist}\right) \\ ∶_{command} = f\left(ratio_{request}, ratio_{max}, ratio_{min}\right) \\ &r_{pri} = f\left(r_0, ratio_{command}, C_{dist}\right) \\ &r_{sec} = f\left(r_0, ratio_{command}, C_{dist}\right) \\ &x_{pri} = f\left(r_0, r_{pri}, \theta_{wedge}\right) \\ &x_{sec} = f\left(r_0, r_{sec}, \theta_{wedge}\right) \end{split}$$

The equations use these variables.

$ratio_{request}$	Pulley gear ratio request
$ratio_{command}$	Pulley gear ratio command, based on request and physical limitations
r_{gap}	Gap distance between variator pulleys
C_{dist}	Distance between variator pulley centers
rp_{max}	Maximum variator primary pulley radius

rs_{max}	Maximum variator secondary pulley radius
rp_{min}	Minimum variator primary pulley radius
rs_{min}	Minimum variator secondary pulley radius
r_o	Initial pulley radii with gear ratio of 1
L_o	Initial belt length, resulting from variator specification
X_{pri}	Variator primary pulley displacement, resulting from controller request
X_{sec}	Variator secondary pulley displacement, resulting from controller request
r_{pri}	Variator primary pulley radius, resulting from controller request
r_{sec}	Variator secondary pulley radius, resulting from controller request
Θ_{wedge}	Variator wedge angle
Φ	Angle of belt to pulley contact point
L	Belt length, resulting from variator position

Ports

Inputs

DirReq — Direction request

scalar

Direction request, Dir_{req} , controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.

$$Dir = \begin{cases} 1 & \text{when } Dir_{req} \ge 0 \\ -1 & \text{when } Dir_{req} < 0 \end{cases}$$

PllyRatioReq — Pulley ratio request

scalar

CVT pulley ratio request, $ratio_{request}$.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Radius	PriRadius	Variator primary pulley radius, resulting from controller request	r_{pri}	m
	SecRadius	Variator secondary pulley radius, resulting from controller request	r_{sec}	m
	InitPllyRadiu s	Initial pulley radii with gear ratio of 1	r_o	m
RatioAdj		Pulley gear ratio command, based on request and physical limitations	ratio _{command}	N/A
RatioMax		Maximum pulley ratio	ratio _{max}	N/A
RatioMin		Minimum pulley ratio	ratio _{min}	N/A
PriDispCmd		Variator primary pulley displacement, resulting from controller request	X _{pri}	m
SecDispCmd		Variator secondary pulley displacement, resulting from controller request	X _{sec}	m

Dir — Direction request

scalar

Direction request, Dir_{req} , controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.

$$Dir = \begin{cases} 1 & \text{when } Dir_{req} \ge 0 \\ -1 & \text{when } Dir_{req} < 0 \end{cases}$$

PriDispCmd — **Primary pulley displacement** scalar

Variator primary pulley displacement, x_{pri} , in m.

SecDispCmd — **Secondary pulley displacement** scalar

Variator secondary pulley displacement, x_{sec} , in m.

Parameters

Kinematics

Maximum variator primary pulley radius, rp_max — Radius scalar

Maximum variator primary pulley radius, rp_{max} , in m.

Maximum variator secondary pulley radius, rs_max — Radius scalar

Maximum variator secondary pulley radius, rs_{max} , in m.

Minimum variator primary pulley radius, rp_min — Radius scalar

Minimum variator primary pulley radius, rp_{min} , in m.

Minimum variator secondary pulley radius, rs_min — Radius scalar

Minimum variator secondary pulley radius, rs_{\min} , in m.

Gap distance between variator pulleys, rgap — Specify crown wheel connection

scalar

The gap between the secondary and primary pulleys, r_{gap} , in m. The figure shows the pulley geometry.

 $\begin{tabular}{ll} \textbf{Variator wedge angle, the tawedge-Specify crown wheel connection} \\ \textbf{scalar} \end{tabular}$

Variator wedge angle, Θ_{wedge} , in deg.

References

- [1] Ambekar, Ashok G. *Mechanism and Machine Theory*. New Delhi: Prentice-Hall of India, 2007.
- [2] Bonsen, B. *Efficiency optimization of the push-belt CVT by variator slip control*. Ph.D. Thesis. Eindhoven University of Technology, 2006.
- [3] CVT How Does It Work. CVT New Zealand 2010 Ltd. February 10, 2011. Accessed April 25, 2016. http://www.cvt.co.nz/cvt how does it work.htm
- [4] Klaassen, T. W. G. L. *The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT.* Ph.D. Thesis. Eindhoven University of Technology, 2007.

See Also

Continuously Variable Transmission

Introduced in R2017a

Dual Clutch Transmission

Dual clutch transmission that applies torque to the drive shaft **Library:** Powertrain Blockset / Transmission / Transmission

Systems

Description

The Dual Clutch Transmission block implements a dual clutch transmission (DCT). In a DCT, two clutches apply mechanical torque to the drive shaft. Odd gears engage one clutch, while even gears engage the secondary clutch. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable. You can provide external clutch signals or configure the block to generate idealized internal clutch signals. The block implements the transmission model with minimal parameterization or computational cost.

Use the block to model a simplified automated manual transmission (AMT) for:

- · Power and torque capacity sizing
- · Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Dual Clutch Transmission block calculates:

- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation	
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.	
Gear, input torque, input speed, and temperature	Efficiency determined from a 4D lookup table that is a function of: • Gear • Input torque • Input speed • Oil temperature	

Clutch Control

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select **Control mode** parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select **Control mode** parameter External control.

Clutch Lock-Up and Clutch Friction

Based on the clutch lock-up condition, the block implements one of these friction models.

If	Clutch Condition	Friction Model
$w_i eq N w_d$ or $T_S < \left T_f - N w_i b_i \right $	Unlocked	$T_f = T_k$ where, $T_k = F_c R_{eff} \mu_k anh \left[4 \left(rac{w_i}{N} - w_d ight) ight]$
		$\frac{1_k - \Gamma_c \mathcal{W}_{eff} \mu_k \operatorname{tain}}{N} = \frac{1}{N} - \frac{W_d}{N}$

$$T_{s} = F_{c}R_{eff} \mu_{s}$$

$$R_{eff} = \frac{2(R_{o}^{\ 3} - R_{i}^{\ 3})}{3(R_{o}^{\ 2} - R_{i}^{\ 2})}$$
 6-41

	Clutch Condition	Friction Model
	Locked	$T_f = T_s$
$\omega_i = N \omega_t$		
and		

 $T_S \ge |T_f - Nb_i\omega_i|$ The equations use these variables.

Output drive shaft speed
Input drive shaft speed
Drive shaft speed
Viscous damping
Applied clutch force
Engaged gear
Frictional torque
Kinetic frictional torque
Static frictional torque
Effective clutch radius
Annular disk outer radius
Annular disk inner radius
Coefficient of static friction
Coefficient of kinetic friction

Locked Rotational Dynamics

To model the rotational dynamics when the clutch is locked, the block implements these equations.

$$\dot{\omega}_d J_N = \eta_N T_d - \frac{\omega_i}{N} b_N + N T_i$$
 $\omega_i = N \omega_d$

The block determines the input torque, T_i , through differentiation.

The equations use these variables.

Input drive shaft speed ω_i Drive shaft speed ω_d Engaged gear N Engaged gear viscous damping b_N Engaged gear inertia J_N Engaged gear efficiency η_N T_d Drive shaft torque T_i Applied input torque

Unlocked Rotational Dynamics

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.

$$\dot{\omega}_d J_N = N T_f - \omega_d b_N + T_d$$

where:

 $egin{array}{lll} \omega_d & & {
m Drive \ shaft \ speed} \ N & & {
m Engaged \ gear} \ b_N & & {
m Engaged \ gear \ viscous \ damping} \ J_N & & {
m Engaged \ gear \ inertia} \ T_d & {
m Drive \ shaft \ torque} \ T_i & {
m Applied \ input \ torque} \ \end{array}$

Ports

Inputs

Gear — Gear number to engage

scalar

Integer value of gear number to engage.

CltchACmd — Command for odd-numbered gears

scalar

Clutch pressure command for odd-numbered gears, between 0 and 1.

Dependencies

To create this port, select Control mode parameter External control.

CltchBCmd — Command for even-numbered gears

scalar

Clutch pressure command for even-numbered gears, between θ and 1.

Dependencies

To create this port, select Control mode parameter External control.

EngTrq — Applied torque

scalar

Applied input torque, T_i , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

DiffTrq — Applied torque

scalar

Applied load torque, T_d , typically from the drive shaft, in N·m.

Temp — **Oil temperature**

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- Input torque
- · Input speed
- Oil temperature

Dependencies

To create this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Eng	EngTrq	Applied input torque, typically from the engine crankshaft or dual mass flywheel damper	T_i	N·m
	EngSpd	Applied drive shaft angular speed input	ω_i	rad/s
Diff	DiffTrq	Applied load torque, typically from the differential	T_d	N·m
	DiffSpd	Drive shaft angular speed output	ω_d	rad/s
Cltch	CltchFor ce	Applied clutch force	F_c	N
	CltchLoc ked	Clutch state	NA	NA
Trans	TransSpd Ratio	Input to output speed ratio at time t	$\Phi(t)$	NA
	TransEta	Ratio of output power to input power	η_N	NA

Signal		Description	Variable	Units
	TransGea rCmd	Commanded gear	N_{cmd}	NA
	TransGea r	Engaged gear	N	NA

EngSpd — **Angular speed**

scalar

Drive shaft angular speed, ω_d , in rad/s.

DiffSpd — Angular speed

scalar

Drive shaft angular speed, ω_d , in rad/s.

Parameters

Control mode — Specify control mode

External control (default) | Ideal integrated controller

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select **Control mode** parameter **Ideal integrated controller**, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select **Control mode** parameter **External control**.

Dependencies

This table summarizes the port configurations.

Control Mode	Creates Ports
External control	CltchACmd
	CltchBCmd

Efficiency factors — Specify efficiency calculation

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.
Gear, input torque, input speed, and temperature	Efficiency determined from a 4D lookup table that is a function of: • Gear • Input torque • Input speed • Oil temperature

Dependencies

Setting Parameter To	Enables	
Gear only	Efficiency vector, eta	
Gear, input torque,	Efficiency torque breakpoints, Trq_bpts	
input speed, and temperature	Efficiency speed breakpoints, omega_bpts	
	Efficiency temperature breakpoints, Temp_bpts	
	Efficiency lookup table, eta_tbl	

Transmission

Input shaft inertia, Jin — Inertia
scalar

Input shaft inertia, in $kg \cdot m^2$.

Input shaft damping, bin — Damping
scalar

Input shaft damping, in N·m·s/rad.

Initial input velocity, omegain_o — Angular velocity
scalar

Angular velocity, in rad/s.

Efficiency torque breakpoints, Trq_bpts — Breakpoints

vector

Torque breakpoints for efficiency table, in N·m.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts — Breakpoints

vector

Speed breakpoints for efficiency table, in rad/s.

Dependencies

To enable this parameter, set **Efficiency factors** to **Gear**, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts — Breakpoints vector

Temperature breakpoints for efficiency table, in K.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Gear number vector, G — Specify number of transmission speeds vector

Vector of integers used to specify the number of transmission speeds. Neutral gear is 0. For example, you can set these parameter values.

To Specify	Set Gear number, G to
Four transmission speeds, including neutral	[0,1,2,3,4]

To Specify	Set Gear number, G to
Three transmission speeds, including neutral and reverse	[-1,0,1,2,3]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Gear ratio vector, N — Ratio of input speed to output speed vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

To Specify Gear Ratios for	Set Gear number, G to	Set Gear ratio, N to
Four transmission speeds, including neutral	[0,1,2,3,4]	[1,4.47,2.47,1.47,1]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]	[-4.47,1,4.47,2.47,1.47,1,0 .8]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Transmission inertia vector, Jout — Gear rotational inertia vector

Vector of gear rotational inertias, with indices corresponding to the inertias specified in **Gear number, G**, in $kg \cdot m^2$. For example, you can set these parameter values.

To Specify Inertia for	Set Gear number, G to	Set Inertia, J to
Four gears, including neutral	[0,1,2,3,4]	[0.01,2.28,2.04,0.32,0.028]

To Specify Inertia for	Set Gear number, G to	Set Inertia, J to
Inertia for five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[2.28,0.01,2.28,2.04,0.32,0 .028,0.01]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Damping vector, bout — Gear viscous damping coefficient vector

Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in **Gear number**, **G**, in N·m·s/rad. For example, you can set these parameter values.

To Specify Damping for	Set Gear number, G to	Set Damping, b to
Four gears, including neutral	[0,1,2,3,4]	[0.001,0.003,0.0025, 0.002,0.001]
Five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[0.003,0.001,0.003,0.0025, 0.002,0.001,0.001]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency vector, eta — Gear efficiency vector

Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

To Specify Efficiency for	Set Gear number, G to	Set Efficiency, eta to
Four gears, including neutral	[0,1,2,3,4]	[0.9,0.9,0.9,0.95]
Five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[0.9,0.9,0.9, 0.9,0.9,0.95,0.95]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear only.

Efficiency lookup table, eta_tbl — Gear efficiency array

Table of gear mechanical efficiency, η_N as a function of gear, input torque, input speed, and temperature.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Initial output velocity, omegaout_o — Transmission scalar

Transmission initial output rotational velocity, ω_{to} , in rad/s. If you select **Clutch initially locked**, the block ignores the **Initial output velocity**, **omega** o parameter value.

Initial gear, G_o — Engaged gear scalar

Initial gear to engage, G_o .

Clutch and Synchronizer

Clutch pressure time constant, tauc — Time scalar

Time required to engage and disengage the clutch during shift events, t_c , in s.

Synchronization time, ts — Time scalar

Scatai

Time required for gear selection and synchronization, t_s , in s.

Clutch time, tc — Time scalar

Time required to engage clutch, t_c , in s.

Dependencies

To create this parameter, select **Control mode** parameter **Ideal integrated** controller.

Effective clutch radius, R — Radius scalar

The effective radius, $R_{e\!f\!f}$, used with the applied clutch friction force to determine the friction force, in m. The effective radius is defined as:

$$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$$

The equation uses these variables.

 R_o Annular disk outer radius

Annular disk inner radius R_i

Clutch force gain, K_c — Force
scalar

Open loop lock-up clutch gain, K_c , in N.

Clutch static friction coefficient, mus — Coefficient
scalar

Dimensionless clutch disc coefficient of static friction, μ_s .

Clutch kinematic friction coefficient, muk — Coefficient
scalar

Dimensionless clutch disc coefficient of kinetic friction, μ_k .

Clutch initially locked — Select to initially lock clutch off (default)

Selecting this parameter initially locks the clutch.

Dependencies

To create this parameter, select **Control mode** parameter **Ideal integrated** controller.

Synchronizer initially locked — Select to initially lock synchronizer off (default)

Selecting this parameter initially locks the synchronizer.

See Also

Automated Manual Transmission | DCT Controller

Introduced in R2017a

DCT Controller

Dual clutch transmission controller

Library: Powertrain Blockset / Transmission / Transmission

Controllers

Description

The DCT Controller block implements a dual clutch transmission (DCT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

Ports

Inputs

GearReq — **Gear number to engage**

scalar

Gear number request, G_{req} .

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable
GearReq	Gear number request	G_{req}

Signal	Description	Variable
GearEngd	Nominal gear commanded by the controller	G_o
GearEffct	Effective gear	NA
CltchACmd	Clutch pressure command for odd-numbered gears, between 0 and 1	NA
CltchBCmd	Clutch pressure command for even-numbered gears, between 0 and 1	NA

NomGear — Nominal gear for shifting

scalar

Nominal gear for shifting. The Dual Clutch Transmission block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

CltchACmd — Command for odd-numbered gears

scalar

Clutch pressure command for odd-numbered gears, between 0 and 1.

CltchBCmd — Command for even-numbered gears

scalar

Clutch pressure command for even-numbered gears, between $\boldsymbol{\theta}$ and $\boldsymbol{1}$.

Parameters

Initial gear, G_o — Engaged gear

scalar

Initial gear to engage, G_o .

Clutch actuation time, tc — Time

scalar

Time required to engage and disengage the clutch during shift events, t_c , in s.

Synchronizer time, ts — Time

scalar

Time required for gear selection and synchronization, t_s , in s.

Sample period, dt — Time

scalar

Sample period, dt, in s.

Clutch initially locked — Select to initially lock clutch

off (default)

Selecting this parameter initially locks the clutch.

Synchronizer initially locked — Select to initially lock synchronizer off (default)

Selecting this parameter initially locks the synchronizer.

See Also

AMT Controller | Dual Clutch Transmission

Introduced in R2017a

Ideal Fixed Gear Transmission

Ideal fixed gear transmission without clutch or synchronization

 Library:
 Powertrain Blockset / Transmission / Transmission

Systems

Vehicle Dynamics Blockset / Powertrain /

Transmission

Description

The Ideal Fixed Gear Transmission implements an idealized fixed-gear transmission without a clutch or synchronization. Use the block to model the overall gear ratio and power loss when you do not need a detailed transmission model, for example, in component-sizing, fuel economy, and emission studies. The block implements a transmission model with minimal parameterization or computational cost.

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.
Gear, input torque, input speed, and temperature	Efficiency determined from a 4D lookup table that is a function of: Gear Input torque Input speed Oil temperature

The block uses this equation to determine the transmission dynamics:

$$\dot{\omega}_{i} \frac{J_{N}}{N} = \eta_{N} \left(\frac{T_{o}}{N} + T_{i} \right) - \frac{\omega_{i}}{N^{2}} b_{N}$$

$$\omega_{i} = N \omega_{o}$$

The block filters the gear command signal:

$$\frac{G}{G_{cmd}}(s) = \frac{1}{\tau_s s + 1}$$

The equations use these variables.

b_N	Engaged gear viscous damping
J_N	Engaged gear rotational inertia
η_N	Engaged gear efficiency
G	Engaged gear number
G_{cmd}	Gear number to engage
N	Engaged gear ratio
T_i	Applied input torque, typically from the engine crankshaft or dual mass flywheel damper
T_o	Applied load torque, typically from the differential or drive shaft
ω_o	Output drive shaft angular speed
ω_i , $\acute{\omega_i}$	Applied drive shaft angular speed and acceleration
$ au_{\scriptscriptstyle S}$	Shift time constant

Ports

Inputs

Gear — Gear number to engage

scalar

Integer value of gear number to engage, G_{cmd} .

EngTrq — Applied input torque

scalar

Applied input torque, T_i , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

DiffTrq — Applied load torque

scalar

Applied load torque, T_o , typically from the differential, in N·m.

Temp — **Oil temperature**

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- · Input torque
- · Input speed
- Oil temperature

Dependencies

To create this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Output

Info - Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Eng	EngTrq	ngTrq Applied input torque, typically from the engine crankshaft or dual mass flywheel damper		N·m
	EngSpd	Applied drive shaft angular speed input	ω_i	rad/s
Diff	DiffTrq	Applied load torque, typically from the differential		N·m
	DiffSpd	Drive shaft angular speed output	ω_o	rad/s

Signal		Description	Variable	Units
Trans TransSpd Ratio		Input to output speed ratio at time t	$\Phi(t)$	N/A
	TransEta	Ratio of output power to input power	η_N	N/A
	TransGea rCmd	Commanded gear	N_{cmd}	N/A
	TransGea r	Engaged gear	N	N/A

EngSpd — Angular speed

scalar

Applied drive shaft angular speed input, ω_i , in rad/s.

DiffSpd — Angular speed

scalar

Drive shaft angular speed output, ω_o , in rad/s.

Parameters

Efficiency factors — Specify efficiency calculation

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation	
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.	

Setting	Block Implementation
Gear, input torque, input speed, and temperature	Efficiency determined from a 4D lookup table that is a function of: • Gear
	Input torque
	Input speed
	Oil temperature

Dependencies

Setting Parameter To	Enables
Gear only	Efficiency vector, eta
Gear, input torque, input speed, and temperature	Efficiency torque breakpoints, Trq_bpts Efficiency speed breakpoints, omega_bpts
	Efficiency temperature breakpoints, Temp_bpts Efficiency lookup table, eta_tbl

Gear property interpolation method — **Interpolation**

Nearest (default) | Linear | Flat | Cubic spline

Method that the block uses to switch the gear ratio during gear shifting.

Transmission

$\begin{tabular}{ll} \textbf{Gear number vector, } \textbf{G-Specify number of transmission speeds} \\ \textbf{vector} \end{tabular}$

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is θ . For example, you can set these parameter values.

To Specify	Set Gear number, G to
Four transmission speeds, including neutral	[0,1,2,3,4]

To Specify	Set Gear number, G to
Three transmission speeds, including neutral and reverse	[-1,0,1,2,3]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency torque breakpoints, Trq_bpts — Breakpoints vector

Torque breakpoints for efficiency table.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts — Breakpoints vector

Speed breakpoints for efficiency table.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts — Breakpoints $\tt vector$

Temperature breakpoints for efficiency table.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Gear ratio vector, N — Ratio of input speed to output speed vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

To Specify Gear Ratios for	Set Gear number, G to	Set Gear ratio, N to
Four transmission speeds, including neutral	[0,1,2,3,4]	[1,4.47,2.47,1.47,1]
Five transmission speeds, including neutral and reverse	[-1,0,1, 2,3,4,5]	[-4.47,1,4.47,2.47, 1.47,1,0.8]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Inertia vector, Jout — Gear rotational inertia vector

Vector of gear rotational inertias, J_N , with indices corresponding to the inertias specified in **Gear number**, **G**, in kg*m^2. For example, you can set these parameter values.

To Specify Inertia for	Set Gear number, G to	Set Inertia, J to
Four gears, including neutral	[0,1,2,3,4]	[0.01,2.28,2.04, 0.32,0.028]
Inertia for five gears, including reverse and neutral	[-1,0,1, 2,3,4,5]	[2.28,0.01,2.28, 2.04,0.32,0.028,0.01]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Damping vector, bout — Gear viscous damping coefficient vector

Vector of gear viscous damping coefficients, b_N , with indices corresponding to the coefficients specified in **Gear number**, \mathbf{G} , in N·m·s/rad. For example, you can set these parameter values.

To Specify Damping for	Set Gear number, G to	Set Damping, b to
Four gears, including neutral	[0,1,2,3,4]	[0.001,0.003, 0.0025,0.002,0.001]
Five gears, including reverse and neutral	[-1,0,1, 2,3,4,5]	[0.003,0.001, 0.003,0.0025, 0.002,0.001,0.001]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency vector, eta — Gear efficiency

vector

Vector of gear mechanical efficiency, η_N , with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

To Specify Efficiency for	Set Gear number, G to	Set Efficiency, eta to
Four gears, including neutral	[0,1,2,3,4]	[0.9,0.9,0.9,0.95]
Five gears, including reverse and neutral	[-1,0,1, 2,3,4,5]	[0.9,0.9,0.9, 0.9,0.9,0.95,0.95]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear only.

Efficiency lookup table, eta_tbl — Gear efficiency array

Table of gear mechanical efficiency, η_N as a function of gear, input torque, input speed, and temperature.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

${\bf Initial\ output\ velocity,\ omega_o-Transmission}$

scalar

Transmission initial output rotational velocity, ω_{to} , in rad/s. If you select **Clutch initially locked**, the block ignores the **Initial output velocity, omega_o** parameter value.

Shift time constant, tau_s — Time

scalar

Shift time constant, τ_s , in s.

See Also

Automated Manual Transmission | Continuously Variable Transmission | Dual Clutch Transmission

Introduced in R2017a

Torque Converter

Three-part torque converter consisting of an impeller, turbine, and stator

Library: Powertrain Blockset / Transmission / Torque Converters

ImpTrq Info

Description

The Torque Converter block implements a three-part torque converter consisting of an impeller, turbine, and stator with an optional clutch lock-up capability. The block can simulate driving (power flowing from impeller to turbine) and coasting (power flowing from turbine to impeller).

You can specify torque converter characteristics:

- Speed ratio Ratio of turbine angular speed to impeller angular speed
- ullet Torque ratio Ratio of turbine torque to impeller torque
- $\bullet \quad \hbox{Capacity factor parameterization} \hbox{Function of input speed or input torque} \\$

Optional clutch lock-up configurations include:

- No lock-up Model fluid-coupling only
- Lock-up Model automatic clutch engagement
- External lock-up Model clutch pressure as input from an external signal

Equations

The block implements equations that use these variables.

T_f	Frictional torque
T_k	Kinetic frictional torque
T_s	Static frictional torque
T_i	Applied input torque
T_p	Impeller reaction torque
T_{ext}	Externally applied turbine torque
$\psi(\phi)$	Torque conversion capacity factor
$\zeta(\phi)$	Torque ratio
ω_i	Impeller rotational shaft speed

ω_t	Turbine rotational shaft speed
J_i	Impeller rotational inertia
J_t	Turbine rotational inertia
b_i	Impeller rotational viscous damping
b_t	Turbine rotational viscous damping
_	Effective clutch radius
$R_{e\!f\!f}$ R_o	Annular disk outer radius
R_i	Annular disk inner radius
ι	

Based on the clutch lock-up condition, the block implements these friction models.

If	Clutch Condition	Friction Model
	Unlocked	
$\omega_i \neq \omega_t$		
or		$T_f = T_k$
$T_S < \frac{J_t}{(J_i + J_t)} \left[T_i + T_f - \omega_i (t) \right]$	$b_t + b_i$	where:
1. 1. 1.		$T_k = F_c R_{eff} m_k \tanh \left[4(\omega_i - \omega_t) \right]$
	Locked	$T_{f_s} = T_{f_s} R_{eff} m_s$
		$T_{fs} = T_{sc}R_{eff}m_s$ $R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$
$\omega_i = \omega_t$		$3(R_o^2 - R_i^2)$
and		

 $T_S \geq \left| \frac{J_t}{(J_i + J_t)} \left[T_i + T_f \cdot w_t(b_t + b_i) + w_t b_t \right] \right|$ To model the rotational dynamics if the clutch is locked, the block implements equations.

$$\begin{split} \dot{\omega}(J_i + J_t) &= T_i - \omega \big(b_i + b_t\big) + T_{ext} \\ \omega &= \omega_i = \omega_t \end{split}$$

The rotational velocity represents both the impeller and turbine rotational velocities.

To model the rotational dynamics if the clutch is unlocked, the block implements equations.

$$\begin{split} \dot{\omega_i} J_i &= \mathbf{T}_i - \omega_i b_i - T_f - T_p \\ \dot{\omega}_t J_t &= \mathbf{T}_{ext} - \omega_t b_t + T_f + T_t \end{split}$$

$$T_p = \omega_i^2 \psi(\phi)$$

$$T_t = T_p \zeta(\phi)$$

To approximate the torque multiplication lag between the impeller and turbine, you can specify the parameter **Fluid torque response time constant (set to 0 to disable)**, **tauc [s]**.

Ports

Inputs

ImpTrq — Applied impeller torque

scalar

Applied input torque, typically from the engine crankshaft or dual mass flywheel, in $N \cdot m.$

TurbTrq — Applied turbine torque

scalar

Applied turbine torque, typically from the transmission, in $N \cdot m$.

Clutch Force — Applied clutch force

scalar

Applied clutch force, typically from a hydraulic actuator, in N.

Dependencies

To create this port, select External lock-up input for the **Lock-up clutch** configuration parameter.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Units
Imp	ImpTrq	Applied input torque	N·m
	ImpSpd	Impeller rotational shaft speed	rad/s
Turb	TurbTrq	Applied turbine torque	N·m
	TurbSpd	Turbine rotational shaft speed	rad/s
Cltch	CltchForce	Applied clutch force	N
	CltchLocked	Clutch locked or unlocked state	N/A
TrqConv	TrqConvSpdRatio	Turbine to impeller speed ratio	N/A
	TrqConvEta	Torque conversion efficiency	N/A

ImpSpd — Impeller speed

scalar

Impeller rotational shaft speed, $\,\omega_{i}$, in rad/s.

TrbSpd — Turbine speed

scalar

Turbine rotational shaft speed, ω_t , in rad/s.

Parameters

Configuration

Lock-up clutch configuration — Select lock-up clutch configuration

Lock-up (default) | No lock-up | External lock-up input

To Model	Select
Fluid-coupling only	No lock-up
Automatic clutch engagement	Lock-up
Clutch pressure as input from an external signal	External lock-up input

Dependencies

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

Torque Converter

Impeller shaft inertia, Ji — Inertia scalar

Impeller shaft inertia, in kg·m^2.

Impeller shaft viscous damping, bi — Viscous damping coefficient scalar

Impeller shaft viscous damping, in $N \cdot m \cdot s/rad$.

Turbine shaft inertia, Jt — Inertia scalar

Turbine shaft inertia, in kg·m^2.

Turbine shaft viscous damping, bi — Viscous damping coefficient scalar

Turbine shaft viscous damping, in $N \cdot m \cdot s/rad$.

Initial impeller shaft velocity, omegaio — Angular velocity scalar

Initial impeller shaft velocity, in rad/s.

Initial turbine shaft velocity, omegato — Angular velocity scalar

Initial turbine shaft velocity, in rad/s.

${\bf Speed\ ratio\ vector,\ phi-Ratio}$

vector

Vector of turbine speed to impeller speed ratios. Breakpoints for the capacity and torque multiplication vectors.

Capacity factor parameterization — Select factor ratio type

Input speed / sqrt(input torque) (default) | Absorbed torque / input
speed^2

To Set Factor Ratio to	Select
Impeller angular velocity to square root impeller torque	<pre>Input speed / sqrt(input torque)</pre>
Impeller absorbed torque to square of impeller angular velocity	Absorbed torque / input speed^2

${\bf Capacity\ vector,\ psi-Vector}$

vector

Capacity factor parameterization Setting	Capacity Vector Units
<pre>Input speed / sqrt(input torque)</pre>	(rad/s)/(N·m)^0.5
Absorbed torque / input speed^2	N·m/(rad/s)^2

Torque ratio vector, zeta — Vector

vector

Vector of turbine torque to impeller speed ratios.

Fluid torque response time constant (set to 0 to disable), tauTC — Time constant

scalar

To account for the delay in torque calculations due to changing input torque, specify the fluid torque transfer time constant, in s.

Interpolation method — Select interpolation method

Linear (default) | Flat | Nearest

Interpolates the torque ratio and capacity factor functions between the discrete relative velocity values.

Clutch

Clutch force equivalent net radius, Reff — Effective radius scalar

The effective radius, $R_{\it eff}$, used with the applied clutch friction force to determine the friction force, in m. The effective radius is defined as:

$$R_{e\!f\!f} = \frac{2(\!R_o{}^3 - R_i{}^3)}{3(\!R_o{}^2 - \!R_i{}^2)}$$

The equation uses these variables.

 R_o Annular disk outer radius

 R_i Annular disk inner radius

Dependencies

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

Static friction coefficient, mus — Coefficient scalar

Dimensionless clutch disc coefficient of static friction.

Dependencies

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

Kinetic friction coefficient, muk — Coefficient scalar

Dimensionless clutch disc coefficient of kinetic friction.

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

Initially lock clutch — Select to initially lock clutch off (default)

Dependencies

To enable this parameter, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

Lock-up speed ratio threshold, philu — Threshold scalar

Set speed ratio threshold that engages clutch lock-up.

Dependencies

To enable this parameter, select Lock-up for the **Lock-up clutch configuration** parameter.

Minimum lock-up engagement speed, omegalmin — Angular velocity scalar

Set the minimum impeller speed that engages clutch lock-up, in rad/s.

Dependencies

To enable this parameter, select Lock-up for the **Lock-up clutch configuration** parameter.

Lock-up disengagement speed, omegau — Angular velocity scalar

Set the minimum impeller speed that disengages clutch lock-up, in rad/s.

Dependencies

To enable this parameter, select Lock-up for the **Lock-up clutch configuration** parameter.

Lock-up clutch force gain, Kclutch — Gain scalar

Open loop clutch lock-up force gain, in N.

Dependencies

To enable this parameter, select Lock-up for the **Lock-up clutch configuration** parameter.

Lock-up clutch time constant, taulu — Time constant scalar

Open loop clutch lock-up time constant, in s.

Dependencies

To enable this parameter, select Lock-up for the **Lock-up clutch configuration** parameter.

See Also

CI Core Engine | SI Core Engine

Introduced in R2017a

Functions

mdf

Access information contained in MDF file

Syntax

```
mdf0bj = mdf(mdfFileName)
```

Description

mdfObj = mdf(mdfFileName) identifies a measurement data format (MDF) file and returns an MDF file object, which you can use to access information and data contained in the file. You can specify a full or partial path to the file.

Note This function is supported only on 64-bit Windows® operating systems.

Examples

Create MDF File Object for Specified MDF File

Create an MDF object for a given file, and view the object display.

DataSize: 32100

InitialTimestamp: 2016-02-27 12:09:02

Creator Details

ProgramIdentifier: 'mmddff.04'

Creator: [1×1 struct]

File Contents

Attachment: [1×1 struct] ChannelNames: {6×1 cell} ChannelGroup: [1×6 struct]

Input Arguments

mdfFileName — MDF file name

char vector | string

MDF file name, specified as a character vector or string, including the necessary full or relative path.

Example: 'MDFFile.mf4'
Data Types: char | string

Output Arguments

mdf0bj — MDF file

MDF file object

MDF file, returned as an MDF file object. The object provides access to the MDF file information contained in the following properties.

Property	Description
Name	Name of the MDF file, including extension
Path	Full path to the MDF file, including file name
Author	Author who originated the MDF file
Department	Department that originated the MDF file
Project	Project that originated the MDF file

Property	Description
Subject	Subject matter in the MDF file
Comment	Open comment field from the MDF file
Version	MDF standard version of the file
DataSize	Total size of the data in the MDF file, in bytes
InitialTimestamp	Time when file data acquisition began in UTC or local time
ProgramIdentifier	Originating program of the MDF file
Creator	Structure containing details about creator of the MDF file, with these fields: VendorName, ToolName, ToolVersion, UserName, and Comment
Attachment	Structure of information about attachments contained within the MDF file, with these fields: Name, Path, Comment, Type, MIMEType, Size, EmbeddedSize, and MD5CheckSum
ChannelNames	Cell array of the channel names in each channel group
ChannelGroup	Structure of information about channel groups contained within the MDF file, with these fields: AcquisitionName, Comment, NumSamples, DataSize, Sorted, and Channel

See Also

Functions

read | saveAttachment

Introduced in R2016b

read

Read channel data from MDF file

Syntax

```
data = read(mdf0bj)
data = read(mdf0bj,chanGroupIndex,chanName)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType)
[data,time] = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector')
```

Description

data = read(mdf0bj) reads all data for all channels from the MDF file identified by
the MDF file object mdf0bj, and assigns the output to data. If the file data is one
channel group, the output is a timetable; multiple channel groups are returned as a cell
array of timetables, where the cell array index corresponds to the channel group number.

Note This function is supported only on 64-bit Windows operating systems.

data = read(mdf0bj, chanGroupIndex, chanName) reads all data for the specified
channel from the MDF file identified by the MDF file object mdf0bj.

data = read(mdf0bj,chanGroupIndex,chanName,startPosition) reads data
from the position specified by startPosition.

data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition) reads data for the range specified from startPosition to
endPosition.

data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType) returns data with the specified output
format.

[data,time] = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector') returns two vectors of channel data and
corresponding timestamps.

Examples

Read All Data from MDF File

Read all available data from the MDF file.

```
mdf0bj = mdf('MDFFile.mf4');
data = read(mdf0bj);
```

Read All Data from Multiple Channels

Read all available data from the MDF file for specified channels.

```
mdf0bj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,{'Channel1','Channel2'});
```

Read Range of Data from Specified Index Values

Read a range of data from the MDF file using indexing for startPosition and endPosition to specify the data range.

```
mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'},1,10);
```

Read Range of Data from Specified Time Values

Read a range of data from the MDF file using time values for startPosition and endPosition to specify the data range.

```
mdf0bj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,{'Channel1','Channel2'},seconds(5.5),seconds(7.3));
```

Read All Data in Vector Format

Read all available data from the MDF file, returning data and time vectors.

```
mdf0bj = mdf('MDFFile.mf4');
[data,time] = read(mdf0bj,1,'Channel1','OutputFormat','Vector');
```

Read All Data in Time Series Format

Read all available data from the MDF file, returning time series data.

```
mdf0bj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,'Channel1','OutputFormat','TimeSeries');
```

Read Data from Channel List Entry

Read data from a channel identified by the channelList function.

Get list of channels and display their names and group numbers.

Read data from the first channel in the list.

```
data = read(mdf0bj,chlist{1,2},chlist{1,1});
data(1:5,:)
5×1 timetable
```

Time	Float_32_LE_0ffset_64
0 sec	5
0.01 sec	5.1
0.02 sec	5.2
0.03 sec	5.3
0.04 sec	5.4

Input Arguments

mdf0bj - MDF file

MDF file object

MDF file, specified as an MDF file object.

Example: mdf('MDFFile.mf4')

chanGroupIndex — Index of the channel group

numeric value

Index of channel group, specified as a numeric value that identifies the channel group from which to read.

Example: 1

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

chanName — Name of channel

char vector | string

Name of channel, specified as a character vector, string, or array. chanName identifies the name of a channel in the channel group. Use a cell array of character vectors or array of string to identify multiple channels.

Example: 'Channel1'

Data Types: char | string | cell

startPosition — First position of channel data

numeric value | duration

First position of channel data, specified as a numeric value or duration. The startPosition option specifies the first position from which to read channel data. Provide a numeric value to specify an index position; use a duration to specify a time position. If only startPosition is provided without the endPosition option, the data value at that location is returned. When used with endPosition to specify a range, the function returns data from the startPosition (inclusive) to the endPosition (noninclusive).

Example: 1

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | duration

endPosition — Last position of channel data range

numeric value | duration

Last position of channel data range, specified as a numeric value or duration. The endPosition option specifies the last position for reading a range of channel data. Provide both the startPosition and endPosition to specify retrieval of a range of data. The function returns up to but not including endPosition when reading a range. Provide a numeric value to specify an index position; use a duration to specify a time position.

Example: 1000

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | duration

fmtType — Format for output data

'Timetable' (default) | 'Vector' | 'TimeSeries'

Format for output data, specified as a character vector or string. This option formats the output according to the following table.

OutputFormat	Description
'Timetable'	Return a timetable from one or more channels into one output variable. This is the only format allowed when reading from multiple channels at the same time. (Default.)
	Note: The timetable format includes columns for the MDF channels. Because the column titles must be valid MATLAB identifiers, they might not be exactly the same as those values in the MDF object ChannelNames property. The column headers are derived from the property using the function matlab.lang.makeValidName. The original channel names are available in the VariableDescriptions property of the timetable object.
'Vector'	Return a vector of numeric data values, and optionally a vector of time values from one channel. Use one output variable to return only data, or two output variables to return both data and time vectors.
'TimeSeries'	Return a time series of data from one channel.

Example: 'Vector'

Data Types: char | string

Output Arguments

data — Channel data

 $time \ table \ (default) \ | \ double \ | \ time \ series \ | \ cell \ array$

Channel data, returned as vector of doubles, a time series, a timetable, or cell array of timetables, according to the 'OutputFormat' option setting and the number of channel groups.

time — Channel data times

double

Channel data times, returned as a vector of double elements. The time vector is returned only when the ' $\mathsf{OutputFormat'}$ is set to ' $\mathsf{Vector'}$.

See Also

Functions

mdf | saveAttachment

Topics

"Time Series" (MATLAB)

"Represent Dates and Times in MATLAB" (MATLAB)

"Tables" (MATLAB)

Introduced in R2016b

saveAttachment

Save attachment from MDF file

Syntax

```
saveAttachment(mdf0bj,AttachmentName)
saveAttachment(mdf0bj,AttachmentName,DestFile)
```

Description

saveAttachment(mdfObj,AttachmentName) saves the specified attachment from the MDF file to the current MATLAB working folder. The attachment is saved with its existing name.

Note This function is supported only on 64-bit Windows operating systems.

saveAttachment(mdfObj,AttachmentName,DestFile) saves the specified attachment from the MDF file to the given destination. You can specify relative or absolute paths to place the attachment in a specific folder.

Examples

Save Attachment with Original Name

Save an MDF file attachment with its original name in the current folder.

```
mdf0bj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext')
```

Save Attachment with New Name

Save an MDF file attachment with a new name in the current folder.

```
mdf0bj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','MyFile.ext')
```

Save Attachment in Parent Folder

Save an MDF file attachment in a folder specified with a relative path name, in this case in the parent of the current folder.

```
mdf0bj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','..\MyFile.ext')
```

Save Attachment in Specified Folder

This example saves an MDF file attachment using an absolute path name.

```
mdf0bj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','C:\MyDir\MyFile.ext')
```

Input Arguments

```
mdf0bj — MDF file
```

MDF file object

MDF file, specified as an MDF file object.

```
Example: mdf('MDFFile.mf4')
```

AttachmentName — MDF file attachment name

char vector | string

MDF file attachment name, specified as a character vector or string. The name of the attachment is available in the Name field of the MDF file object Attachment property.

```
Example: 'file1.dbc'
Data Types: char | string
```

DestFile — Destination file name for the saved attachment

existing attachment name (default) | char vector | string

Destination file name for the saved attachment, specified as a character vector or string. The specified destination can include an absolute or relative path, otherwise the attachment is saved in the current folder.

Example: 'MyFile.ext'
Data Types: char | string

See Also

Functions
mdf | read

Introduced in R2016b

mdfDatastore

Datastore for collection of MDF files

Description

Use the MDF datastore object to access data from a collection of MDF files.

Creation

Syntax

```
mdfds = mdfDatastore(location)
mdfds = mdfDatastore(__,'Name1',Value1,'Name2',Value2,...)
```

Description

mdfds = mdfDatastore(location) creates an MDFDatastore based on an MDF file
or a collection of files in the folder specified by location. All files in the folder with
extensions .mdf, .dat, or .mf4 are included.

mdfds = mdfDatastore(__,'Name1', Value1, 'Name2', Value2,...) specifies
function options and properties of mdfds using optional name-value pairs.

Input Arguments

location — Location of MDF datastore files

character vector | cell array

Location of MDF datastore files, specified as a character vector or cell array of character vectors, identifying either files or folders. The path can be relative or absolute, and can contain the wildcard character *. If location specifies a folder, by default the datastore includes all files in that folder with the extensions .mdf, .dat, or .mf4.

```
Example: 'CANape.MF4'
```

Data Types: char | cell

Specify optional comma-separated pairs of Name, Value arguments to set file information or object "Properties" on page 7-16. Allowed options are IncludeSubfolders, FileExtensions, and the properties ReadSize, SelectedChannelGroupNumber, and SelectedChannelNames.

Example: 'SelectedChannelNames', 'Counter B4'

IncludeSubfolders — Include files in subfolders

false (default) | true

Include files in subfolders, specified as a logical. Specify true to include files in each folder and recursively in subfolders.

Example: 'IncludeSubfolders', true Data Types: logical

FileExtensions — Custom extensions for filenames to include in MDF datastore { '.mdf', '.dat', '.mf4'} (default) | char | cell

Custom extensions for filenames to include in the MDF datastore, specified as a character vector or cell array of character vectors. By default, the supported extensions include .mdf, .dat, and .mf4. If your files have custom or nonstandard extensions, use this Name-Value setting to include files with those extensions.

```
Example: 'FileExtensions',{'.myformat1','.myformat2'}
Data Types: char | cell
```

Properties

Channel Groups — All channel groups present in first MDF file (read-only) table

All channel groups present in first MDF file, returned as a table.

Data Types: table

Channels — All channels present in first MDF file (read-only) table

All channels present in first MDF file, returned as a table.

Data Types: table

Files — Files included in datastore

char | string | cell

Files included in the datastore, specified as a character vector, string, or cell array.

```
Example: {'file1.mf4','file2.mf4'}
Data Types: char | string | cell
```

ReadSize — Size of data returned by read

```
'file' (default) | numeric | duration
```

Size of data returned by the read function, specified as 'file', a numeric value, or a duration. A character vector value of 'file' causes the entire file to be read; a numeric double value specifies the number of records to read; and a duration value specifies a time range to read.

If you later change the ReadSize property value type, the datastore resets.

```
Example: 50
```

Data Types: double | char | duration

SelectedChannelGroupNumber — Channel group to read

numeric scalar

Channel group to read, specified as a numeric scalar value.

```
Example: 1
```

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
```

SelectedChannelNames — Names of channels to read

```
char | string | cell
```

Names of channels to read, specified as a character vector, string, or cell array.

```
Example: 'Counter_B4'
Data Types: char | string | cell
```

Object Functions

read Read data in MDF datastore
readall Read all data in MDF datastore
preview Subset of data from MDF datastore
reset Reset MDF datastore to initial state

hasdata Determine if data is available to read from MDF datastore

partition Partition MDF datastore

numpartitions
Number of partitions for MDF datastore

Examples

Create an MDF Datastore

Create an MDF datastore from the sample file CANape.MF4, and read it into a timetable.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
while hasdata(mdfds)
    m = read(mdfds);
end
```

See Also

hasdata (MDFDatastore)

Determine if data is available to read from MDF datastore

Syntax

```
tf = hasdata(mdfds)
```

Description

tf = hasdata(mdfds) returns logical 1 (true) if there is data available to read from the MDF datastore specified by mdfds. Otherwise, it returns logical 0 (false).

Examples

Check MDF Datastore for Readable Data

Use hasdata in a loop to control read iterations.

```
mdfds = mdfDatastore(fullfile(matlabroot, 'examples', 'vnt', 'CANape.MF4'));
while hasdata(mdfds)
    m = read(mdfds);
end
```

Input Arguments

mdfds — MDF datastore

MDF datastore object

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

Output Arguments

tf — Indicator of data to read $1\mid 0$

Indicator of data to read, returned as a logical 1 (true) or false (0).

See Also

Functions

mdfDatastore | read | readall | reset

numpartitions (MDFDatastore)

Number of partitions for MDF datastore

Syntax

```
N = numpartitions(mdfds)
N = numpartitions(mdfds,pool)
```

Description

N = numpartitions(mdfds) returns the recommended number of partitions for the MDF datastore mdfds. Use the result as an input to the partition function.

N = numpartitions(mdfds,pool) returns a reasonable number of partitions to parallelize mdfds over the parallel pool, pool, based on the number of files in the datastore and the number of workers in the pool.

Examples

Find Recommended Number of Partitions for MDF Datastore

Determine the number of partitions you should use for your MDF datastore.

```
mdfds = mdfDatastore(fullfile(matlabroot, 'examples', 'vnt', 'CANape.MF4'));
N = numpartitions(mdfds):
```

Input Arguments

mdfds — MDF datastore

MDF datastore object

Example: mdfds = mdfDatastore('CANape.MF4')

pool — Parallel pool

parallel pool object

Parallel pool specified as a parallel pool object.

Example: gcp

Output Arguments

N — Number of partitions

double

Number of partitions, returned as a double. This number is the calculated recommendation for the number of partitions for your MDF datastore. Use this when partitioning your datastore with the partition function.

See Also

Functions

mdfDatastore | partition | read | reset

partition (MDFDatastore)

Partition MDF datastore

Syntax

```
subds = partition(mdfds,N,index)
subds = partition(mdfds,'Files',index)
subds = partition(mdfds,'Files',filename)
```

Description

subds = partition(mdfds,N,index) partitions the MDF datastore mdfds into the number of parts specified by N, and returns the partition corresponding to the index index.

subds = partition(mdfds,'Files',index) partitions the MDF datastore by files
and returns the partition corresponding to the file of index index in the Files property.

subds = partition(mdfds,'Files',filename) partitions the datastore by files and
returns the partition corresponding to the specified filename.

Examples

Partition an MDF Datastore into Default Parts

Partition an MDF datastore from the sample file CANape.MF4, and return the first part.

```
mdfds = mdfDatastore(fullfile(matlabroot, 'examples', 'vnt', 'CANape.MF4'));
N = numpartitions(mdfds);
subds1 = partition(mdfds,N,1);
```

Partition an MDF Datastore by Its Files

Partition an MDF datastore according to its files, and return partitions by index and file name.

```
cd c:\temp
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.Files

ans =
    3×1 cell array
    'c:\temp\CANape1.MF4'
    'c:\temp\CANape2.MF4'
    'c:\temp\CANape3.MF4'

subds2 = partition(mdfds,'files',2);
subds3 = partition(mdfds,'files','c:\temp\CANape3.MF4');
```

Input Arguments

mdfds - MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

N — Number of partitions

positive integer

Number of partitions, specified as a double of positive integer value. Use the numpartitions function for the recommended number or partitions.

```
Example: numpartitions(mdfds)
Data Types: double
```

index — Index

positive integer

Index, specified as a double of positive integer value. When using the 'files' partition scheme, this value corresponds to the index of the MDF datastore object Files property.

```
Example: 1
```

Data Types: double

filename — File name

character vector

File name, specified as a character vector. The argument can specify a relative or absolute path.

Example: 'CANape.MF4'

Data Types: char

Output Arguments

subds — MDF datastore partition

MDF datastore object

MDF datastore partition, returned as an MDF datastore object. This output datastore is of the same type as the input datastore mdfds.

See Also

Functions

mdfDatastore | numpartitions | read | reset

preview (MDFDatastore)

Subset of data from MDF datastore

Syntax

data = preview(mdfds)

Description

data = preview(mdfds) returns a subset of data from MDF datastore mdfds without
changing the current position in the datastore.

Examples

Examine Preview of MDF Datastore

TIME	Counter_b4	Counter_b3	Counter_bo	Counter_b/	1 441 1
0.00082554 sec	0	0	1	0	100
0.010826 sec	0	0	1	0	100
0.020826 sec	0	0	1	0	100
0.030826 sec	0	0	1	0	100
0.040826 sec	0	0	1	0	100
0.050826 sec	0	0	1	0	100

PWM

0.060826 sec 0 0 1 0 100 0.070826 sec 0 0 1 0 100

Input Arguments

mdfds - MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

Example: mdfds = mdfDatastore('CANape.MF4')

Output Arguments

data — Subset of data

timetable

Subset of data, returned as a timetable of MDF records.

See Also

Functions

hasdata | mdfDatastore | read

read (MDFDatastore)

Read data in MDF datastore

Syntax

```
data = read(mdfds)
[data,info] = read(mdfds)
```

Description

data = read(mdfds) returns data from the MDF datastore mdfds into the timetable
data.

The read function returns a subset of data from the datastore. The size of the subset is determined by the ReadSize property of the datastore object. On the first call, read starts reading from the beginning of the datastore, and subsequent calls continue reading from the endpoint of the previous call. Use reset to read from the beginning again.

[data,info] = read(mdfds) also returns to the output argument info information,
including metadata, about the extracted data.

Examples

Read Datastore by Files

Read data from an MDF datastore one file at a time.

```
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.ReadSize = 'file';
data = read(mdfds);
```

Read the second file and view information about the data.

```
[data2,info2] = read(mdfds);
info2
```

struct with fields:

Filename: 'CANape2.MF4'

FileSize: 57592

MDFFileProperties: [1×1 struct]

Input Arguments

mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

Example: mdfds = mdfDatastore('CANape.MF4')

Output Arguments

data — Output data

timetable

Output data, returned as a timetable of MDF records.

info - Information about data

structure array

Information about data, returned as a structure array with the following fields:

Filename FileSize MDFFileProperties

See Also

Functions

hasdata | mdfDatastore | preview | readall | reset

readall (MDFDatastore)

Read all data in MDF datastore

Syntax

```
data = readall(mdfds)
```

Description

data = readall(mdfds) reads all the data in the datastore specified by mdfds and
returns it to timetable data.

After the readall function returns all the data, it resets mdfds to point to the beginning of the datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

Examples

Read All Data in Datastore

Read all the data from a multiple file MDF datastore into a timetable.

```
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
data = readall(mdfds);
```

Input Arguments

mdfds — MDF datastore

MDF datastore object

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

Output Arguments

data — Output data

timetable

Output data, returned as a timetable of MDF records.

See Also

Functions

hasdata | mdfDatastore | preview | read | reset

reset (MDFDatastore)

Reset MDF datastore to initial state

Syntax

reset(mdfds)

Description

reset(mdfds) resets the MDF datastore specified by mdfds to its initial read state, where no data has been read from it. Resetting allows your to reread from the same datastore.

Examples

Reset MDF Datastore

Reset an MDF datastore so that you can read from it again.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
data = read(mdfds);
reset(mdfds);
data = read(mdfds);
```

Input Arguments

mdfds - MDF datastore

MDF datastore object

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

See Also

Functions

hasdata|mdfDatastore|read

channelList

Information on available MDF groups and channels

Syntax

```
chans = channelList(mdfobj)
channelList(mdf0bj,chanName)
channelList(mdf0bj,chanName,'ExactMatch',true)
```

Description

chans = channelList(mdfobj) returns a table of information about channels and groups in the specified MDF file.

channelList(mdf0bj,chanName) searches the MDF file to generate a list of channels matching the specified channel name. The search by default is case-insensitive and identifies partial matches. A table is returned containing information about the matched channels and the containing channel groups. If no matches are found, an empty table is returned.

channelList(mdf0bj,chanName,'ExactMatch',true) searches the channels for an exact match, including case sensitivity. This is useful if a channel name is a substring of other channel names.

Examples

View Available MDF Channels

```
View all available MDF channels.
```

```
mdf0bj = mdf('File01.mf4');
chans = channelList(mdf0bj)
chans =
```

4×9 table

ChannelName	ChannelGroupNumber	ChannelGroupNumSamples
"Float 32 LE Offset 64"	2	10000
"Float 64 LE Master Offset 0"	2	10000
"Sigend Int16 LE Offset 32"	1	10000
"Unsigend UInt32 LE Master Offset 0"	1	10000

View Specific MDF Channels

Filter on channel names.

Input Arguments

mdf0bj — MDF file

MDF file object

MDF file, specified as an MDF file object.

Example: mdf('File01.mf4')

chanName — Name of channel

char vector | string

Name of channel, specified as a character vector or string. By default, case-insensitive and partial matches are returned.

Example: 'Channel1'

Data Types: char | string

Output Arguments

chans — Information on available MDF channels

table

Information on available MDF channels, returned as a table. To access specific elements, you can index into the table.

See Also

Functions

mdf