Powertrain Blockset ${ }^{\text {m }}$
 Reference

MATLAB®\&SIMULINK ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Powertrain Blockset ${ }^{\mathrm{TM}}$ Reference

© COPYRIGHT 2016-2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

October 2016 Online only
March 2017 Online only
September 2017 Online only
March 2018 Online only
September 2018 Online only

New for Version 1.0 (Release 2016b+)
Revised for Version 1.1 (Release 2017a)
Revised for Version 1.2 (Release 2017b)
Revised for Version 1.3 (Release 2018a)
Revised for Version 1.4 (Release 2018b)

Vehicle Dynamics Blocks - Alphabetical List

$$
2
$$

Energy Storage Blocks - Alphabetical List

$$
3
$$

Propulsion Blocks - Alphabetical List
4

Scenario Creation Blocks - Alphabetical List 5

Transmission Blocks - Alphabetical List
6

Functions
7

Drivetrain Blocks - Alphabetical List

Rotational Inertia

Ideal mechanical rotational inertia

Description

The Rotational Inertia block implements an ideal mechanical rotational inertia.

Ports

Input

RTrq - Input torque

scalar
Applied input drive shaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

CTrq - Load torque
 scalar

Load drive shaft torque, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To create this port, for Port Configuration, select Simulink.

R - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Inertia - Input
 scalar

Additional inertia input, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Dependencies
To create this port, select the External inertia input parameter.

Output

Spd - Drive shaft speed
 scalar

Angular drive shaft speed, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

C - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration
Simulink (default)|Two-way connection
Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- RTrq
- CTrq
- Spd

Specifying Two-way connection creates these ports:

- R
- C

Rotational inertia, J - Inertia

scalar

Rotational inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

Torsional damping, b - Damping scalar

Torsional damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.

Initial velocity, omega_o - Angular scalar

Initial angular velocity, in rad/s.

External inertia input - Input inertia

off (default) | on
Select to create an input port for additional inertia.

See Also

Split Torsional Compliance | Torsional Compliance

Introduced in R2017a

Split Torsional Compliance

Split torsional coupler
 Library: Powertrain Blockset / Drivetrain / Couplings Vehicle Dynamics Blockset / Powertrain / Drivetrain / Couplings

Description

The Split Torsional Compliance block implements parallel spring-damper coupling between shafts. You can specify the type of coupling by selecting one of the Coupling Configuration parameters:

- Shaft split - Single input shaft coupled to two output shafts
- Shaft merge - Two input shafts coupled to a single output shaft

In fuel economy and emissions studies, you can use the Split Torsional Compliance block to model mechanical rotational compliance between common driveline elements such as motors, planetary gears, and clutches. For example, use the Shaft split configuration to couple a motor and two planetary gear sets. Use the Shaft merge configuration to couple a dual clutch transmission to an output shaft.

Shaft Split

For the Shaft split configuration, the block implements this schematic and equations.

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

$T_{\text {in }}$	Resulting applied input reaction torque
$\omega_{\text {in }}$	Input shaft rotational velocity
$T_{1 \text { out }}$	Resulting applied torque to first output shaft
$\omega_{1 \text { out }}$	First output shaft rotational velocity
$T_{2 \text { out }}$	Resulting applied torque to second output shaft
$\omega_{2 \text { out }}$	Second output shaft rotational velocity
b_{1}, b_{2}	First, second shaft viscous damping

$k_{1}, k_{2} \quad$ First, second shaft torsional stiffness

Shaft Merge

For the Shaft merge configuration, the block implements this schematic and equations.

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

$T_{\text {out }}$	Resulting applied output torque
$\omega_{\text {out }}$	Output shaft rotational velocity

$T_{1 i n}$	Resulting reaction torque to first input shaft
$\omega_{1 \text { in }}$	First input shaft rotational velocity
$T_{2 i n}$	Resulting reaction torque to second input shaft
$\omega_{2 i n}$	Second input shaft rotational velocity
b_{1}, b_{2}	First, second shaft viscous damping
k_{1}, k_{2}	First, second shaft torsional stiffness

Ports

Input

RSpd - Input shaft speed

scalar

Input shaft rotational velocity, $\omega_{\text {in }}$, in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Spd - First output shaft speed

scalar
First output shaft rotational velocity, $\omega_{1 \text { out }}$, in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C2Spd - Second output shaft speed scalar

Second output shaft rotational velocity, $\omega_{2 o u t}$, in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

CSpd - Input speed scalar

Output shaft rotational velocity, $\omega_{\text {out }}$, in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R1Spd - First input shaft speed

scalar
First input shaft rotational velocity, $\omega_{1 i n}$, in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R2Spd - Second input shaft speed scalar

Second input shaft rotational velocity, $\omega_{2 i n}$, in rad/s.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R - Input shaft angular velocity and torque

two-way connector port
Input shaft angular velocity, $\omega_{i n}$, in rad/s and torque, $T_{i n}$, in $N \cdot m$.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

R1 - First input shaft angular velocity and torque

two-way connector port
First input shaft angular velocity, $\omega_{1 i n}$, in rad/s and torque, $T_{1 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

R2 - Second input shaft angular velocity and torque

two-way connector port
Second input shaft angular velocity, $\omega_{2 i n}$, in rad/s and torque, $T_{2 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

Output

RTrq - Input shaft torque scalar

Input shaft torque, $T_{i n}$, in $N \cdot m$.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Trq - First output shaft torque scalar

First output shaft torque, $T_{1 o u t}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C2Trq - Second output shaft torque scalar

Second output shaft torque, $T_{2 o u t}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

CTrq - Output shaft torque scalar

Output shaft torque, $T_{\text {out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R1Trq - First input shaft torque
 scalar

First input shaft torque, $T_{1 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R2Trq - Second input shaft torque

scalar

Second input shaft torque, $T_{2 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

C1 - First output shaft angular velocity and torque

two-way connector port
First output shaft angular velocity, $\omega_{1 o u t}$, in rad/s and torque, $T_{1 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

C2 - Second output shaft angular velocity and torque

two-way connector port
Second output shaft angular velocity, $\omega_{2 o u t}$, in rad/s and torque, $T_{2 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

C - Output shaft angular velocity and torque

two-way connector port
Output shaft angular velocity, $\omega_{\text {out }}$, in rad/s and torque, $T_{\text {out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

Parameters

Block Options

Port Configuration - Specify configuration

Simulink (default)|Two-way connection
Specify the port configuration.

Coupling Configuration - Specify configuration Shaft split (default)|Shaft merge

Specify the coupling type.

Coupling 1

```
Torsional stiffness, k1 - Stiffness
```

scalar

Rotational inertia, k_{1}, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

Torsional damping, b1 - Damping scalar

Torsional damping, b_{1}, in $N \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.

Damping cutoff frequency, omegal_c - Frequency scalar

Damping cutoff frequency, in rad/s.

Coupling 2

Torsional stiffness, k2 - Stiffness

scalar

Rotational inertia, k_{2}, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

```
Torsional damping, b2 - Damping
scalar
Torsional damping, \(b_{2}\), in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Damping cutoff frequency, omega2_c - Frequency scalar
```

Damping cutoff frequency, in rad/s.

See Also

Rotational Inertia | Torsional Compliance

Introduced in R2017b

Torsional Compliance

Parallel spring-damper
 Library: Powertrain Blockset / Drivetrain / Couplings Vehicle Dynamics Blockset / Powertrain / Drivetrain / Couplings

Description

The Torsional Compliance block implements a parallel spring-damper.

Ports

Input

RSpd - Input angular velocity

scalar
Input angular velocity, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

CSpd - Load torque angular velocity scalar

Input angular velocity due to load torque, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

R - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Output

RTrq - Input torque
 scalar

Applied input drive shaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

CTrq - Load torque
 scalar

Load drive shaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

C - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration
Simulink (default)|Two-way connection
Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- RSpd
- CSpd
- RTrq
- CTrq

Specifying Two-way connection creates these ports:

- R
- C

Torsional stiffness, k - Inertia scalar

Torsional stiffness, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

Torsional damping, b-Damping

scalar
Torsional damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.

```
Initial deflection, theta_o - Angular scalar
```

Initial deflection, in rad.

Initial velocity difference, domega_o - Angular scalar

Initial velocity difference, in rad/s.
Damping cut-off frequency, omega_c - Frequency scalar

Damping cut-off frequency, in rad/s.

See Also

Rotational Inertia | Split Torsional Compliance

1 Drivetrain Blocks - Alphabetical List

Introduced in R2017a

Limited Slip Differential

Limited differential as a planetary bevel gear
Library: Powertrain Blockset / Drivetrain / Final Drive Unit Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final Drive Unit

Description

The Limited Slip Differential block implements a differential as a planetary bevel gear train. The block matches the drive shaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-drive shaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier
- Type of slip coupling

Use the block in system-level driveline analysis to account for the power transfer from the transmission to the wheels. The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

In a limited slip differential, to prevent one of the wheels from slipping, the differential splits the torque applied to the left and right axles. With different torque applied to the axles, the wheels can move at different angular velocities, preventing slip. The block implements three methods for coupling the different torques applied to the axes:

- Pre-loaded ideal clutch
- Slip speed-dependent torque data
- Input torque dependent torque data

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.

Equations

The Limited Slip Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical Dynamic Response	Differential Equation
Crown Gear	$\grave{\omega}_{d} J_{d}=T_{d}-\omega_{d} b_{d}-T_{i}$
Left Axle	$\dot{\omega}_{1} J_{1}=T_{1}-\omega_{1} b_{1}-T_{i 1}$
Right Axle	$\dot{\omega}_{2} J_{2}=T_{2}-\omega_{2} b_{2}-T_{i 2}$

The block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& T_{1}=T_{2}=\frac{N}{2} T_{i}+T_{c} \\
& \omega_{d}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

The equations use these variables.
$N \quad$ Carrier-to-drive shaft gear ratio
$J_{d} \quad$ Rotational inertia of the crown gear assembly
$b_{d} \quad$ Crown gear linear viscous damping
$\omega_{d} \quad$ Driveshaft angular speed
$\varpi \quad$ Slip speed
$J_{1} \quad$ Axle 1 rotational inertia
$b_{1} \quad$ Axle 1 linear viscous damping
$\omega_{1} \quad$ Axle 1 speed
$J_{2} \quad$ Axle 2 rotational inertia
$b_{2} \quad$ Axle 2 linear viscous damping
$\omega_{2} \quad$ Axle 2 angular speed
$T_{d} \quad$ Driveshaft torque
$T_{1} \quad$ Axle 1 torque
$T_{2} \quad$ Axle 2 torque
$T_{i} \quad$ Axle internal resistance torque
$T_{i 1} \quad$ Axle 1 internal resistance torque
$T_{i 2} \quad$ Axle 2 internal resistance torque
$\mu \quad$ Coefficient of friction
Effective clutch radius
$R_{e f f}$
$R \quad$ Annular disk outer radius

R_{i}	Annular disk inner radius
F_{c}	Clutch force
T_{c}	Clutch torque
μ	Coefficient of friction

Table blocks in the Limited Slip Differential have these parameter settings:

- Interpolation method - Linear
- Extrapolation method - Clip

The ideal clutch coupling model uses the axle slip speed and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

$$
T_{c}=F_{c} N \mu(|\Phi|) R_{e f f} \tanh (4|\varpi|)
$$

The disc radii determine the effective clutch radius over which the clutch force acts.

$$
R_{e f f}=\frac{2\left(R_{o}^{3}-R_{i}^{3}\right)}{3\left(R_{o}^{2}-R_{i}^{2}\right)}
$$

The angular velocities of the axles determine the slip speed.

$$
\varpi=\omega_{1}-\omega_{2}
$$

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed. The angular velocities of the axles determine the slip speed.

$$
\bar{\omega}=\omega_{1}-\omega_{2}
$$

To calculate the clutch torque, the input torque coupling model uses torque data that is a function of input torque.

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& T_{1}=T_{2}=\frac{N}{2} T_{i} \\
& \omega_{d=}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

Ports

Inputs

DriveshftTrq - Torque

scalar
Applied input torque, typically from the engine crankshaft, in $\mathrm{N} \cdot \mathrm{m}$.
Axl1Trq - Torque
scalar
Axle 1 torque, T_{1}, in $\mathrm{N} \cdot \mathrm{m}$.

Axl2Trq - Torque

scalar
Axle 2 torque, T_{2}, in $\mathrm{N} \cdot \mathrm{m}$.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal		Description	Units
Driveshft	DriveshftTrq	Drive shaft torque	$\mathrm{N} \cdot \mathrm{m}$
	DriveshftSpd	Drive shaft speed	$\mathrm{rad} / \mathrm{s}$
Axl1	Axl1Trq	Axle 1 torque	$\mathrm{N} \cdot \mathrm{m}$

Signal		Description	Units
	Axl1Spd	Axle 1 speed	$\mathrm{rad} / \mathrm{s}$
Axl2	Axl2Trq	Axle 2 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl2Spd	Axle 2 speed	$\mathrm{rad} / \mathrm{s}$
	CplngTrq	Torque coupling	$\mathrm{N} \cdot \mathrm{m}$
	CplngSlipSpd	Slip speed	$\mathrm{rad} / \mathrm{s}$

DriveshftSpd - Angular speed

scalar

Drive shaft angular speed, ω_{d}, in rad/s.

Axl1Spd - Angular speed

 scalarAxle 1 angular speed, ω_{1}, in rad/s.

Axl2Spd - Angular speed

scalar

Axle 2 angular speed, ω_{2}, in rad/s.

Parameters

Open Differential

Crown wheel (ring gear) located - Specify crown wheel connection To the left of center-line (default)|To the right of center-line

Specify the crown wheel connection to the drive shaft.

Carrier to drive shaft ratio, NC/ND - Ratio scalar

Carrier-to-drive shaft gear ratio, N.
Carrier inertia, Jd - Inertia scalar

Rotational inertia of the crown gear assembly, J_{d}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. You can include the drive shaft inertia.

Carrier damping, bd - Damping scalar

Crown gear linear viscous damping, b_{d}, in $N \cdot m \cdot s / r a d$.
Driveshaft 1 inertia, Jw1 - Inertia scalar

Driveshaft 1 rotational inertia, J_{1}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Driveshaft 1 damping, bw1 - Damping scalar

Driveshaft 1 linear viscous damping, b_{1}, in $N \cdot m \cdot s / r a d$.
Driveshaft 2 inertia, Jw2 - Inertia scalar

Driveshaft 2 rotational inertia, J_{2}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Driveshaft 2 damping, bw2 - Damping scalar

Driveshaft 2 linear viscous damping, b_{2}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Driveshaft 1 initial velocity, omegaw1o - Angular velocity scalar

Driveshaft 1 initial velocity, $\omega_{o 1}$, in rad/s.
Driveshaft 2 initial velocity, omegaw2o - Angular velocity scalar

Driveshaft 2 initial velocity, $\omega_{o 2}$, in rad/s.

Slip Coupling

Coupling type - Torque coupling

Ideal pre-loaded clutch (default)|Slip speed dependent torque data| Input torque dependent torque data

Specify the type of torque coupling.

Number of disks, Ndisks - Torque coupling scalar

Number of disks.

Dependencies

To enable the ideal clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

Effective radius, Reff - Radius
scalar

The effective radius, $R_{e f f}$, used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$
R_{e f f}=\frac{2\left(R_{o}^{3}-R_{i}^{3}\right)}{3\left(R_{o}{ }^{2}-R_{i}^{2}\right)}
$$

The equation uses these variables.
$R_{o} \quad$ Annular disk outer radius
$R_{i} \quad$ Annular disk inner radius

Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

```
Nominal preload force, Fc - Force
scalar
```

Nominal preload force, in N.

Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

Friction coefficient vector, mu - Friction vector

Friction coefficient vector.

Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

Slip speed vector, dw - Angular velocity

 vectorSlip speed vector, in rad/s.

Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

```
Torque - slip speed vector, Tdw - Torque
vector
```

Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

Slip speed vector, dwT - Angular velocity vector

Slip speed vector, in rad/s.

Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

```
Torque - input torque vector, TTin - Torque
vector
```

Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the Coupling type parameter.

Input torque vector, Tin - Torque
vector
Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the Coupling type parameter.

Coupling time constant, tauC - Constant scalar

Coupling time constant, in s.

References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. "Modeling of Active Differential
Dynamics." In ASME proceedings. Transportation Systems. Vol. 17, pp: 427-436.

See Also

Open Differential

Introduced in R2017a

Open Differential

Differential as a planetary bevel gear

Library: \quad| Powertrain Blockset / Drivetrain / Final Drive Unit | |
| :--- | :--- |
| | Vehicle Dynamics Blockset / Powertrain / Drivetrain / |
| | Final Drive Unit |

Description

The Open Differential block implements a differential as a planetary bevel gear train. The block matches the drive shaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-drive shaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier

Use the Open Differential block to:

- Dynamically couple the post-transmission drive shaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.

Equations

The Open Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical Dynamic Response	Differential Equation
Crown Gear	$\grave{\omega}_{d} J_{d}=T_{d}-\omega_{d} b_{d}-T_{i}$
Left Axle	$\grave{\omega}_{1} J_{1}=T_{1}-\omega_{1} b_{1}-T_{i 1}$
Right Axle	$\omega_{2} J_{2}=T_{2}-\omega_{2} b_{2}-T_{i 2}$

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& T_{1}=T_{2}=\frac{N}{2} T_{i} \\
& \omega_{d=}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

The equations use these variables.

N	Carrier-to-drive shaft gear ratio
J_{d}	Rotational inertia of the crown gear assembly
b_{d}	Crown gear linear viscous damping
ω_{d}	Drive shaft angular speed
J_{1}	Axle 1 rotational inertia
b_{1}	Axle 1 linear viscous damping
ω_{1}	Axle 1 speed
J_{2}	Axle 2 rotational inertia
b_{2}	Axle 2 linear viscous damping
ω_{2}	Axle 2 angular speed
T_{d}	Drive shaft torque
T_{1}	Axle 1 torque
T_{2}	Axle 2 torque
T_{i}	Drive shaft internal resistance torque
$T_{i 1}$	Axle 1 internal resistance torque
$T_{i 2}$	Axle 2 internal resistance torque

Ports

Inputs

DriveshftTrq - Torque

scalar
Applied input torque, typically from the engine crankshaft, in $\mathrm{N} \cdot \mathrm{m}$.

Axl1Trq - Torque

scalar

Axle 1 torque, T_{1}, in $\mathrm{N} \cdot \mathrm{m}$.

Axl2Trq - Torque

scalar
Axle 2 torque, T_{2}, in $\mathrm{N} \cdot \mathrm{m}$.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal		Description	Units
Driveshft	DriveshftTrq	Drive shaft torque	$\mathrm{N} \cdot \mathrm{m}$
	DriveshftSpd	Drive shaft speed	$\mathrm{rad} / \mathrm{s}$
Axll	Axl1Trq	Axle 1 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl1Spd	Axle 1 speed	$\mathrm{rad} / \mathrm{s}$
Axl2	Axl2Trq	Axle 2 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl2Spd	Axle 2 speed	$\mathrm{rad} / \mathrm{s}$

DriveshftSpd - Angular speed

scalar
Drive shaft angular speed, ω_{d}, in rad/s.

Axl1Spd - Angular speed scalar

Axle 1 angular speed, ω_{1}, in rad/s.
Axl2Spd - Angular speed scalar

Axle 2 angular speed, ω_{2}, in rad/s.

Parameters

Crown wheel (ring gear) located - Specify crown wheel connection To the left of center-line (default)|To the right of center-line

Specify the crown wheel connection to the drive shaft.

Carrier to drive shaft ratio, Ndiff - Ratio scalar

Carrier-to-drive shaft gear ratio, N, dimensionless.

Carrier inertia, Jd - Inertia
 scalar

Rotational inertia of the crown gear assembly, J_{d}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. You can include the drive shaft inertia.

```
Carrier damping, bd - Damping
scalar
```

Crown gear linear viscous damping, b_{d}, in $N \cdot m \cdot s / r a d$.
Axle 1 inertia, Jw1 - Inertia scalar

Axle 1 rotational inertia, J_{1}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 1 damping, bw1 - Damping scalar

Axle 1 linear viscous damping, b_{1}, in $N \cdot m \cdot s / r a d$.

Axle 2 inertia, Jw2 - Inertia scalar

Axle 2 rotational inertia, J_{2}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 2 damping, bw2 - Damping scalar

Axle 2 linear viscous damping, b_{2}, in $N \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.
Axle 1 initial velocity, omegaw1o - Angular velocity scalar

Axle 1 initial velocity, $\omega_{o 1}$, in rad/s.
Axle 2 initial velocity, omegaw2o - Angular velocity scalar

Axle 2 initial velocity, $\omega_{o 2}$, in rad/s.

See Also

Limited Slip Differential

Introduced in R2017a

Longitudinal Wheel

Longitudinal wheel with disc, drum, or mapped brake
Library:
Powertrain Blockset / Drivetrain / Wheels Vehicle Dynamics Blockset / Wheels and Tires

Description

The Longitudinal Wheel block implements the longitudinal behavior of an ideal wheel. You can specify the longitudinal force and rolling resistance calculation method, and brake type. Use the block in driveline and longitudinal vehicle simulations where low frequency tire-road and braking forces are required to determine vehicle acceleration, braking, and wheel-rolling resistance. For example, you can use the block to determine the torque and power requirements for a specified drive cycle or braking event. The block is not suitable for applications that require combined lateral slip.

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No Brake	None	None
Longitudinal Wheel - Disc Brake	Disc	Brake that converts the brake cylinder pressure into a braking force.
Longitudinal Wheel - Drum Brake	Drum	Simplex drum brake that converts the applied force and brake geometry into a net braking torque.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - Mapped Brake	Mapped	Lookup table that is a function of the wheel speed and applied brake pressure.

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these Longitudinal Force parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.
Magic Formula pure longitudinal slip	Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in Tire and Vehicle Dynamics.
Mapped force	Lookup table that is a function of the normal force and wheel slip ratio.

To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle Dynamics. The magic formula is an empirical equation based on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin axis longitudinal velocity.

To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Brake and drive torque
- Tire rolling resistance
- Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$
T_{i}=T_{a}-T_{b}+T_{d}
$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$
\dot{T}_{d}=\frac{\omega R_{e}}{L_{e}+\omega R_{e}}\left(F_{x} R_{e}+M_{y}\right)
$$

To calculate the rolling resistance torque, you can specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	Block sets rolling resistance, M_{y}, to zero.

Setting	Block Implementation		
$\begin{array}{l}\text { Pressure and } \\ \text { velocity }\end{array}$	$\begin{array}{l}\text { Block uses the method in SAE Stepwise Coastdown Methodology for } \\ \text { Measuring Tire Rolling Resistance. The rolling resistance is a function } \\ \text { of tire pressure, normal force, and velocity. Specifically, }\end{array}$		
$\qquad M_{y}=R_{e}\left\{a+b\left\|V_{x}\right\|+c V_{x}{ }^{2}\right\}\left\{F_{z}{ }^{\beta} p_{i}{ }^{\alpha}\right\}$ tanh $\left(4 V_{x}\right)$			

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

If	Lock-Up Condition	Friction Model	Dynamic Model
or $T_{S}<\mid T_{i}+T_{f}-\omega b$	Unlocked		$\omega J=-\omega b+T_{i}+T_{o}$
		$\left.\begin{array}{l}T_{f}=T_{k} \\ \text { where, } \\ T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(-\omega_{d}\right)\right.\end{array}\right]$	
L=0 and	Locked	$T_{s}=F_{F} R_{e f f} \mu_{s}$ $T_{f}=T_{s}$ $R_{\text {eff }}=\frac{2\left(R_{o}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{o}{ }^{2}-R_{i}{ }^{2}\right)}$	$\omega=0$

$T T_{S}$ equations use these variables.

ω	Wheel angular velocity
a	Velocity independent force component
b	Linear velocity force component
c	Quadratic velocity force component
L_{e}	Tire relaxation length
J	Moment of inertia
M_{y}	Rolling resistance torque
T_{a}	Applied axle torque
T_{b}	Braking torque
T_{d}	Combined tire torque
T_{f}	Frictional torque
T_{i}	Net input torque
T_{k}	Kinetic frictional torque
T_{o}	Net output torque
T_{s}	Static frictional torque

F_{c}	Applied clutch force
F_{x}	Longitudinal force developed by the tire road interface due to slip
$R_{e f f}$	Effective clutch radius
R_{o}	Annular disk outer radius
R_{i}	Annular disk inner radius
R_{e}	Effective tire radius while under load and for a given pressure
V_{x}	Longitudinal axle velocity
F_{z}	Vehicle normal force
α	Tire pressure exponent
β	Normal force exponent
p_{i}	Tire pressure
μ_{s}	Coefficient of static friction
μ_{k}	Coefficient of kinetic friction

Brakes

If you specify the Brake Type parameter Disc, the block implements a disc brake. This figure shows the side and front views of a disc brake.

A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$
\begin{aligned}
& T= \begin{cases}\frac{\mu P \pi B_{a}^{2} R_{m} N_{\text {pads }}}{4} & \text { when } N \neq 0 \\
\frac{\mu_{\text {static }} P \pi B_{a}^{2} R_{m} N_{\text {pads }}}{4} & \text { when } N=0\end{cases} \\
& R m=\frac{R o+R i}{2}
\end{aligned}
$$

The equations use these variables.

T	Brake torque
P	Applied brake pressure
N	Wheel speed
$N_{\text {pads }}$	Number of brake pads in disc brake assembly
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
μ	Disc pad-rotor coefficient of kinetic friction
B_{a}	Brake actuator bore diameter
R_{m}	Mean radius of brake pad force application on brake rotor
R_{o}	Outer radius of brake pad
R_{i}	Inner radius of brake pad

If you specify the Brake Type parameter Drum, the block implements a static (steadystate) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in Fundamentals of Machine Elements.

$$
\begin{aligned}
& T_{\text {rshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}^{2}}{2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+a r\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T_{\text {lshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}^{2}}{-2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+a r\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P
\end{aligned}
$$

$$
T= \begin{cases}T_{r s h o e}+T_{\text {lshoe }} & \text { when } N \neq 0 \\ \left(T_{r s h o e}+T_{l s h o e}\right) \frac{\mu_{\text {static }}}{\mu} & \text { when } N=0\end{cases}
$$

The equations use these variables.

T	Brake torque
P	Applied brake pressure
N	Wheel speed
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
μ	Disc pad-rotor coefficient of kinetic friction
$T_{\text {rshoe }}$	Right shoe brake torque
$T_{\text {lshoe }}$	Left shoe brake torque
a	Distance from drum center to shoe hinge pin center

c	Distance from shoe hinge pin center to brake actuator connection on brake shoe
r	Drum internal radius
B_{a}	Brake actuator bore diameter
Θ_{1}	Angle from shoe hinge pin center to start of brake pad material on shoe
Θ_{2}	Angle from shoe hinge pin center to end of brake pad material on shoe

If you specify the Brake Type parameter Mapped, the block uses a lookup table to determine the brake torque.

$$
T= \begin{cases}f_{\text {brake }}(P, N) & \text { when } N \neq 0 \\ \left(\frac{\mu_{\text {static }}}{\mu}\right) f_{\text {brake }}(P, N) & \text { when } N=0\end{cases}
$$

The equations use these variables.

T	Brake torque
$f_{\text {brake }}(P, N)$	Brake torque lookup table
P	Applied brake pressure
N	Wheel speed
$\mu_{\text {static }}$	Friction coefficient of drum pad-face interface under static conditions
μ	Friction coefficient of disc pad-rotor interface

The lookup table for the brake torque, $f_{b r a k e}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- P is applied brake pressure, in bar.
- N is wheel speed, in rpm.

Longitudinal Force

To model the Longitudinal Wheel block longitudinal forces, you can use the Magic Formula. The model provides a steady-state tire characteristic function $F_{x}=f\left(\kappa, F_{z}\right)$, the longitudinal force F_{x} on the tire, based on:

- Vertical load F_{z}
- Wheel slip κ

The Magic Formula model uses these variables.

Ω	Wheel angular velocity
r_{w}	Wheel radius
V_{x}	Wheel hub longitudinal velocity
$r_{\mathrm{w}} \Omega$	Tire tread longitudinal velocity
$V_{\mathrm{sx}}=r_{\mathrm{w}} \Omega-V_{\mathrm{x}}$	Wheel slip velocity
$K=V_{\mathrm{sx}} /\left\|V_{\mathrm{x}}\right\|$	Wheel slip
$F_{\mathrm{z}}, F_{\mathrm{z} 0}$	Vertical load and nominal vertical load on tire
$F_{\mathrm{x}}=f\left(K, F_{\mathrm{z}}\right)$	Longitudinal force exerted on the tire at the contact point. Also a characteristic function f of the tire.

If you set Longitudinal Force to Magic Formula constant value, the block implements the Magic Formula as a specific form of the tire characteristic function, characterized by four dimensionless coefficients (B, C, D, E), or stiffness, shape, peak, and curvature:

$$
F_{\mathrm{x}}=f\left(\kappa, F_{\mathrm{z}}\right)=F_{\mathrm{z}} D \sin \left(C \tan ^{-1}\left[\left\{B \kappa-E\left[B \kappa-\tan ^{-1}(B \kappa)\right]\right\}\right]\right)
$$

The slope of f at $K=0$ is $B C D \cdot F_{z}$.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

If you set Longitudinal Force to Magic Formula pure longitudinal slip, the block implements a more general Magic Formula using dimensionless coefficients that are functions of the tire load. The block implements the longitudinal force equations in Chapter 4 of Tire and Vehicle Dynamics, including 4.E9 through 4.E18:

$$
F_{\mathrm{x} 0}=D_{\mathrm{x}} \sin \left(C_{\mathrm{x}} \tan ^{-1}\left[\left\{B_{\mathrm{x}} \kappa_{\mathrm{x}}-E_{\mathrm{x}}\left[B_{\mathrm{x}} \kappa_{\mathrm{x}}-\tan ^{-1}\left(B_{\mathrm{x}} \kappa_{\mathrm{x}}\right)\right]\right\}\right]\right)+S_{\mathrm{vx}}
$$

where:

$$
\begin{aligned}
& \kappa_{\mathrm{x}}=\kappa+S_{H x} \\
& C_{\mathrm{x}}=p_{C x x} \lambda_{C x} \\
& D_{\mathrm{x}}=\mu_{\mathrm{x}} F_{\mathrm{z}} \varsigma_{1} \\
& \mu_{\mathrm{x}}=\left(p_{D x l}+p_{D x 2} d f_{\mathrm{z}}\right)\left(1+p_{p x 3} d p_{i}+p_{p x 4} d p_{i}^{2}\right)\left(1-p_{D x 3} \gamma^{2}\right) \lambda_{\mu x}^{*} \\
& E_{\mathrm{x}}=\left(p_{E x I}+p_{E x 2} d f_{\mathrm{z}}+p_{E x 3} d f_{\mathrm{z}}^{2}\right)\left[1 \quad p_{E x 4} \operatorname{sgn}\left(\kappa_{\mathrm{x}}\right)\right] \lambda_{E x} \\
& K_{\mathrm{x} \kappa}=F_{\mathrm{z}}\left(p_{K x l}+p_{K x 2} d f_{\mathrm{z}}\right) \exp \left(\mathrm{p}_{\mathrm{Kx} 3} d f_{\mathrm{z}}\right)\left(1+p_{p x 1} d p_{i}+p_{p x 2} d p_{i}^{2}\right) \\
& B_{\mathrm{x}}=K_{\mathrm{x} \kappa} /\left(C_{\mathrm{x}} D_{\mathrm{x}}+\varepsilon_{\mathrm{x}}\right) \\
& S_{H x}=p_{H x l}+p_{H x 2} d f_{\mathrm{z}} \\
& S_{V x}=F_{\mathrm{z}} \bullet\left(p_{V x l}+p_{V x 2} d f_{\mathrm{z}}\right) \lambda_{V x} \lambda_{\mu x}^{\prime} \varsigma_{1}
\end{aligned}
$$

$S_{H x}$ and $S_{V x}$ represent offsets to the slip and longitudinal force in the force-slip function, or horizontal and vertical offsets if the function is plotted as a curve. μ_{x} is the longitudinal load-dependent friction coefficient. ε_{χ} is a small number inserted to prevent division by zero as F_{z} approaches zero.

Vertical Dynamics

If you select no vertical degrees-of-freedom by setting Vertical Motion to None, the block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.

If you set Vertical Motion to Mapped stiffness and damping, the vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

$$
\text { Fztire }\left(z, \dot{z}, P_{\text {tire }}\right)=F_{z k}\left(z, P_{\text {tire }}\right)+F_{z b}\left(\dot{z}, P_{\text {tire }}\right)
$$

The block determines the vertical response using this differential equation.

$$
\ddot{z} m=F z \text { tire }-F_{z}-m g
$$

When you disable the vertical degree-of-freedom, the input normal force from the vehicle passes directly to the longitudinal and rolling force calculations.

$$
\begin{aligned}
& \ddot{z}=\dot{z}=m=0 \\
& \text { Fztire }=m g
\end{aligned}
$$

The block uses the wheel-fixed frame to resolve the vertical forces.

The equations use these variables.
Fztire \quad Tire normal force along the wheel-fixed z-axis
$m \quad$ Axle mass
$F_{z k} \quad$ Tire normal force due to wheel stiffness along the wheel-fixed z-axis
$F_{z b} \quad$ Tire normal force due to wheel damping along the wheel-fixed z-axis
$F_{z} \quad$ Suspension or vehicle normal force along the wheel-fixed z-axis
$P_{\text {Tire }} \quad$ Tire pressure
$z, \dot{z}, \ddot{z} \quad$ Tire displacement, velocity, and acceleration, respectively, along the wheel-fixed z-axis

Ports

Input

BrkPrs - Brake pressure
scalar
Brake pressure, in Pa.

Dependencies

To create this port, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped

AxlTrq - Axle torque
scalar
Axle torque, T_{a}, about wheel spin axis, in $\mathrm{N} \cdot \mathrm{m}$.

Vx - Velocity

scalar
Axle longitudinal velocity along vehicle(body)-fixed x-axis, in m / s.

Fz - Normal force

scalar

Absolute value of suspension or vehicle normal force along body-fixed z-axis, in N .

Gnd - Ground displacement

scalar
Ground displacement, Grndz, along negative wheel-fixed z-axis, in m .

Dependencies

To create Gnd:

- Set Vertical Motion to Mapped stiffness and damping.
- On the Vertical pane, select Input ground displacement.

lam_mux - Friction scaling factor

 scalarLongitudinal friction scaling factor, dimensionless.

Dependencies

To create this port, select Input friction scale factor.

TirePrs - Tire pressure
 scalar

Tire pressure, in Pa.

Dependencies

To create this port:

- Set one of these parameters:
- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Pressure and velocity or Magic Formula.
- Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, select Input tire pressure.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Units
AxlTrq	Axle torque about body-fixed y-axis	$\mathrm{N} \cdot \mathrm{m}$
Omega	Wheel angular velocity about body- fixed y-axis	$\mathrm{rad} / \mathrm{s}$
Fx	Longitudinal vehicle force along body- fixed x-axis	N
Fz	Vertical vehicle force along body-fixed z-axis	N
My	Rolling resistance torque about body- fixed y-axis	$\mathrm{N} \cdot \mathrm{m}$
Kappa	Slip ratio	NA
Vx	Vehicle longitudinal velocity along body-fixed x-axis	m / s
Re	Wheel effective radius along wheel- fixed z-axis	m
BrkTrq	Brake torque about body-fixed y-axis	$\mathrm{N} \cdot \mathrm{m}$
BrkPrs	Brake pressure	Pa
z	Wheel vertical deflection along wheel- fixed z-axis	m
zdot	Wheel vertical velocity along wheel- fixed z-axis	m / s

Signal	Description	Units
Gndz	Ground displacement along negative of wheel-fixed z-axis (positive input produces wheel lift)	m
GndFz	Vertical wheel force on ground along negative of wheel-fixed z-axis	N
TirePrs	Tire pressure	Pa

Fx - Longitudinal axle force

scalar
Longitudinal force acting on axle, along body-fixed x-axis, in N. Positive force acts to move the vehicle forward.

Omega - Wheel angular velocity

scalar
Wheel angular velocity, about body-fixed y-axis, in rad/s.

z - Wheel vertical deflection

scalar
Wheel vertical deflection along wheel-fixed z-axis, in m .

Dependencies

To create this port, set Vertical Motion to Mapped stiffness and damping.

zdot - Wheel vertical velocity

scalar

Wheel vertical velocity along wheel-fixed z-axis, in m / s.

Dependencies

To create this port, set Vertical Motion to Mapped stiffness and damping.

Parameters

Block Options

Longitudinal Force - Select type

Magic Formula constant value (default)|Magic Formula pure longitudinal slip|Mapped force

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these Longitudinal Force parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.
Magic Formula pure longitudinal slip	Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in Tire and Vehicle Dynamics.
Mapped force	Lookup table that is a function of the normal force and wheel slip ratio.

Dependencies

Selecting	Enables These Parameters
Magic Formula constant value	Pure longitudinal peak factor, Dx
	Pure longitudinal shape factor, Cx
	Pure longitudinal stiffness factor, Bx
	Pure longitudinal curvature factor, Ex

Selecting	Enables These Parameters
Magic Formula pure longitudinal slip	Cfx shape factor, PCX1 Longitudinal friction at nominal normal load, PDX1 Frictional variation with load, PDX2 Frictional variation with camber, PDX3 Longitudinal curvature at nominal normal load, PEX1 Variation of curvature factor with load, PEX2 Variation of curvature factor with square of load, PEX3 Longitudinal curvature factor with slip, PEX4 Longitudinal slip stiffness at nominal normal load, PKX1 Variation of slip stiffness with load, PKX2 Slip stiffness exponent factor, PKX3 Horizontal shift in slip ratio at nominal normal load, PHX1 Variation of horizontal slip ratio with load, PHX2 Vertical shift in load at nominal normal load, PVX1 Variation of vertical shift with load, PVX2 Linear variation of longitudinal slip stiffness with tire pressure, PPX1 Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2

Selecting	Enables These Parameters
	Linear variation of peak longitudinal friction with tire pressure, PPX3 Quadratic variation of peak longitudinal friction with tire pressure, PPX4 Linear variation of longitudinal slip stiffness with tire pressure, PPX1 Slip speed decay function scaling factor, lam_muV Brake slip stiffness scaling factor, lam_Kxkappa Longitudinal shape scaling factor, lam_Cx Longitudinal curvature scaling factor, lam_Ex Longitudinal horizontal shift scaling factor, lam_Hx Longitudinal vertical shift scaling factor, lam_Vx
Mapped force	Slip ratio breakpoints, kappaFx Normal force breakpoints, FzFx Longitudinal force map, FxMap

Rolling Resistance - Select type

None (default)|Pressure and velocity|Magic Formula|Mapped torque
To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None

Setting	Block Implementation
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle Dynamics. The magic formula is an empirical equation based on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin axis longitudinal velocity.

Dependencies

Selecting	Enables These Parameters
Pressure and velocity	Velocity independent force coefficient, aMy
	Linear velocity force component, bMy
	Quadratic velocity force component, cMy
	Tire pressure exponent, alphaMy
	Normal force exponent, betaMy

Selecting	Enables These Parameters
Magic Formula	Rolling resistance torque coefficient, QSY
	Longitudinal force rolling resistance coefficient, QSY2 Linear rotational speed rolling resistance Quartic rotational speed rolling resistance coefficient, QSY4 Camber squared rolling resistance torque, QSY5 Load based camber squared rolling resistance torque, QSY6 Normal load rolling resistance coefficient, QSY7 Pressure load rolling resistance coefficient, QSY8 Rolling resistance scaling factor, lam_My Mapped torque Spin axis velocity breakpoints, VxMy Normal force breakpoints, FzMy

Brake Type - Select type

None | Disc | Drum | Mapped
There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No Brake	None	None
Longitudinal Wheel - Disc Brake	Disc	Brake that converts the brake cylinder pressure into a braking force.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - Drum Brake	Drum	Simplex drum brake that converts the applied force and brake geometry into a net braking torque.
Longitudinal Wheel - Mapped Brake	Mapped	Lookup table that is a function of the wheel speed and applied brake pressure.

Vertical Motion - Select type
 None (default)|Mapped stiffness and damping

To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

Selecting	Enables These Parameters	Creates These Output Ports
Mapped stiffness and damping	Wheel and unsprung mass, m Initial deflection, zo Initial velocity, zdoto Gravitational acceleration, \mathbf{g} Vertical deflection breakpoints, zFz Pressure breakpoints, pFz Force due to deflection, Fzz Vertical velocity breakpoints, zdotFz Force due to velocity, Fzzdot Ground displacement, Gndz	
	Input ground displacement	

Longitudinal scaling factor, lam_x - Friction scaling factor 1 (default)

Longitudinal friction scaling factor, dimensionless.

Dependencies

To enable this parameter, clear Input friction scale factor.

Input friction scale factor - Selection 0ff (default)

Create input port for longitudinal friction scaling factor.

Dependencies

Selecting this parameter:

- Creates Input port lam_mux.
- Disables parameter Longitudinal scaling factor, lam_x.

Wheel Dynamics

Axle viscous damping coefficient, br - Damping scalar

Axle viscous damping coefficient, br, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Wheel inertia, Iyy - Inertia

scalar

Wheel inertia, in $\mathrm{Km}^{*} \mathrm{~m}^{\wedge} 2$.
Wheel initial angular velocity, omegao - Wheel speed scalar

Initial angular velocity of wheel, along body-fixed y-axis, in rad/s.
Relaxation length, Lrel - Relaxation length scalar

Wheel relaxation length, in m.
Loaded radius, Re - Loaded radius scalar

Loaded wheel radius, Re , in m .

Unloaded radius, UNLOADED_RADIUS - Unloaded radius scalar

Unloaded wheel radius, in m.

Dependencies

To create this parameter, set Rolling Resistance to Pressure and velocity or Magic Formula.

Nominal longitudinal speed, LONGVL - Speed scalar

Nominal longitudinal speed along body-fixed x-axis, in m / s.

Dependencies

To enable this parameter, set Longitudinal Force to Magic Formula pure longitudinal slip.

```
Nominal camber angle, gamma - Camber
scalar
```

Nominal camber angle, in rad.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal pressure, NOMPRES - Pressure scalar

Nominal pressure, in Pa.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Pressure, press - Pressure

 scalarPressure, in Pa.

Dependencies

To enable this parameter:

- Set one of these:
- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Pressure and velocity or Magic Formula.
- Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, clear Input tire pressure.

Longitudinal

Magic Formula Constant Value
Pure longitudinal peak factor, Dx - Factor scalar

Pure longitudinal peak factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Pure longitudinal shape factor, Cx - Factor scalar

Pure longitudinal shape factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Pure longitudinal stiffness factor, Bx - Factor

scalar
Pure longitudinal stiffness factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Pure longitudinal curvature factor, Ex - Factor scalar

Pure longitudinal curvature factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Magic Formula Pure Longitudinal Slip
Cfx shape factor, PCX1 - Factor
scalar
Cfx shape factor, PCX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal friction at nominal normal load, PDX1 - Factor scalar

Longitudinal friction at nominal normal load, PDX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Frictional variation with load, PDX2 - Factor scalar

Frictional variation with load, PDX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Frictional variation with camber, PDX3 - Factor
scalar
Frictional variation with camber, $\mathrm{PDX} 3,1 / \mathrm{rad}^{\wedge} 2$.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal curvature at nominal normal load, PEX1 - Factor

 scalarLongitudinal curvature at nominal normal load, PEX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with load, PEX2 - Factor scalar

Variation of curvature factor with load, PEX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with square of load, PEX3 - Factor scalar

Variation of curvature factor with square of load, PEX3, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

```
Longitudinal curvature factor with slip, PEX4 - Factor
```

scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal slip stiffness at nominal normal load, PKX1 - Factor scalar

Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of slip stiffness with load, PKX2 - Factor scalar

Variation of slip stiffness with load, PKX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Slip stiffness exponent factor, PKX3 - Factor scalar

Slip stiffness exponent factor, PKX3, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Horizontal shift in slip ratio at nominal normal load, PHX1 - Factor scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of horizontal slip ratio with load, PHX2 - Factor scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

```
Vertical shift in load at nominal normal load, PVX1 - Factor
scalar
```

Vertical shift in load at nominal normal load, PVX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of vertical shift with load, PVX2 - Factor scalar

Variation of vertical shift with load, PVX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Linear variation of longitudinal slip stiffness with tire pressure, PPX1 - Factor
scalar
Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 - Factor
scalar
Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

```
Linear variation of peak longitudinal friction with tire pressure,
PPX3 - Factor
scalar
```

Linear variation of peak longitudinal friction with tire pressure, PPX3, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Quadratic variation of peak longitudinal friction with tire pressure, PPX4 - Factor
 scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Slip speed decay function scaling factor, lam_muV - Factor scalar

Slip speed decay function scaling factor, lam_muV, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Brake slip stiffness scaling factor, lam_Kxkappa - Factor scalar

Brake slip stiffness scaling factor, lam_Kxkappa, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal shape scaling factor, lam_Cx - Factor scalar

Longitudinal shape scaling factor, lam_Cx, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal curvature scaling factor, lam_Ex - Factor scalar

Longitudinal curvature scaling factor, lam_Ex, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal horizontal shift scaling factor, lam_Hx - Factor scalar

Longitudinal horizontal shift scaling factor, lam_Hx, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal vertical shift scaling factor, lam_Vx - Factor scalar

Longitudinal vertical shift scaling factor, lam_Vx, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Mapped Force

Slip ratio breakpoints, kappaFx - Breakpoints
vector
Slip ratio breakpoints, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Mapped force.

Normal force breakpoints, FzFx - Breakpoints

vector
Normal force breakpoints, N .

Dependencies

To create this parameter, select the Longitudinal Force parameter Mapped force.

Longitudinal force map, FxMap - Lookup table array
 Longitudinal force versus slip ratio and normal force, N .
 Dependencies

To create this parameter, select the Longitudinal Force parameter Mapped force.

Rolling Resistance

Pressure and Velocity

Velocity independent force coefficient, aMy - Force coefficient scalar

Velocity independent force coefficient, a, in s / m.
To implement the rolling resistance calculation specified in ISO 28580, set the value to . 01 for a passenger car.

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

Linear velocity force component, bMy - Force component

 scalarLinear velocity force component, b, in s / m.
To implement the rolling resistance calculation specified in ISO 28580, set the value to 0 .

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

Quadratic velocity force component, cMy - Force component scalar

Quadratic velocity force component, c, in $\mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2$.
To implement the rolling resistance calculation specified in ISO 28580, set the value to 0 .

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

Tire pressure exponent, alphaMy - Pressure exponent scalar

Tire pressure exponent, α, dimensionless.
To implement the rolling resistance calculation specified in ISO 28580, set the value to 0 .

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

Normal force exponent, betaMy - Force exponent

scalar

Normal force exponent, β, dimensionless.
To implement the rolling resistance calculation specified in ISO 28580, set the value to 1 .

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

Magic Formula

Rolling resistance torque coefficient, QSY1 - Torque coefficient scalar

Rolling resistance torque coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Longitudinal force rolling resistance coefficient, QSY2 - Force resistance coefficient
scalar
Longitudinal force rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Linear rotational speed rolling resistance coefficient, QSY3 - Linear speed coefficient scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Quartic rotational speed rolling resistance coefficient, QSY4 Quartic speed coefficient

scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.

```
Camber squared rolling resistance torque, QSY5 - Camber resistance torque
```

```
scalar
```

```
scalar
```

Camber squared rolling resistance torque, in $1 / \mathrm{rad}^{\wedge} 2$.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Load based camber squared rolling resistance torque, QSY6 - Load resistance torque

scalar

Load based camber squared rolling resistance torque, in $1 / \mathrm{rad}^{\wedge} 2$.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.

Normal load rolling resistance coefficient, QSY7 - Normal resistance coefficient
 scalar

Normal load rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.

```
Pressure load rolling resistance coefficient, QSY8 - Pressure
resistance coefficient
scalar
```

Pressure load rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Rolling resistance scaling factor, lam_My - Scale scalar

Rolling resistance scaling factor, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.

Mapped

Spin axis velocity breakpoints, VxMy - Breakpoints vector

Spin axis velocity breakpoints, in m/s.

Dependencies

To create this parameter, select the Rolling Resistance parameter Mapped torque.

```
Normal force breakpoints, FzMy - Breakpoints
vector
```

Normal force breakpoints, in N.

Dependencies

To create this parameter, select the Rolling Resistance parameter Mapped torque.
Rolling resistance torque map, MyMap - Lookup table scalar

Rolling resistance torque versus axle speed and normal force, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this parameter, select the Rolling Resistance parameter Mapped torque.

Brake

Static friction coefficient, mu_static - Static friction scalar

Static friction coefficient, dimensionless.

Dependencies

To enable this parameter, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped

Kinetic friction coefficient, mu_kinetic - Kinetic friction scalar

Kinematic friction coefficient, dimensionless.

Dependencies

To enable this parameter, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped

Disc

Disc brake actuator bore, disc_abore - Bore distance scalar

Disc brake actuator bore, in m .

Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.
Brake pad mean radius, Rm - Radius
scalar
Brake pad mean radius, in m.

Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.

Number of brake pads, num_pads - Count

 scalarNumber of brake pads.

Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.

Drum

Drum brake actuator bore, disc_abore - Bore distance scalar

Drum brake actuator bore, in m.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

Shoe pin to drum center distance, drum_a - Distance scalar

Shoe pin to drum center distance, in m.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

Shoe pin center to force application point distance, drum_c Distance
 scalar

Shoe pin center to force application point distance, in m.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

Drum internal radius, drum_r - Radius

scalar
Drum internal radius, in m.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin to pad start angle, drum_thetal - Angle scalar

Shoe pin to pad start angle, in deg.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin to pad end angle, drum_theta2 - Angle
scalar
Shoe pin to pad end angle, in deg.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

Mapped

Brake actuator pressure breakpoints, brake_p_bpt - Breakpoints vector

Brake actuator pressure breakpoints, in bar.

Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.
Wheel speed breakpoints, brake_n_bpt - Breakpoints vector

Wheel speed breakpoints, in rpm.

Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

Brake torque map, f_brake_t - Lookup table

 arrayThe lookup table for the brake torque, $f_{b r a k e}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $\quad T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $\quad P$ is applied brake pressure, in bar.
- N is wheel speed, in rpm.

Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

Vertical

Nominal normal force, FNOMIN - Force scalar

Nominal rated wheel load along wheel-fixed z-axis, in N .

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

```
Nominal rated load scaling factor, lam_Fzo - Factor
scalar
```

Nominal rated load scaling factor, dimensionless. Used to scale the normal for specific applications and load conditions.

Dependencies

To enable this parameter, set Longitudinal Force to Magic Formula pure longitudinal slip.

Wheel and unsprung mass, m - Mass
scalar
Wheel and unsprung mass, in kg. Used in the vertical motion calculations.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Initial deflection, zo - Deflection
 scalar

Initial axle displacement along wheel-fixed z-axis, in m .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Initial velocity, zdoto - Velocity scalar

Initial axle velocity along wheel-fixed z-axis, in m .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Gravitational acceleration, g-Gravity

 scalarGravitational acceleration, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Ground displacement, Gndz - Displacement

 scalarGround displacement, Grndz, along negative wheel-fixed z-axis, in m .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Mapped Stiffness and Damping

Vertical deflection breakpoints, zFz - Breakpoints vector

Vector of sidewall deflection breakpoints corresponding to the force table, in m.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Pressure breakpoints, pFz - Breakpoints vector

Vector of pressure data points corresponding to the force table, in Pa.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Force due to deflection, Fzz - Force

vector
Force due to sidewall deflection and pressure along wheel-fixed z-axis, in N .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Vertical velocity breakpoints, zdotFz - Breakpoints scalar

Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Force due to velocity, Fzzdot - Force

scalar
Force due to sidewall velocity and pressure along wheel-fixed z-axis, in N .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Simulation Setup

```
Minimum normal force, FZMIN - Force
scalar
```

Minimum normal force, in N . Used with all vertical force calculations.

```
Maximum normal force, FZMAX - Force
scalar
```

Maximum normal force, in N. Used with all vertical force calculations.
Max allowable slip ratio (absolute), kappamax - Ratio scalar

Maximum allowable absolute slip ratio, dimensionless.

```
Velocity tolerance used to handle low velocity situations, VXLOW -
Tolerance
scalar
```

Velocity tolerance used to handle low-velocity situations, in m/s.

References

[1] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452_199906. Warrendale, PA: SAE International, June 1999.
[2] Pacejka, H. B. Tire and Vehicle Dynamics. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
[3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. "Chapter 18: Brakes and Clutches." Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton, FL: CRC Press, 2014.
[4] Shigley, Joseph E., and Larry Mitchel. Mechanical Engineering Design. 4th ed. New York, NY: McGraw Hill, 1983.
[5] ISO 28580:2009. Passenger car, truck and bus tyres -- Methods of measuring rolling resistance -- Single point test and correlation of measurement results. ISO (International Organization for Standardization), 2009.

See Also

Drive Cycle Source | Longitudinal Driver

Introduced in R2017a

Planetary Gear

Ideal planetary gear with sun, ring, and carrier
Library: Powertrain Blockset / Drivetrain / Couplings

Description

The Planetary Gear block implements an ideal planetary gear coupling consisting of a rigidly coupled sun, ring, and carrier gears. The block calculates the dynamic response to the sun, carrier, and ring input torques.

In fuel economy and powertrain studies, you can use the Planetary Gear block as a powersplit device by coupling it to common driveline elements such as transmissions, engines, clutches, and differentials.

These equations of motion represent the dynamic response of the planetary gear.

$$
\begin{aligned}
& \dot{\omega}_{s} J_{s}=\dot{\omega}_{s} b_{s}+T_{s}+T_{p s} \\
& \dot{\omega}_{c} J_{c}=\dot{\omega}_{c} b_{c}+T_{c}+T_{p c} \\
& \dot{\omega}_{s} J_{r}=\dot{\omega}_{r} b_{r}+T_{r}+T_{p r} \\
& \dot{\omega}_{p} J_{p}=\omega_{p} b_{p}+T_{r p}+T_{s p}+T_{c p}
\end{aligned}
$$

To reduce the equations of motion, the block uses these kinematic and geometric constraints.

$$
\begin{aligned}
& \omega_{c} r_{c}=r_{s} \omega_{s}+r_{p} \omega_{p} \\
& \omega_{r} r_{r}=r_{c} \omega_{c}+r_{p} \omega_{p} \\
& r_{c}=r_{s}+r_{p} \\
& r_{r}=r_{c}+r_{p}
\end{aligned}
$$

The equations use these variables.
$\omega_{c}, \omega_{p}, \omega_{r}, \omega_{s}$ Carrier, planet, ring, and sun gear angular speed
$r_{c}, r_{p}, r_{r}, r_{s} \quad$ Carrier, planet, ring, and sun gear angular radius
$J_{c}, J_{p}, J_{r}, J_{s} \quad$ Carrier, planet, ring, and sun gear inertia
$T_{c}, T_{p}, T_{r}, T_{s}$ Applied carrier, planet, ring, and sun gear torque
$T_{p s} \quad$ Torque applied from planet gear on sun gear
$T_{p c} \quad$ Torque applied from planet gear on carrier gear
$T_{p r} \quad$ Torque applied from planet gear on ring gear
$T_{r p} \quad$ Torque applied from ring gear on planet gear
$T_{s p} \quad$ Torque applied from sun gear on planet gear
$T_{c p} \quad$ Torque applied from carrier gear on planet gear

Ports

Input

SunTrq - Sun gear applied torque

scalar

Sun gear input torque, T_{s}, in $N \cdot m$.

Dependencies

To create this port, for Port Configuration, select Simulink.

CarrTrq - Carrier gear applied torque

scalar
Carrier gear input torque, T_{c}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

RingTrq - Ring gear applied torque
 scalar

Ring gear applied torque, T_{r}, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To create this port, for Port Configuration, select Simulink.

C - Carrier gear angular speed and torque

two-way connector port
Carrier gear angular speed, ω_{c}, in rad/s. Carrier gear applied torque, T_{c}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Variable	Units	
Sun	SunTrq	Sun gear applied torque	T_{s}	$\mathrm{~N} \cdot \mathrm{~m}$

Signal	SunSpd	Description	Variable	Units
Carr	CarrTrq	Sun gear angular speed	ω_{s}	$\mathrm{rad} / \mathrm{s}$
	CarrSpd	Carrier gear applied torque	T_{c}	$\mathrm{~N} \cdot \mathrm{~m}$
	Carrier gear angular speed	ω_{c}	$\mathrm{rad} / \mathrm{s}$	
	RingTrq	Ring gear applied torque	T_{r}	$\mathrm{~N} \cdot \mathrm{~m}$
	RingSpd	Ring gear angular speed	ω_{r}	$\mathrm{rad} / \mathrm{s}$

SunSpd - Sun gear angular speed
 scalar

Sun gear angular speed, ω_{s}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

CarrSpd - Carrier gear angular speed

scalar
Carrier gear angular speed, ω_{c}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

RingSpd - Ring gear angular speed
 scalar

Ring gear angular speed, ω_{r}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

S - Sun gear angular speed and torque

two-way connector port

Sun gear angular speed, ω_{s}, in rad/s. Sun gear applied torque, T_{s}, in $N \cdot m$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

R - Ring gear angular speed and torque

two-way connector port
Ring gear angular speed, ω_{r}, in rad/s. Ring gear applied torque, T_{r}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration
Simulink (default)|Two-way connection
Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- SunTrq
- CarrTra
- RingTrq
- SunSpd
- CarrSpd
- RingSpd

Specifying Two-way connection creates these ports:

- C
- S
- R

Sun to planet ratio, Nsp - Ratio

scalar

Sun-to-planet gear ratio, dimensionless.

Sun to ring ratio, Nsr - Ratio

scalar
Sun-to-ring gear ratio, dimensionless.

Sun inertia, Js - Inertia

 scalarSun gear inertia, J_{s}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

Planet inertia, Jp - Inertia

scalar

Planet gear inertia, J_{p}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

Ring inertia, Jr - Inertia

 scalarRing gear inertia, J_{r}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

Carrier inertia, Jc - Inertia

 scalarCarrier gear inertia, J_{c}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

Sun viscous damping, bs - Damping

 scalarSun gear viscous damping, $b_{s}, \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.

Ring viscous damping, br - Damping scalar

Ring gear viscous damping, $b_{r}, \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.
Planet viscous damping, bp - Damping scalar

Planet gear viscous damping, $b_{p}, \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.

Carrier viscous damping, bc - Damping

scalar
Carrier gear viscous damping, $b_{c}, \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.

Initial sun velocity, ws_o - Angular speed scalar

Initial sun gear angular speed, in rad/s.

Initial carrier velocity, wc_o - Angular speed scalar

Initial carrier gear angular speed, in rad/s.

See Also
Disc Clutch | Gearbox | Rotational Inertia | Torque Converter | Torsional Compliance Introduced in R2017a

Gearbox

Ideal rotational gearbox

Library: Powertrain Blockset / Drivetrain / Couplings

Description

The Gearbox block implements an ideal rotational gearbox. The block uses the gear inertias and damping to calculate the velocity response to the base and follower gear pair input torques.

In fuel economy and powertrain efficiency studies, you can use the Gearbox block to model ideal gear coupling and the power transfer between common driveline elements such as transmissions, engines, clutches, and differentials.

The Gearbox block uses these equations to approximate the transmission dynamics.

$$
\begin{aligned}
& \dot{\omega}_{B} J_{B}=\omega_{B} b_{B}+N T_{F} \\
& \dot{\omega}_{F} J_{F}=\omega_{F} b_{F}+T_{F}
\end{aligned}
$$

This constraint equation reduces the system to a 1 DOF system.

$$
\omega_{B}=N \omega_{F}
$$

To express the ideal torque transfer, the block uses this relationship.

$$
N T_{B}+T_{F}=0
$$

The equations use these variables.

T_{B}	Base gear input torque
T_{F}	Follower gear output torque
ω_{B}	Base gear angular velocity
ω_{F}	Follower gear angular velocity
J_{B}	Base gear rotational inertia
J_{F}	Follower gear rotational inertia
b_{B}	Base gear rotational viscous damping
b_{F}	Follower gear rotational viscous damping
N	Torque transmission gear ratio

Ports

Input

BTrq - Base gear input torque

scalar
Base gear input torque, T_{B}, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To create this port, for Port Configuration, select Simulink.

FTrq - Follower gear output torque

scalar
Follower gear output torque, T_{F}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

B - Base gear angular velocity and torque

two-way connector port
Base gear angular velocity, ω_{B}, in rad/s. Base gear torque, T_{B}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Base	BaseTrq	Base gear input torque	T_{B}	$\mathrm{~N} \cdot \mathrm{~m}$
	BaseSpd	Base gear angular velocity	ω_{B}	$\mathrm{rad} / \mathrm{s}$
	FlwrTrq	Follower gear torque	T_{F}	$\mathrm{~N} \cdot \mathrm{~m}$
	FlwrSpd	Follower gear angular velocity	ω_{F}	$\mathrm{rad} / \mathrm{s}$

BSpd - Base gear angular velocity
 scalar

Base gear angular velocity, ω_{B}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

FSpd - Follower gear angular velocity scalar

Follower gear angular velocity, ω_{F}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

F - Follower gear angular velocity and torque

two-way connector port

Follower gear angular velocity, ω_{F}, in rad/s. Follower gear torque, T_{F}, in $N \cdot m$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration
Simulink (default)|Two-way connection
Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:

- B
- F

Follower shaft rotates in same direction as input - Rotation off (default) | on

Select to specify that the output shaft rotates in the same direction as the input.
Follower to base gear ratio, N - Ratio scalar

Base-to-follower gear ratio, dimensionless.
Base shaft inertia, J1 - Inertia
scalar

Base shaft inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

Follower shaft inertia, J2 - Inertia

scalar

Follower shaft inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

Base viscous shaft damping, b1 - Damping scalar

Base viscous shaft damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.

Follower viscous shaft damping, b2 - Damping scalar

Follower viscous shaft damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Base shaft initial velocity, w1_o - Initial velocity scalar

Base shaft initial velocity, in rad/s.

See Also
 Disc Clutch | Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

Disc Clutch

Idealized disc clutch coupler
Library: Powertrain Blockset / Drivetrain / Couplings

Description

The Disc Clutch block implements an idealized disc clutch coupler. The block couples the rotary input and output shafts through an idealized friction model. To determine the output torque, the block uses friction parameters, relative slip velocity, and applied input pressure.

In fuel economy and powertrain efficiency studies, you can use the Disc Clutch block to model the mechanical power transfer between common driveline elements such as transmissions, engines, and differentials.

To approximate the torque response, the Disc Clutch block implements friction and dynamic models that depend on the clutch lockup condition. The block determines the locked or unlocked condition based on an idealized dry clutch friction model. This table summarizes the logic the block uses to determine the clutch condition.

| Clutch
 Condition When
 Unlocked $\omega_{i} \neq \omega_{o}$
 or
 $T_{\text {fmax }}<\left\|\frac{J_{o} T_{i}-\left(J_{o} b_{i}-J_{i} b_{o}\right) \omega_{i / o}}{J_{o}+J_{i}}\right\|$ |
| :--- | :--- |

Clutch Condition	When
Locked	$\omega_{i}=\omega_{o}$ and

Clutch Condition	Friction Model	Dynamic Model
Unlocked	$T_{\text {finax }}=T_{k}$ where, $\begin{aligned} & T_{k}=N_{\text {disc }} P_{c} A_{\text {eff }} R_{e f f} \mu_{k} \tanh \left[4 \left(\omega_{i}-\omega\right.\right. \\ & \text { qnd }_{\text {eff }}=\frac{2\left(R_{o}{ }^{3}-R_{i}{ }^{3}\right)}{} \end{aligned}$	$\begin{aligned} & \dot{\omega}_{i} J_{i}=T_{i}-T_{f}-\omega_{i} b_{i} \\ & \dot{\omega}_{o} J_{o}=T_{f}+T_{o}-\omega_{o} b_{o} \end{aligned}$ $\left.\left.\omega_{o}\right)\right]$
Locked	$\begin{aligned} & \pi_{\text {eff }}=\frac{1}{3\left(R_{o}^{2}-R_{i}^{2}\right)} \\ & \quad P_{c}=\max \left(P_{c}-P_{\text {eng }}, 0\right) \\ & T_{\text {fiax }}=T_{s} \\ & \text { where, } \\ & T_{s}=N_{\text {disc }} P_{c} A_{\text {eff }} R_{\text {eff }} \mu_{s} \end{aligned}$	$\begin{aligned} & \dot{\omega}_{i}\left(J_{o}+J_{i}\right)=T_{o}-\omega_{i}\left(b_{i}+b_{o}\right)+T_{i} \\ & \omega_{i}=\omega_{o} \end{aligned}$

$\omega_{i} \quad$ Input shaft angular speed
$\omega_{o} \quad$ Output shaft angular speed
$b_{i} \quad$ Input shaft viscous damping
$b_{o} \quad$ Output shaft viscous damping

J_{i}	Input shaft moment of inertia
J_{o}	Output shaft moment of inertia
T_{f}	Frictional torque
T_{i}	Net input torque
T_{k}	Kinetic frictional torque
T_{o}	Net output torque
T_{s}	Static frictional torque
$T_{f m a x}$	Maximum frictional torque before slipping
P_{c}	Applied clutch pressure
$P_{e n g}$	Engagement pressure
$A_{e f f}$	Effective area
$N_{\text {disc }}$	Number of frictional discs
$R_{e f f}$	Effective clutch radius
R_{o}	Annular disk outer radius
R_{i}	Annular disk inner radius
R_{e}	Effective tire radius while under load and for a given pressure
μ_{s}	Coefficient of static friction
μ_{k}	Coefficient of kinetic friction

Ports

Input

Press - Applied clutch pressure

scalar
Base gear input torque, P_{c}, in $\mathrm{N} \cdot \mathrm{m}^{\wedge} 2$.

BTrq - Applied input torque

scalar

Applied input torque, T_{i}, typically from the engine crankshaft or dual mass flywheel damper, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

FTrq - Applied load torque

scalar

Applied load torque, T_{o}, typically from the differential or drive shaft, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

B - Applied drive shaft angular speed and torque

two-way connector port
Applied drive shaft angular speed, ω_{i}, in rad/s. Applied drive shaft torque, T_{i}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal		Description	Variable	Units
Base	BTrq	Applied input torque, typically from the engine crankshaft or dual mass flywheel damper	T_{i}	$\mathrm{~N} \cdot \mathrm{~m}$
	BSpd	Applied drive shaft angular speed input	ω_{i}	$\mathrm{rad} / \mathrm{s}$
Flwr	FTrq	Applied load torque, typically from the differential	T_{o}	$\mathrm{~N} \cdot \mathrm{~m}$
	FSpd	Drive shaft angular speed output	ω_{o}	$\mathrm{rad} / \mathrm{s}$

Signal		Description	Variable	Units
Cltch	CltchFor ce	Applied clutch force	F_{c}	N
	CltchLoc ked	Clutch lock status	NA	NA
	CltchSpd Ratio	Clutch speed ratio	ω_{o} / ω_{i}	NA
	CltchEta	Clutch power transmission efficiency	η	NA

BSpd - Angular speed

scalar

Applied drive shaft angular speed input, ω_{i}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

FSpd - Angular speed
 scalar

Drive shaft angular speed output, ω_{o}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

F - Output velocity and torque

two-way connector port
Output drive shaft angular speed, $\omega_{o i}$, in rad/s. Output drive shaft torque, T_{o}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration

Simulink (default)|Two-way connection
Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:

- B
- F

Clutch force equivalent net radius, Reff - Radius scalar

Clutch force equivalent net radius, in m.
Number of disks, Ndisk - Ratio
scalar
Number of disks, dimensionless.
Effective applied pressure area, Aeff - Pressure area scalar

Effective applied pressure area, in $\mathrm{m}^{\wedge} 2$.
Engagement pressure threshold, Peng - Pressure threshold scalar

Pressure to engage clutch, in Pa.

Input shaft inertia, Jin - Inertia

 scalarInput shaft inertia, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$.
Output shaft inertia, Jout - Inertia
scalar
Output shaft inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Kinetic friction coefficient, muk - Coefficient scalar

Kinetic friction coefficient, dimensionless.
Static friction coefficient, mus - Coefficient scalar

Static friction coefficient, dimensionless.

Input shaft viscous damping, bin - Damping

 scalarInput shaft viscous damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Output shaft viscous damping, bout - Damping scalar

Output shaft viscous damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Initial input shaft velocity, win_o - Initial velocity scalar

Input shaft initial velocity, in rad/s.

Initial output shaft velocity, wout_o - Initial velocity scalar

Input shaft initial velocity, in rad/s.
Clutch actuation time constant, tauC - Constant scalar

Clutch actuation time constant, in s.

Clutch initially locked - Select to initially lock clutch off (default)

Select to lock clutch initially.

See Also
Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance Introduced in R2017a

Vehicle Dynamics Blocks Alphabetical List

Vehicle Body 1DOF Longitudinal

Two-axle vehicle in forward and reverse motion
Library: Powertrain Blockset / Vehicle Dynamics
Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 1DOF Longitudinal block implements a one degree-of-freedom (1DOF) rigid vehicle body with constant mass undergoing longitudinal (that is, forward and reverse) motion. Use the block:

- In powertrain and fuel economy studies to represent the vehicle inertial and drag loads when weight transfer from vertical and pitch motions are negligible.
- To determine the engine torque and power required for the vehicle to follow a specified drive cycle.

Vehicle Body Model

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axlelongitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). The grade angle changes the direction of the resolved gravitational force acting on the vehicle CG. Similarly, the block resolves the resistive aerodynamic drag force on the vehicle CG.

The Vehicle Body 1DOF Longitudinal block implements these equations.

$$
\begin{aligned}
& m \dot{V}_{x}=F_{x}-F_{d}-m g \cdot \sin \gamma \\
& F_{x}=N_{f} F_{x f}+N_{r} F_{x r} \\
& F_{d}=\frac{1}{2} C_{d} \rho A\left(V_{x}+V_{w}\right)^{2} \cdot \operatorname{sgn}\left(V_{x}+V_{w}\right)
\end{aligned}
$$

Zero normal acceleration and zero pitch torque determine the normal force on each front and rear wheel.

$$
\begin{aligned}
& F_{z f}=\frac{-h\left(F_{d}+m g \sin \gamma+m \dot{V}_{x}\right)+b \cdot m g \cos \gamma}{N_{f}(a+b)} \\
& F_{z r}=\frac{+h\left(F_{d}+m g \sin \gamma+m \dot{V}_{x}\right)+a \cdot m g \cos \gamma}{N_{r}(a+b)}
\end{aligned}
$$

The wheel normal forces satisfy this equation.

$$
N_{f} F_{z f}+N_{r} F_{z r}=m g \cos \gamma
$$

The equations use these variables.

$F_{x f}, F_{x r}$	Longitudinal forces on each wheel at the front and rear ground contact points, respectively
$F_{z f}, F_{z r}$	Normal load forces on each wheel at the front and rear ground contact points, respectively
F_{d}	Aerodynamic drag force V_{x}
V_{w}	Velocity of the vehicle. When $V_{\mathrm{x}}>0$, the vehicle moves forward. When V_{x} <0, the vehicle moves backward. Wind speed. When $V_{\mathrm{w}}>0$, the wind is headwind. When $V_{\mathrm{w}}<0$, the wind is tailwind.
N_{f}, N_{r}	Number of wheels on front and rear axle, respectively
γ	Angle of road grade, in degrees
m	Vehicle body mass
a, b	Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane
h	Height of vehicle CG above the axle plane
C_{d}	Frontal air drag coefficient
A	Frontal area
ρ	Mass density of air
g	Gravitational acceleration

Limitations

The Vehicle Body 1DOF Longitudinal block lets you model only longitudinal dynamics, parallel to the ground and oriented along the direction of motion. The vehicle is assumed to be in pitch and normal equilibrium. The block does not model pitch or vertical movement. To model a vehicle with three degrees-of-freedom (DOF), use the Vehicle Body 3DOF Longitudinal.

Ports

Input

FwF - Total longitudinal force on front axle scalar

Longitudinal force on the front axle, $F_{x f}$, along vehicle-fixed x-axis, in N.

FwR - Total longitudinal force on rear axle

 scalarLongitudinal force on the rear axle, $F w_{R}$, along vehicle-fixed x-axis, in N.

Grade - Road grade angle

scalar
Road grade angle, γ, in deg.

WindX - Longitudinal wind speed
 scalar

Longitudinal wind speed, V_{w}, along vehicle-fixed x-axis, in m / s.

Output

Info - Bus signal

bus
Bus signal containing these block values.

Signal			Description	Value	Units	
InertFr m	Cg	Disp	X	Vehicle CG displacement along earth-fixed X-axis	Compute d	m
		Y	Vehicle CG displacement along earth-fixed Y-axis	0	m	

Signal			Description	Value	Units
		Z	Vehicle CG displacement along earth-fixed Z-axis	Compute d	m
	Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Compute d	m / s
		Ydot	Vehicle CG velocity along earth-fixed Y -axis	0	m / s
		Zdot	Vehicle CG velocity along earth-fixed Z-axis	Compute d	m / s
	Ang	phi	Rotation of vehicle-fixed frame about earth-fixed X-axis (roll)	0	rad
		theta	Rotation of vehicle-fixed frame about earth-fixed Y-axis (pitch)	Compute d (input grade angle)	rad
		psi	Rotation of vehicle-fixed frame about earth-fixed Z-axis (yaw)	0	rad
FrntAx l	Disp	X	Front axle displacement along the earth-fixed Xaxis	Compute d	m
		Y	Front axle displacement along the earth-fixed Y axis	0	m
		Z	Front axle displacement along the earth-fixed Zaxis	Compute d	m
	Vel	Xdot	Front axle velocity along the earth-fixed X -axis	Compute d	m / s
		Ydot	Front axle velocity along the earth-fixed Y -axis	0	m / s

Signal				Description	Value	Units
			Zdot	Front axle velocity along the earth-fixed Z-axis	Compute d	m / s
	$\begin{aligned} & \text { RearAx } \\ & l \end{aligned}$	Disp	X	Rear axle displacement along the earth-fixed X axis	Compute d	m
			Y	Rear axle displacement along the earth-fixed Y axis	0	m
			Z	Rear axle displacement along the earth-fixed Zaxis	Compute d	m
		Vel	Xdot	Rear axle velocity along the earth-fixed X -axis	Compute d	m/s
			Ydot	Rear axle velocity along the earth-fixed Y -axis	0	m/s
			Zdot	Rear axle velocity along the earth-fixed Z-axis	Compute d	m/s
BdyFrm	Cg	Disp	x	Vehicle CG displacement along vehicle-fixed x-axis	Compute d	m
			y	Vehicle CG displacement along vehicle-fixed y-axis	0	m
			z	Vehicle CG displacement along vehicle-fixed z-axis	0	m
		Vel	xdot	Vehicle CG velocity along vehicle-fixed x axis	Compute d	m/s
			ydot	Vehicle CG velocity along vehicle-fixed y axis	0	m/s

Signal			Description	Value	Units
		zdot	Vehicle CG velocity along vehicle-fixed zaxis	0	m/s
	AngVel	p	Vehicle angular velocity about the vehicle-fixed x -axis (roll rate)	0	rad/s
		q	Vehicle angular velocity about the vehicle-fixed y-axis (pitch rate)	0	rad/s
		r	Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate)	0	rad/s
	Accel	ax	Vehicle CG acceleration along vehicle-fixed x axis	Compute d	gn
		ay	Vehicle CG acceleration along vehicle-fixed yaxis	0	gn
		az	Vehicle CG acceleration along vehicle-fixed zaxis	0	gn
Forces	Body	Fx	Net force on vehicle CG along vehicle-fixed x axis	0	N
		Fy	Net force on vehicle CG along vehicle-fixed yaxis	0	N
		Fz	Net force on vehicle CG along vehicle-fixed zaxis	0	N
	Ext	Fx	External force on vehicle CG along vehicle-fixed x-axis	0	N

Signal			Description	Value	Units
			Fy	External force on vehicle CG along vehicle-fixed y-axis	0
n			Fz	External force on vehicle CG along vehicle-fixed z-axis	0

xdot - Vehicle body longitudinal velocity

scalar
Vehicle body longitudinal velocity along the earth-fixed reference frame X-axis, in m / s.

FzF - Front axle normal force

scalar
Normal load force on the front axle, $F_{z f}$, along vehicle-fixed z-axis, in N .

FzR - Rear axle normal force

scalar

Normal force on rear axle, $F_{z r}$, along vehicle-fixed z-axis, in N .

Parameters

Longitudinal

Number of wheels on front axle, NF - Front wheel count scalar

Number of wheels on front axle, N_{F}, dimensionless.

Number of wheels on rear axle, NR - Rear wheel count scalar

Number of wheels on rear axle, N_{R}, dimensionless.

Mass, m - Vehicle mass

scalar
Vehicle mass, M, in kg.
Horizontal distance from CG to front axle, a-Front axle distance scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.
Horizontal distance from CG to rear axle, b-Rear axle distance scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.
CG height above axles, h - Height scalar

Height of vehicle CG above the ground, h, in m.

Drag coefficient, Cd - Drag

scalar
Air drag coefficient, C_{d}.

Frontal area, Af - Area
 \section*{scalar}

Effective vehicle cross-sectional area, A, to calculate the aerodynamic drag force on the vehicle, in $\mathrm{m}^{\wedge} 2$.

Initial position, x_o - Position

scalar
Vehicle body longitudinal initial position along the vehicle-fixed x-axis, x_{0}, in m.

Initial velocity, xdot_o - Velocity
 scalar

Vehicle body longitudinal initial velocity along the vehicle-fixed x -axis, \dot{x}_{0}, in m / s.

Environment

Absolute Pressure, Pabs - Pressure scalar

Environmental absolute pressure, P, in Pa .

Air Temp, T-Temperature

 scalarEnvironmental absolute temperature, T, in K .
Gravitational acceleration, g-Gravity scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge}$.

See Also

Vehicle Body 3DOF Longitudinal | Vehicle Body Total Road Load

Introduced in R2017a

Vehicle Body 3DOF Longitudinal

3DOF rigid vehicle body to calculate longitudinal, vertical, and pitch motion
Library:
Powertrain Blockset / Vehicle Dynamics
Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 3DOF Longitudinal block implements a three degrees-of-freedom (3DOF) rigid vehicle body model with configurable axle stiffness to calculate longitudinal, vertical, and pitch motion. The block accounts for body mass, aerodynamic drag, road incline, and weight distribution between the axles due to acceleration and the road profile.

You can specify the type of axle attachment to the vehicle:

- Grade angle - Vertical axle displacement from road surface to axles remains constant. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axles.
- Axle displacement - Axles have input-provided vertical displacement and velocity with respect to the road grade. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axle.
- External suspension - Axles have externally applied forces for coupling the vehicle body to custom suspension models.

If the weight transfer from vertical and pitch motions are not negligible, consider using this block to represent vehicle motion in powertrain and fuel economy studies. For example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the normal forces on the front and rear axles. The block resolves the force components and moments on the rigid vehicle body frame:

$$
\begin{aligned}
& F_{x}=F_{w F}+F_{w R}-F_{d, x}-F_{s x, F}-F_{s x, R}+F_{g, x} \\
& F_{z}=F_{d, z}-F_{s z, F}-F_{s z, R}+F_{g, z} \\
& M_{y}=a F_{s z, F}-b F_{s z, R}+h\left(F_{w F}+F_{w R}+F_{s x, F}+F_{s x, R}\right)-M_{d, y}
\end{aligned}
$$

The equations use these variables.

F_{x}	Longitudinal force on vehicle
F_{z}	Normal force on vehicle
M_{y}	Torque on vehicle about vehicle-fixed y-axis
$F_{w F}, F_{w R}$	Longitudinal force on front and rear axles along vehicle-fixed x-axis
$F_{d, x}, F_{d, z}$	Longitudinal and normal drag force on vehicle CG
$F_{s x, F}, F_{s x, R}$	Longitudinal suspension force on front and rear axles
$F_{s z, F}, F_{s z, R}$	Normal suspension force on front and rear axles
$F_{g, x}, F_{g, z}$	Longitudinal and normal gravitational force on vehicle along vehicle-
$M_{d, y}$	fixed frame
a, b	Torque due to drag on vehicle about vehicle-fixed y-axis
	Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane
h	Height of vehicle CG above the axle plane along vehicle-fixed z-axis
$F s_{F}, F s_{R}$	Front and rear axle suspension force along vehicle-fixed z-axis

$Z_{w F}, Z_{w R}$	Front and rear vehicle normal position along earth-fixed Z-axis
Θ	Vehicle pitch angle about vehicle-fixed y-axis
m	Vehicle body mass
N_{F}, N_{R}	Number of front and rear wheels
$I_{y y}$	Vehicle body moment of inertia about the vehicle-fixed y-axis
x, \dot{x}, \ddot{x}	Vehicle longitudinal position, velocity, and acceleration along vehiclefixed x -axis
z, \dot{z}, \ddot{z}	Vehicle normal position, velocity, and acceleration along vehicle-fixed zaxis
$F k_{F}, F k_{R}$	Front and rear wheel suspension stiffness force along vehicle-fixed zaxis
$F b_{F}, F b_{R}$	Front and rear wheel suspension damping force along vehicle-fixed zaxis
Z_{F}, Z_{R}	Front and rear vehicle vertical position along earth-fixed Z-axis
\dot{Z}_{F}, \dot{Z}_{R}	Front and rear vehicle vertical velocity along vehicle-fixed z-axis
\bar{Z}_{F}, \bar{Z}_{R}	Front and rear wheel axle vertical position along vehicle-fixed z-axis
$\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}$	Front and rear wheel axle vertical velocity along earth-fixed z-axis
$d Z_{F}, d Z_{R}$	Front and rear axle suspension deflection along vehicle-fixed z-axis
$d \dot{Z}_{F}, d \dot{Z}_{R}$	Front and rear axle suspension deflection rate along vehicle-fixed z-axis
C_{d}	Frontal air drag coefficient acting along vehicle-fixed x -axis
C_{l}	Lateral air drag coefficient acting along vehicle-fixedz-axis
$C_{p m}$	Air drag pitch moment acting about vehicle-fixed y-axis
A_{f}	Frontal area
$P_{a b s}$	Environmental absolute pressure
R	Atmospheric specific gas constant
T	Environmental air temperature
w	Wind speed along vehicle-fixed axis

Rigid-Body Vehicle Motion

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axlelongitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). Depending on the inclined angle, the weight pulls the vehicle to the ground and either forward or backward. Whether the vehicle travels forward or backward, aerodynamic drag slows it down. For simplicity, the drag is assumed to act through the CG.

The Vehicle Body 3DOF Longitudinal implements these equations.

$$
\begin{aligned}
\ddot{x} & =\frac{F_{x}}{m}-q z \\
\ddot{z} & =\frac{F_{z}}{m}-q x \\
\dot{q} & =\frac{M_{y}}{I_{y y}} \\
\dot{\theta} & =q
\end{aligned}
$$

Suspension System Forces

If you configure the block with the Ground interaction type parameter Grade angle or Axle displacement, velocity, the block uses nonlinear stiffness and damping parameters to model the suspension system.

The front and rear axle suspension forces are given by:

$$
\begin{aligned}
& F s_{F}=N_{F}\left[F k_{F}+F b_{F}\right] \\
& F s_{R}=N_{R}\left[F k_{R}+F b_{R}\right]
\end{aligned}
$$

The block uses lookup tables to implement the front and rear suspension stiffness. To account for kinematic and material nonlinearities, including collisions with end-stops, the tables are functions of the stroke.

$$
\begin{aligned}
& F k_{F}=f\left(d Z_{F}\right) \\
& F k_{R}=f\left(d Z_{R}\right)
\end{aligned}
$$

The block uses lookup tables to implement the front and rear suspension damping. To account for nonlinearities, compression, and rebound, the tables are functions of the stroke rate.

$$
\begin{aligned}
& F b_{F}=f\left(d \dot{Z}_{F}\right) \\
& F b_{R}=f\left(d \dot{Z}_{R}\right)
\end{aligned}
$$

The stroke is the difference in the vehicle vertical and axle positions. The stroke rate is the difference in the vertical and axle velocities.

$$
\begin{aligned}
& d Z_{F}=Z_{F}-\bar{Z}_{F} \\
& d Z_{R}=Z_{R}-\bar{Z}_{R} \\
& d \dot{Z}_{F}=\dot{Z}_{F}-\dot{\bar{Z}}_{F} \\
& d \dot{Z}_{R}=\dot{Z}_{R}-\dot{\bar{Z}}_{R}
\end{aligned}
$$

When the Ground interaction type parameter is Grade angle, the axle vertical positions (\bar{Z}_{F}, \bar{Z}_{R}) and velocities ($\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}$) are set to 0 .

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed:

$$
\begin{aligned}
& F_{d, x}=\frac{1}{2 T R} C_{d} A_{f} P_{a b s}(\dot{x}-w)^{2} \\
& F_{d, z}=\frac{1}{2 T R} C_{l} A_{f} P_{a b s}(\dot{x}-w)^{2} \\
& M_{d, y}=\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}(\dot{x}-w)^{2}(a+b)
\end{aligned}
$$

Ports

Input

FwF - Total longitudinal force on the front axle scalar

Longitudinal force on the front axle, $F w_{F}$, along vehicle-fixed x-axis, in N.

FwR - Total longitudinal force on the rear axle scalar

Longitudinal force on the rear axle, $F w_{R}$, along vehicle-fixed x-axis, in N.
Grade - Road grade angle
scalar

Road grade angle, γ, in deg.

FsF - Suspension force on front axle per wheel

 vectorSuspension force on front axle, $F s_{F}$, along vehicle-fixed z-axis, in N .

Dependencies

To create this port, for the Ground interaction type parameter, select External suspension.

FsR - Suspension force on rear axle per wheel

 vectorSuspension force on rear axle, $F s_{R}$, along vehicle-fixed z-axis, in N.

Dependencies

To create this port, for the Ground interaction type parameter, select External suspension.

WindXYZ - Wind speed
vector

Longitudinal wind speed, $V_{\text {windxyz }}$, in m / s.

zF,R-Forward and rear axle positions

vector

Forward and rear axle positions along the vehicle-fixed z-axis, \bar{Z}_{F}, \bar{Z}_{R}, in m.

Dependencies

To create this port, for the Ground interaction type parameter, select Axle displacement, velocity.

zdotF, R - Forward and rear axle velocities

vector

Forward and rear axle velocities along the vehicle-fixed z-axis, $\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}$, in m / s.

Dependencies

To create this port, for the Ground interaction type parameter, select Axle displacement, velocity.

Output

Info - Bus signal
 bus

Bus signal containing these block values.

Signal			Description	Value	Units	
InertFr m	Cg	Disp	X	Vehicle CG displacement along earth-fixed X-axis	Compute d	m
		Y	Vehicle CG displacement along earth-fixed Y-axis	0	m	

Signal			Description	Value	Units
		Z	Vehicle CG displacement along earth-fixed Z-axis	Compute d	m
	Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Compute d	m/s
		Ydot	Vehicle CG velocity along earth-fixed Y -axis	0	m/s
		Zdot	Vehicle CG velocity along earth-fixed Z-axis	Compute d	m/s
	Ang	phi	Rotation of vehicle-fixed frame about earth-fixed X-axis (roll)	0	rad
		theta	Rotation of vehicle-fixed frame about earth-fixed Y -axis (pitch)	Compute d	rad
		psi	Rotation of vehicle-fixed frame about earth-fixed Z-axis (yaw)	0	rad
FrntAx l	Disp	X	Front axle displacement along the earth-fixed X axis	Compute d	m
		Y	Front axle displacement along the earth-fixed Y axis	0	m
		Z	Front axle displacement along the earth-fixed Zaxis	Compute d	m
	Vel	Xdot	Front axle velocity along the earth-fixed X -axis	Compute d	m / s
		Ydot	Front axle velocity along the earth-fixed Y -axis	0	m/s
		Zdot	Front axle velocity along the earth-fixed Z-axis	Compute d	m / s

Signal				Description	Value	Units
	$\begin{aligned} & \text { RearAx } \\ & l \end{aligned}$	Disp	X	Rear axle displacement along the earth-fixed Xaxis	Compute d	m
			Y	Rear axle displacement along the earth-fixed Y axis	0	m
			Z	Rear axle displacement along the earth-fixed Zaxis	Compute d	m
		Vel	Xdot	Rear axle velocity along the earth-fixed X -axis	Compute d	m/s
			Ydot	Rear axle velocity along the earth-fixed Y -axis	0	m/s
			Zdot	Rear axle velocity along the earth-fixed Z-axis	Compute d	m/s
BdyFrm	Cg	Disp	x	Vehicle CG displacement along vehicle-fixed x-axis	Compute d	m
			y	Vehicle CG displacement along vehicle-fixed y-axis	0	m
			z	Vehicle CG displacement along vehicle-fixed z-axis	Compute d	m
		Vel	xdot	Vehicle CG velocity along vehicle-fixed x axis	Compute d	m/s
			ydot	Vehicle CG velocity along vehicle-fixed yaxis	0	m/s
			zdot	Vehicle CG velocity along vehicle-fixed zaxis	Compute d	m/s

Signal			Description	Value	Units
		Mz	Drag moment on vehicle CG about vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
FrntAx l	Disp	x	Front axle displacement along the vehicle-fixed x-axis	Compute d	m
		y	Front axle displacement along the vehicle-fixed y-axis	0	m
		z	Front axle displacement along the vehicle-fixed z-axis	Compute d	m
	Vel	xdot	Front axle velocity along the vehicle-fixed x-axis	Compute d	m/s
		ydot	Front axle velocity along the vehicle-fixed y-axis	0	m/s
		zdot	Front axle velocity along the vehicle-fixed z-axis	Compute d	m / s
RearAx l	Disp	x	Rear axle displacement along the vehicle-fixed x-axis	Compute d	m
		y	Rear axle displacement along the vehicle-fixed y-axis	0	m
		z	Rear axle displacement along the vehicle-fixed z-axis	Compute d	m
	Vel	xdot	Rear axle velocity along the vehicle-fixed x-axis	Compute d	m / s
		ydot	Rear axle velocity along the vehicle-fixed y-axis	0	m / s
		zdot	Rear axle velocity along the vehicle-fixed z-axis	Compute d	m/s

Signal	Pwr	Description	Value	Units	
	PwrExt	Applied external power	Compute d	W	
		Drag	Power loss due to drag	Compute d	W

xdot - Vehicle longitudinal velocity
 scalar

Vehicle CG velocity along vehicle-fixed x -axis, in m / s.

FzF - Front axle normal force
 scalar

Normal force on front axle, $F z_{F}$, along vehicle-fixed z-axis, in N .

FzR - Rear axle normal force

scalar

Normal force on rear axle, $F z_{R}$, along vehicle-fixed z-axis, in N .

Parameters

Longitudinal

Number of wheels on front axle, NF - Front wheel count scalar

Number of wheels on front axle, N_{F}, dimensionless.

Number of wheels on rear axle, NR - Rear wheel count

 scalarNumber of wheels on rear axle, N_{R}, dimensionless.

Mass, m - Vehicle mass

scalar
Vehicle mass, m, in kg.

Horizontal distance from CG to front axle, a-Front axle distance scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.
Horizontal distance from CG to rear axle, b-Rear axle distance scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.

CG height above axles, h-Height

scalar
Height of vehicle CG above the axles, h, in m.
Drag coefficient, Cd - Drag
scalar
Air drag coefficient, C_{d}, dimensionless.
Frontal area, Af - Area
scalar
Effective vehicle cross-sectional area, A_{f} to calculate the aerodynamic drag force on the vehicle, in $\mathrm{m}^{\wedge} 2$.

```
Initial position, x_o - Position
scalar
```

Vehicle body longitudinal initial position along earth-fixed x-axis, x_{0}, in m.

```
Initial velocity, xdot_o - Velocity
```

scalar

Vehicle body longitudinal initial velocity along earth-fixed x-axis, \dot{x}_{0}, in m / s.

Vertical

Lift coefficient, Cl - Lift scalar

Lift coefficient, C_{l}, dimensionless.

Initial vertical position, z_o - Position scalar

Initial vertical CG position, z_{0}, along the vehicle-fixed z-axis, in m.

Initial vertical velocity, zdot_o - Velocity scalar

Initial vertical CG velocity, $z d o t_{0}$, along the vehicle-fixed z-axis, in m.

Pitch

Inertia, Iyy - About body y-axis scalar

Vehicle body moment of inertia about body z-axis.

Pitch drag moment coefficient, Cpm - Drag coefficient scalar

Pitch drag moment coefficient, dimensionless.

```
Initial pitch angle, theta_o - Pitch
scalar
```

Initial pitch angle about body z-axis, in rad.

Initial angular velocity, q_o - Pitch velocity scalar

Initial vehicle body angular velocity about body z-axis, in rad/s.

Suspension

Front axle stiffness force data, FskF - Force vector

Front axle stiffness force data, $F k_{F}$, in N .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle displacement data, dzsF - Displacement vector

Front axle displacement data, in m.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle damping force data, FsbF - Damping force

 vectorFront axle damping force, in N.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle velocity data, dzdotsF - Velocity

 vectorFront axle velocity data, in m/s.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle stiffness force data, FskR - Force vector

Rear axle stiffness force data, in N.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle displacement data, dzsR - Displacement vector

Rear axle displacement data, in m.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle damping force data, FsbR - Damping force vector

Rear axle damping force, in N .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle velocity data, dzdotsR - Velocity vector

Rear axle velocity data, in m/s.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Environment

Absolute Pressure, Pabs - Pressure scalar

Environmental absolute pressure, $P_{a b s}$, in Pa.
Air Temp, T-Temperature
scalar
Environmental absolute temperature, T, in K .
Gravitational acceleration, g-Gravity scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

See Also

Vehicle Body 1DOF Longitudinal | Vehicle Body Total Road Load
Introduced in R2017a

Vehicle Body Total Road Load

Vehicle motion using coast-down testing coefficients
Library: \quad Powertrain Blockset / Vehicle Dynamics

Description

The Vehicle Body Total Road Load block implements a one degree-of-freedom (1DOF) rigid vehicle model using coast-down testing coefficients. You can use this block in a vehicle model to represent the load that the driveline and chassis applies to a transmission or engine. It is suitable for system-level performance, component sizing, fuel economy, or drive cycle tracking studies. The block calculates the dynamic powertrain load with minimal parameterization or computational cost.

You can configure the block for kinematic, force, or total power input.

- Kinematic - Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power.
- Force - Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity.
- Power - Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity.

Equations

To calculate the total road load acting on the vehicle, the block implements this equation.

$$
F_{\text {road }}=a+b \dot{x}+c \dot{x}^{2}+m g \sin (\theta)
$$

To determine the coefficients a, b, and c, you can use a test procedure similar to the one described in Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. You can also use Simulink ${ }^{\circledR}$ Design Optimization ${ }^{\mathrm{TM}}$ to fit the coefficients to measured data.

To calculate the vehicle motion, the block uses Newton's law for rigid bodies.

$$
F_{\text {total }}=m \ddot{x}+F_{\text {road }}
$$

Total power input is a product of the total force and longitudinal velocity. Power due to road and gravitational forces is a product of the road force and longitudinal velocity.

$$
\begin{aligned}
& P_{\text {total }}=F_{\text {total }} \dot{x} \\
& P_{\text {road }}=F_{\text {road }} \dot{x}
\end{aligned}
$$

The equations use these variables.

a	Steady-state rolling resistance coefficient
b	Viscous driveline and rolling resistance coefficient
c	Aerodynamic drag coefficient
g	Gravitational acceleration
x	Vehicle longitudinal displacement with respect to ground, in vehicle- fixed frame
\dot{x}	Vehicle longitudinal velocity with respect to ground, in vehicle-fixed frame
\ddot{x}	Vehicle longitudinal acceleration with respect to ground, vehicle-fixed frame
m	Vehicle body mass
Θ	Road grade angle
$F_{\text {total }}$	Total force acting on vehicle
$F_{\text {road }}$	Resistive road load due to losses and gravitational load
$P_{\text {total }}$	Total tractive input power
$P_{\text {road }}$	Total power due to losses and gravitational load

Ports

Input

xdot - Vehicle longitudinal velocity

scalar

Vehicle total longitudinal velocity, \dot{x}, in m / s.

Dependencies

To create this port, for the Input Mode parameter, select Kinematic.

xddot - Vehicle longitudinal acceleration

scalar
Vehicle total longitudinal acceleration, \ddot{x}, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Dependencies

To create this port, for the Input Mode parameter, select Kinematic.

PwrTot - Tractive input power

scalar
Tractive input power, $P_{\text {total }}$, in W.

Dependencies

To create this port, for the Input Mode parameter, select Power.

ForceTot - Tractive input force

scalar
Tractive input force, $F_{\text {total }}$, in N .

Dependencies

To create this port, for the Input Mode parameter, select Force.

Grade - Road grade angle

 scalarRoad grade angle, Θ, in deg.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal				Description	Value	Units
$\begin{aligned} & \mathrm{I} \\ & \mathrm{n} \\ & \mathrm{e} \\ & \mathrm{r} \\ & \mathrm{t} \\ & \mathrm{~F} \\ & \mathrm{r} \\ & \mathrm{~m} \end{aligned}$	Cg	Disp	X	Vehicle CG displacement along earth-fixed X-axis	Computed	m
			Y	Vehicle CG displacement along earth-fixed Y-axis	0	m
			Z	Vehicle CG displacement along earth-fixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earthfixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along earthfixed Y-axis	0	m/s
			Zdot	Vehicle CG velocity along earthfixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about earth-fixed X-axis (roll)	0	rad
			thet a	Rotation of vehicle-fixed frame about earth-fixed Y-axis (pitch)	Computed	rad
			psi	Rotation of vehicle-fixed frame about earth-fixed Z-axis (yaw)	0	rad
B	Cg	Disp	x	Vehicle CG displacement along vehicle-fixed x-axis	Computed	m
y			y	Vehicle CG displacement along vehicle-fixed y-axis	0	m
m			z	Vehicle CG displacement along vehicle-fixed z-axis	0	m

Signal			Description	Value	Units
	Vel	xdot	Vehicle CG velocity along vehiclefixed x-axis	Computed	m/s
		ydot	Vehicle CG velocity along vehiclefixed y-axis	0	m/s
		zdot	Vehicle CG velocity along vehiclefixed z -axis	0	m/s
	Acce l	ax	Vehicle CG acceleration along vehicle-fixed x -axis	Computed	gn
		ay	Vehicle CG acceleration along vehicle-fixed y-axis	0	gn
		az	Vehicle CG acceleration along vehicle-fixed z-axis	0	gn
For ces	Body	Fx	Net force on vehicle CG along vehicle-fixed x -axis	Computed	N
		Fy	Net force on vehicle CG along vehicle-fixed y-axis	0	N
		Fz	Net force on vehicle CG along vehicle-fixed z-axis	0	N
	Ext	FX	External force on vehicle CG along vehicle-fixed x -axis	Computed	N
		Fy	External force on vehicle CG along vehicle-fixed y-axis	0	N
		Fz	External force on vehicle CG along vehicle-fixed z-axis	0	N
	Drag	Fx	Drag force on vehicle CG along vehicle-fixed x -axis	Computed	N
		Fy	Drag force on vehicle CG along vehicle-fixed y-axis	0	N
		Fz	Drag force on vehicle CG along vehicle-fixed z-axis	0	N
	$\begin{aligned} & \mathrm{Grvt} \\ & \mathrm{y} \end{aligned}$	FX	Gravity force on vehicle CG along vehicle-fixed x -axis	Computed	N

Signal		Description	Value	Units	
			Fy	Gravity force on vehicle CG along vehicle-fixed y-axis	0
		Fz	Gravity force on vehicle CG along vehicle-fixed z-axis	Computed	N
	Pwr	PwrExt	Applied external power	Computed	W
	Drag	Power loss due to drag	Computed	W	

xdot - Vehicle longitudinal velocity

scalar

Vehicle total longitudinal velocity, \dot{x}, in m / s.

Dependencies

To create this port, for the Input Mode parameter, select Power or Force.

ForceTot - Tractive input force

scalar
Tractive input force, $F_{\text {total }}$, in N .

Dependencies

To create this port, for the Input Mode parameter, select Kinematic.

Parameters

Input Mode - Specify input mode

Kinematic (default)|Force | Power
Specify the input type.

- Kinematic - Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power. Use this configuration for powertrain, driveline, and braking system design, or component sizing.
- Force - Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.
- Power - Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.

Dependencies

This table summarizes the port and input mode configurations.

Input Mode	Creates Ports
Kinematic	xdot xddot
Force	Force
Power	Power

Mass - Vehicle body mass

scalar
Vehicle body mass, m, in kg .

Rolling resistance coefficient, a-Rolling

scalar
Steady-state rolling resistance coefficient, a, in N.
Rolling and driveline resistance coefficient, b-Rolling and driveline scalar

Viscous driveline and rolling resistance coefficient, b, in $\mathrm{N} * \mathrm{~s} / \mathrm{m}$.

Aerodynamic drag coefficient, c - Drag

scalar

Aerodynamic drag coefficient, c, in $\mathrm{N} \cdot \mathrm{s}^{\wedge} 2 / \mathrm{m}$.
Gravitational acceleration, g - Gravity scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

```
Initial velocity, xdot_o - Velocity
scalar
```

Vehicle longitudinal initial velocity with respect to ground, in m/s.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

[2] Light Duty Vehicle Performance And Economy Measure Committee. Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. Standard J1263_201003. SAE International, March 2010.

See Also

Drive Cycle Source | Vehicle Body 1DOF Longitudinal | Vehicle Body 3DOF Longitudinal
Introduced in R2017a

Energy Storage Blocks Alphabetical List

Datasheet Battery

Lithium-ion, lithium-polymer, or lead-acid battery
Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / Datasheet Battery

Description

The Datasheet Battery block implements a lithium-ion, lithium-polymer, or lead-acid battery that you can parameterize using manufacturer data. To create the open-circuit voltage and internal resistance parameters that you need for the block, use the manufacturer discharge characteristics by temperature data. For an example, see "Generate Parameter Data for Datasheet Battery Block".

To determine the battery output voltage, the block uses lookup tables for the battery open-circuit voltage and the internal resistance. The lookup tables are functions of the state-of charge (SOC) and battery temperature, characterizing the battery performance at various operating points:

$$
\begin{aligned}
& E_{m}=f(S O C) \\
& R_{\text {int }}=f(T, S O C)
\end{aligned}
$$

To calculate the voltage, the block implements these equations.

$$
\begin{aligned}
& V_{T}=E_{m}-I_{\text {batt }} R_{\text {int }} \\
& I_{\text {batt }}=\frac{I_{\text {in }}}{N_{p}} \\
& V_{\text {out }}=N_{s} V_{T} \\
& S O C=\frac{-1}{C_{\text {apatt }}} \int_{0}^{t} I_{\text {batt }} d t
\end{aligned}
$$

Positive current indicates battery discharge. Negative current indicates battery charge.

The equations use these variables.

SOC	State-of-charge
E_{m}	Battery open-circuit voltage
$I_{\text {batt }}$	Per module battery current
$I_{\text {in }}$	Combined current flowing from the battery network
$R_{\text {int }}$	Battery internal resistance
N_{s}	Number of cells in series
N_{p}	Number of cells in parallel
$V_{\text {out }}$	Combined voltage of the battery network
V_{T}	Per module battery voltage
$C a p_{\text {batt }}$	Battery capacity

Ports

Inputs

CapInit - Battery capacity scalar

Rated battery capacity at the nominal temperature, $C_{a p}$ batt, in Ah.

Dependencies

To create this port, select External Input for the Initial battery capacity parameter.

BattCurr - Battery load current

scalar

Combined current flowing from the battery network, $I_{i n}$, in A.

BattTemp - Battery temperature

scalar
Temperature measured at the battery housing, T, in K .

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Units
BattCurr	Combined current flowing from the battery network	A
BattAmpHr	Normalized current flowing from the battery network	A*h
BattSoc	State-of-charge capacity	NA
BattVolt	Combined voltage of the battery network	V
BattPwr	Battery power	W

BattVolt - Battery output voltage

scalar
Combined voltage of the battery network, $V_{\text {out }}$, in V.

Parameters

Block Options

Initial battery capacity - Input or parameter

Parameter (default)|External Input
Initial battery capacity, $C a p_{\text {batt, }}$ in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit

Block Parameter Initial battery capacity Option	Creates
Parameter	Parameter Initial battery capacity, BattCapInit

Output battery voltage - Unfiltered or Filter Unfiltered (default) | Filtered

Select Filtered to apply a first-order filter to the output batter voltage.

Dependencies

Setting Output battery voltage parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Rated capacity at nominal temperature, BattChargeMax - Constant scalar

Rated battery capacity at the nominal temperature, in Ah.
Open circuit voltage table data, Em - 1-D lookup table 1-by-P matrix

Open-circuit voltage data curve, E_{m}, as a function of the discharged capacity for P operating points, in V.

Open circuit voltage breakpoints 1, CapLUTBp - Breakpoints 1-by-P matrix

Discharge capacity breakpoints for P operating points, dimensionless.
Although this parameter is the same as the Battery capacity breakpoints 2, CapSOCBp parameter, the block uses unique parameters for calibration flexibility.

Internal resistance table data, RInt - 2-D lookup table N -by-M matrix

Internal resistance map, $R_{\text {int }}$, as a function of N temperatures and M SOCs, in ohms.

Battery temperature breakpoints 1, BattTempBp - Breakpoints 1-by-N matrix

Battery temperature breakpoints for N temperatures, in K .

Battery capacity breakpoints 2, CapSOCBp - Breakpoints

1-by-M matrix

Battery capacity breakpoints for M SOCs, dimensionless.
Although this parameter is the same as the Open circuit voltage breakpoints 1, CapLUTBp parameter, the block uses unique parameters for calibration flexibility.

```
Number of cells in series, Ns - Integer
scalar
```

Number of cells in series, dimensionless, N_{s}.

```
Number of cells in parallel, Np - Integer
```

scalar

Number of cells in parallel, dimensionless, N_{p}.

```
Initial battery capacity, BattCapInit - Capacity
scalar
```

Initial battery capacity, $C_{\text {ap }}^{\text {batt, }}$ in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
Parameter	Parameter Initial battery capacity, BattCapInit

[^0]Setting Output battery voltage parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Output battery voltage initial value - Filter initial voltage

 scalarOutput battery voltage initial value, $V_{\text {init }}$, in V . Used in a first-order voltage filter.

Dependencies

Setting Output battery voltage parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

References

[1] Arrhenius, S.A. "Über die Dissociationswärme und den Einflusß der Temperatur auf den Dissociationsgrad der Elektrolyte." Journal of Physical Chemistry. 4 (1889): 96-116.
[2] Connors, K. Chemical Kinetics. New York: VCH Publishers, 1990.
[3] Ji, Yan, Yancheng Zhang, and Chao-Yang Wang. Journal of the Electrochemical Society. Volume 160, Issue 4 (2013), A636-A649.

See Also

Equivalent Circuit Battery | Estimation Equivalent Circuit Battery

Topics

"Generate Parameter Data for Datasheet Battery Block"
Battery Modeling

Introduced in R2017a

Estimation Equivalent Circuit Battery

Resistor-capacitor (RC) circuit battery that creates lookup tables
Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / Network Battery

Description

The Estimation Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery model that you can use to create lookup tables for the Equivalent Circuit Battery block. The lookup tables are functions of the state-of-charge (SOC).

The Estimation Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC. To acquire the SOC, the block integrates the charge and discharge currents.

Specifically, the block implements these parameters as lookup tables that are functions of the SOC:

- Series resistance, $R_{o}=\mathrm{f}(S O C)$
- Battery open-circuit voltage, $E_{m}=f(S O C)$
- Network resistance, $R_{n}=f(S O C)$
- Network capacitance, $C_{n}=f(S O C)$

To calculate the combined voltage of the battery network, the block uses these equations.

$$
\begin{aligned}
& V_{T}=E_{m}-I_{b a t t} R_{O}-\sum_{1}^{n} V_{n} \\
& V_{n}=\int_{0}^{t}\left[\frac{I_{\text {batt }}}{C_{n}}-\frac{V_{n}}{R_{n} C_{n}}\right] d t \\
& S O C=\frac{-1}{C_{b a t t}} \int_{0}^{t} I_{b a t t} d t \\
& I_{\text {batt }}=I_{\text {in }} \\
& V_{\text {out }}=V_{T}
\end{aligned}
$$

Positive current indicates battery discharge. Negative current indicates battery charge.
The equations use these variables.

SOC	State-of-charge
E_{m}	Battery open-circuit voltage
$I_{\text {batt }}$	Per module battery current
$I_{\text {in }}$	Combined current flowing from the battery network
R_{o}	Series resistance
n	Number of RC pairs in series
$V_{\text {out }}, V_{T}$	Combined voltage of the battery network
V_{n}	Voltage for n-th RC pair
R_{n}	Resistance for n-th RC pair
C_{n}	Capacitance for n-th RC pair
$C_{\text {batt }}$	Battery capacity

Ports

Inputs

BattCurr - Battery network current
 scalar

Combined current flowing from the battery network, $I_{i n}$, in A.

Output

```
Info - Bus signal
bus
```

Bus signal containing these block calculations.

Signal	Description	Variable	Units
CapVolt	Voltage for n-th RC pair	V_{n}	V

BattVolt - Battery output voltage

scalar

Combined voltage of the battery network, $V_{\text {out }}$, in V.

BattSoc - Battery SOC

scalar

Battery state-of-charge, SOC.

Parameters

Core Battery

Number of series RC pairs - RC pairs

1 (default) | 2 | 3 | 4 | 5

Number of series RC pairs. For lithium, typically 1 or 2.
Open circuit voltage Em table data, Em - Voltage table array

Open-circuit voltage table, E_{m}, in V. Function of SOC.
Series resistance table data, R0 - Resistance
array
Series resistance table, R_{0}, in ohms. Function of SOC.

State of charge breakpoints, SOC_BP - SOC breakpoints vector

State-of-charge (SOC) breakpoints, dimensionless.
Battery capacity, BattCap - Capacity scalar

Battery capacity, $C_{\text {batt, }}$, in Ah.

Initial battery capacity, BattCapInit - Capacity scalar

Initial battery capacity, $C_{\text {batto }}$, in Ah.

Initial capacitor voltage, InitialCapVoltage - Voltage vector

Initial capacitor voltage, in V. Dimension of vector must equal the Number of series RC pairs.

R and C Table Data

Network resistance table data, Rn - Lookup table array

Network resistance table data for n-th RC pair, as a function of SOC, in ohms.
Network capacitance table data, Cn - Lookup table array

Network capacitance table data for n-th RC pair, as a function of SOC, in F.

Cell Limits

Upper Integrator Voltage Limit, Vu - Maximum scalar

Upper voltage limit, in V.
Lower Integrator Voltage Limit, VI - Minimum scalar

Lower voltage limit, in V.

References

[1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." SAE International Journal of Alternative Powertrains. doi: 10.4271/2015-01-0252, 4(2):2015.
[2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." SAE International Journal of Aerospace. doi:10.4271/2014-01-2217, 7(2):2014.
[3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." IEEE ${ }^{\circledR}$ International Electric Vehicle Conference. March 2012, pp. 1-8.
[4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." SAE Technical Paper 2013-01-1544. doi:10.4271/2013-01-1544, 2013.
[5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi: 10.4271/2007-01-0778, 2007.
[6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi: 10.4271/2009-01-1381, 2009.
[7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

See Also

Datasheet Battery | Equivalent Circuit Battery

Topics

"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling

Introduced in R2017a

Equivalent Circuit Battery

Resistor-capacitor (RC) circuit battery
Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / Network Battery

Description

The Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery that you can parameterize using equivalent circuit modeling (ECM). To simulate the state-of-charge (SOC) and terminal voltage, the block uses load current and internal core temperature.

The Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC and battery temperature. You can use the Estimation Equivalent Circuit Battery block to help create the lookup tables.

Specifically, the Equivalent Circuit Battery block implements these parameters as lookup tables that are functions of the SOC and battery temperature:

- Series resistance, $R_{o}=f(S O C, T)$
- Battery open-circuit voltage, $E_{m}=f(S O C, T)$
- Battery capacity, $C_{\text {batt }}=f(T)$
- Network resistance, $R_{n}=f(S O C, T)$
- Network capacitance, $C_{n}=\mathrm{f}(S O C, T)$

To calculate the combined voltage of the battery network, the block uses these equations.

$$
\begin{aligned}
& V_{T}=E_{m}-I_{b a t t} R_{o}-\sum_{1}^{n} V_{n} \\
& V_{n}=\int_{0}^{t}\left[\frac{I_{\text {batt }}}{C_{n}}-\frac{V_{n}}{R_{n} C_{n}}\right] d t \\
& S O C=\frac{-1}{C_{b a t t}} \int_{0}^{t} I_{b a t t} d t \\
& I_{b a t t}=\frac{I_{\text {in }}}{N_{p}} \\
& V_{\text {out }}=N_{s} V_{T}
\end{aligned}
$$

Positive current indicates battery discharge. Negative current indicates battery charge.
To calculate the battery power, the block uses this equation.

$$
P_{b a t t}=I_{b a t t}^{2} R_{0}+\sum_{1}^{n} \frac{V_{n}{ }^{2}}{R_{n}}
$$

The equations use these variables.

SOC	State-of-charge
E_{m}	Battery open-circuit voltage
$I_{\text {batt }}$	Per module battery current
$I_{\text {in }}$	Combined current flowing from the battery network
R_{o}	Series resistance
N_{p}	Number parallel branches
N_{p}	Number of RC pairs in series
$V_{\text {out }}, V_{T}$	Combined voltage of the battery network
V_{n}	Voltage for n-th RC pair
R_{n}	Resistance for n-th RC pair
C_{n}	Capacitance for n-th RC pair
$C_{\text {batt }}$	Battery capacity

$P_{\text {batt }}$	Resistive battery power loss
T	Battery temperature

Ports

Inputs

CapInit - Battery capacity
 scalar

Rated battery capacity at the nominal temperature, $C_{\text {ap }}$ batt, in Ah.

Dependencies

To create this port, select External Input for the Initial battery capacity parameter.

BattCurr - Battery network current

scalar

Combined current flowing from the battery network, $I_{i n}$, in A.

BattTemp - Battery temperature

scalar
Battery temperature, T, in K.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Units
BattCurr	Combined current flowing from the battery network	A
BattSoc	State-of-charge capacity	NA

Signal	Description	Units
BattVolt	Combined voltage of the battery network	V
BattPwr	Battery power	W
BattPwrLoss	Battery power loss	W

BattVolt - Battery output voltage

scalar
Combined voltage of the battery network, $V_{\text {out }}$, in V .

Parameters

Block Options

Initial battery capacity - Input or parameter
Parameter (default) | External Input
Initial battery capacity, $C a p_{\text {batt, }}$ in Ah.
Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
Parameter	Parameter Initial battery capacity, BattCapInit

Output battery voltage - Unfiltered or Filter

Unfiltered (default) | Filtered
Select Filtered to apply a first-order filter to the output batter voltage.

Dependencies

Setting Output battery voltage parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc

- Output battery voltage initial value, Vinit

Core Battery

Number of series RC pairs - RC pairs

1 (default)|2|3|4|5
Number of series RC pairs. For lithium, typically 1 or 2.

Open circuit voltage Em table data, Em - Voltage table

 arrayOpen circuit voltage table, E_{m}, in V. Function of SOC and battery temperature.
Series resistance table data, R0 - Resistance array

Series resistance table, R_{0}, in ohms. Function of SOC and battery temperature.
State of charge breakpoints, SOC_BP - SOC breakpoints vector

State-of-charge (SOC) breakpoints, dimensionless.
Temperature breakpoints, Temperature_BP - Battery
vector
Battery temperature breakpoints, K.
Battery capacity table, BattCap-Capacity array

Battery capacity, $C_{\text {batt, }}$, in Ah. Function of battery temperature.
Initial capacitor voltage, InitialCapVoltage - Voltage vector

Initial capacitor voltage, in V. Dimension of vector must equal the Number of series RC pairs.

```
Initial battery capacity, BattCapInit - Capacity
scalar
```

Initial battery capacity, $C a p_{\text {batt, }}$ in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
Parameter	Parameter Initial battery capacity, BattCapInit

Output battery voltage time constant, Tc - Filter time constant scalar

Output battery voltage time constant, T_{c}, in s . Used in a first-order voltage filter.

Dependencies

Setting Output battery voltage parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Output battery voltage initial value, Vinit - Filter initial voltage scalar

Output battery voltage initial value, $V_{\text {init }}$, in V. Used in a first-order voltage filter.

Dependencies

Setting Output battery voltage parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

R and C Table Data
Network resistance table data, Rn - Lookup table array

Network resistance table data for n-th RC pair, in ohms, as a function of SOC and battery temperature.

Network capacitance table data, Cn L Lookup table array

Network capacitance table data for n-th RC pair, in F, as a function of SOC and battery temperature.

Cell Limits

Upper integrator voltage limit, Vu - Maximum

 scalarUpper voltage limit, in V.

Lower integrator voltage limit, Vl - Minimum

 scalarLower voltage limit, in V.

References

[1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." SAE International Journal of Alternative Powertrains. doi: 10.4271/2015-01-0252, 4(2):2015.
[2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." SAE International Journal of Aerospace. doi:10.4271/2014-01-2217, 7(2):2014.
[3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." IEEE International Electric Vehicle Conference. March 2012, pp. 18.
[4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." SAE Technical Paper 2013-01-1544. doi:10.4271/2013-01-1544, 2013.
[5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi: 10.4271/2007-01-0778, 2007.
[6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi: 10.4271/2009-01-1381, 2009.

[7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

See Also
Datasheet Battery | Estimation Equivalent Circuit Battery
Topics
"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling

Introduced in R2017a

Reduced Lundell Alternator

Reduced Lundell (claw-pole) alternator with an external voltage regulator Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / Alternator

Description

The Reduced Lundell Alternator block implements a reduced Lundell (claw-pole) alternator with an external voltage regulator. The back-electromotive force (EMF) voltage is proportional to the input velocity and field current. The motor operates as a source torque to the internal combustion engine.

Use the Reduced Lundell Alternator block:

- To model an automotive electrical system
- In an engine model with a front-end accessory drive (FEAD)

The calculated motor shaft torque is in the opposite direction of the engine speed. You can:

- Tune the external voltage regulator to a desired bandwidth. The stator current and two diode drops reduce the stator voltage.
- Filter the load current to desired bandwidth. The load current has a lower saturation of 0 A .

Equations

The Reduced Lundell Alternator block implements equations for the electrical, control, and mechanical systems that use these variables.

$v_{\text {ref }}$	Alternator output voltage command
v_{f}	Field winding voltage

i_{f}	Field winding current
i_{s}	Stator winding current
V_{d}	Diode voltage drop
R_{f}	Field winding resistance
R_{s}	Stator winding resistance
L_{f}	Field winding inductance
K_{v}	Voltage constant
F_{v}	Voltage regulator bandwidth
F_{c}	Input current filter bandwidth
$V_{f m a x}$	Field control voltage upper saturation limit
$V_{f \text { min }}$	Field control voltage lower saturation limit
K_{c}	Coulomb friction coefficient
K_{b}	Viscous friction coefficient
K_{w}	Windage coefficient
ω	Motor shaft angular speed
$i_{l o a d}$	Alternator load current
v_{s}	Alternator output voltage
$\tau_{\text {mech }}$	Motor shaft torque

To calculate voltages, the block uses these equations.

Calculation	Equations
Alternator output voltage	$v_{s}=K_{v} i_{f} \omega-R_{s} i_{s}-2 V_{d}$
Field winding voltage	$v_{f}=R_{f} i_{f}+L_{f} \frac{d i_{f}}{d t}$

The controller assumes no resistance or voltage drop.

Calculation	Equations
Field winding voltage transform	$V_{f}(s)=R_{f} I_{f}(s)+s L_{f} I_{f}(s)$
Field winding current transform	$I_{f}(s)=\frac{V_{f}(s)}{\left(R_{f}+s L_{f}\right)}$
Open loop electrical transfer function	$G(s)=\frac{V_{s}(s)}{V_{f}(s)}=\frac{K_{v} \omega}{\left(R_{f}+s L_{f}\right)}$
Open loop voltage regulator transfer function	$G_{C}(s)=\frac{V_{f}(s)}{V_{r e f}(s)}$
Closed loop transfer function	$T(s)=\frac{G(s) G c(s)}{1+G(s) G c(s)}$
Closed loop controller design	$T(s)=\frac{1}{\tau s+1} \rightarrow G(s) G_{c}(s)=\frac{1}{\tau s}$
	$G_{C}(s)=K_{g}\left(K_{p}+\frac{K_{i}}{s}\right)$
	$G_{p}=L_{f}, K_{i}=R_{f}, a n d K_{g}=\frac{2 \pi f}{K_{v} \omega}$

To calculate torques, the block uses these equations.

Calculation	Equations
Electrical torque	$\tau_{\text {elec }}=\left(K_{v} i_{f} \omega\right) i_{\text {load }}$

Calculation	Equations
Frictional torque	$\tau_{\text {friction }}=K_{b} \omega$
Windage torque	$\tau_{\text {windage }}=K_{w} \omega^{2}$
Torque at start	$\tau_{\text {start }}=K_{c}$ when $\omega=0$
Motor shaft torque	$\tau_{\text {mech }}=\tau_{\text {elec }}+\tau_{\text {friction }}+\tau_{\text {windage }}+\tau_{\text {start }}$

Ports

Inputs

RefVolt - Alternator output voltage command
scalar
Alternator output voltage command, in V.

AltSpd - Angular speed

scalar

Motor shaft input angular speed, in rad/s.

LdCurr - Alternator load current

scalar
Alternator load current, in A.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Units
FldVolt	Field winding voltage	A
FldFlux	Field flux	Wb

AltVolt - Alternator output voltage
 scalar

Alternator output voltage, in V.

LdTrq - Motor shaft torque

scalar
Motor shaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

Parameters

Machine Configuration

Voltage constant, Kv-Constant

scalar
Voltage constant, in V/rad/s.

Field winding resistance, Rf - Resistance scalar

Field winding resistance, in ohm.

```
Field winding inductance, Lf - Inductance
scalar
```

Field winding inductance, in H .
Stator winding resistance, Rs - Resistance
scalar
Stator winding resistance, in ohm.
Diode voltage drop, Vd - Voltage
scalar

Diode voltage drop, in V.

Voltage Regulator

Regulator bandwidth, Fv - Bandwidth scalar

The regulator bandwidth, in Hz .

Current filter bandwidth, Fc - Bandwidth scalar

The current filter bandwidth, in Hz .

Field voltage max, Vfmax - Maximum field voltage

 scalarThe maximum field voltage, in V.

Field voltage min, Vfmin - Minimum field voltage scalar

The minimum field voltage, in V.
Mechanical Losses
Coulomb friction, Kc - Friction scalar

Coulomb friction, in $\mathrm{N} \cdot \mathrm{m}$.
Viscous friction, Kb - Friction
scalar
Viscous friction, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad} / \mathrm{s}$.
Windage, Kw - Windage
scalar
Windage, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}^{2} / \mathrm{s}^{2}$.

References

[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

See Also

Starter

Introduced in R2017a

Starter

Starter as a DC motor
Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / Starter

Description

The Starter block implements a starter assembly as a separately excited DC motor, permanent magnet DC motor, or series connection DC motor. The motor operates as a torque source to an internal combustion engine.

Use the Starter block:

- In an engine model with a front-end accessory drive (FEAD)
- To model engine start and stop scenarios

The Starter block supports only an angular speed input to the DC motor. A load torque input requires engine dynamics.

Equations

The block implements equations that use these variables.
$R_{a} \quad$ Armature winding resistance
$L_{a} \quad$ Armature winding inductance
EMF Counter-electromotive force
$R_{f} \quad$ Field winding resistance
$L_{f} \quad$ Field winding inductance
$L_{a f} \quad$ Field and armature mutual inductance
$i_{a} \quad$ Armature winding current
$i_{f} \quad$ Field winding current

K_{t}	Motor torque constant
ω	Motor shaft angular speed
V_{a}	Armature winding voltage
V_{f}	Field winding voltage
$V_{a f}$	Field and armature winding voltage
$i_{a f}$	Field and armature series current
$R_{\text {ser }}$	Series connected field and armature resistance
$L_{\text {ser }}$	Series connected field and armature inductance
$i_{\text {load }}$	Starter motor current load
$T_{\text {mech }}$	Starter motor shaft torque

In a separately excited DC motor, the field winding is connected to a separate source of DC power.

The relationship between the field winding voltage, field resistance, and field inductance is given by:

$$
V_{f}=L_{f} \frac{d i_{f}}{d t}+R_{f} i_{f}
$$

The counter-electromotive force is a product of the field resistance, mutual inductance, and motor shaft angular speed:

$$
E M F=L_{a} i_{f} L_{a f} \omega
$$

The armature voltage is given by:

$$
V_{a}=L_{a} \frac{d i_{a}}{d t}+R_{a} i_{a}+E M F
$$

The starter motor current load is the sum of the field winding current and armature winding current:

$$
i_{\text {load }}=i_{f}+i_{a}
$$

The starter motor shaft torque is the product of the armature current, field current, and mutual inductance:

$$
T_{\text {mech }}=i_{a} i_{f} L_{a f}
$$

In a permanent magnet DC motor, the magnets establish the excitation flux, so there is no field current.

The counter-electromotive force is proportional to the motor shaft angular speed:

$$
E M F=K_{t} \omega
$$

The armature voltage is given by:

$$
V_{a}=L_{a} \frac{d i_{a}}{d t}+R_{a} i_{a}+E M F
$$

The starter motor current load is equal to the armature winding current:

$$
i_{l o a d}=i_{a}
$$

The starter motor shaft torque is proportional to the armature winding current:

$$
T_{m e c h}=K_{t} i_{a}
$$

A series excited DC motor connects the armature and field windings in series with a common DC power source.

The counter-electromotive force is a product of the field and armature initial series current, field, and armature mutual inductance and motor shaft angular speed:

$$
E M F=i_{a f} L_{a f} \omega
$$

The field and armature winding voltage is given by:

$$
V_{a f}=L_{s e r} \frac{d i_{a f}}{d t}+R_{s e r} i_{a f}+E M F
$$

The starter motor current load is equal to the field and armature series current:

$$
i_{l o a d}=i_{a f}
$$

The starter motor shaft torque is the product of the squared field and armature series current and the field and armature mutual inductance:

$$
T_{m e c h}=i_{a f}^{2} L_{a f}
$$

For motor stability, the motor shaft angular speed must be greater than the ratio of the series connected field and armature resistance to the mutual inductance:

$$
\omega>-\frac{R_{s e r}}{L_{a f}}
$$

Ports

Inputs

MtrSpd - Angular speed

scalar
Motor shaft angular speed, in rad/s.

StartVolt - Armature and field voltage
 scalar

- Armature winding voltage V_{a} and field winding voltage V_{f}, in V .
- In series excited DC motor, armature and field winding voltage $V_{a f}$.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Units
ArmCurr	Armature winding current	A
FldCurr	Field winding current	A

LdCurr - Starter motor load current scalar

Starter motor load current, in A.

MtrTrq - Starter motor shaft torque

scalar
Starter motor shaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

Parameters

Configuration

Motor Type - Select motor type

Separately Excited DC Motor (default)|Permanent Magnet Excited DC Motor |Series Connection DC Motor

Select one of the three motor types.
Dependencies
The table summarizes the motor parameter dependencies.

Motor Type	Enables Motor Parameter
Separately Excited DC Motor	Armature winding resistance, Ra
	Armature winding inductance, La
	Field winding resistance Rf
	Field winding inductance, Lf
	Mutual inductance, Laf
Permanent Magnet Excited DC Motor	Armature winding resistance, Rapm

Motor Type	Enables Motor Parameter
Series Connection DC Motor	Armature winding inductance, Lapm
	Torque constant, Kt
	Initial armature current, Ia
	Total resistance, Rser
	Total inductance, Lser
	Mutual inductance, Lafser

Separately Excited DC Motor

Armature winding resistance, Ra-Resistance
scalar
Armature winding resistance, in ohm.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Armature winding inductance, La - Inductance
scalar
Armature winding inductance, in H .

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

```
Field winding resistance, Rf - Resistance
```

scalar

Field winding resistance, in ohm.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Field winding inductance, Lf - Inductance scalar

Field winding inductance, in H .

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Mutual inductance, Laf - Inductance

scalar
Mutual inductance, in H .

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Initial armature and field current, Iaf - Current vector

Initial armature and field current, in A.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Permanent Magnet Excited DC Motor

Armature winding resistance, Rapm - Resistance scalar

Armature winding resistance, in ohm.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

Armature winding inductance, Lapm - Inductance scalar

Armature winding inductance, in H .

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

Torque constant, Kt - Motor torque constant
scalar
Motor torque constant, in $N \cdot m / A$.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

```
Initial armature current, Ia - Current
scalar
```

Initial armature current, in A.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

Series Excited DC Motor

Total resistance, Rser - Resistance
scalar
Series connected field and armature resistance, in ohm.

Dependencies

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

```
Total inductance, Lser - Inductance
scalar
```

Series connected field and armature inductance, in H .

Dependencies

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

Initial current, Iafser - Current

scalar
Initial series current, in A.

Dependencies

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

Mutual inductance, Lafser - Inductance

scalar
Field and armature mutual inductance, in H .

Dependencies

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

References

[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

See Also

Reduced Lundell Alternator

Introduced in R2017a

Bidirectional DC-DC

DC-to-DC converter that supports bidirectional boost and buck
Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / DC-DC

Description

The Bidirectional DC-DC block implements a DC-to-DC converter that supports bidirectional boost and buck (lower) operation. Unless the DC-to-DC conversion limits the power, the output voltage tracks the voltage command. You can specify electrical losses or measured efficiency.

Depending on your battery system configuration, the voltage might not be at a potential that is required by electrical system components such has inverters and motors. You can use the block to boost or buck the voltage. Connect the block to the battery and one of these blocks:

- Mapped Motor
- IM Controller
- Interior PM Controller
- Surface Mount PM Controller

To calculate the electrical loss during the DC-to-DC conversion, use Parameterize losses by.

Parameter Option	Description
Single efficiency measurement	Electrical loss calculated using a constant value for conversion efficiency.

Parameter Option	Description
Tabulated loss data	Electrical loss calculated as a function of load current and voltage. DC-to-DC converter data sheets typically provide loss data in this format. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same loss pattern for other quadrants. The block does not extrapolate loss that is outside the range voltage and current that you provide. The block allows you to account for fixed losses that are still present for zero voltage or current.
Tabulated efficiency data	Electrical loss calculated using conversion efficiency that is a function of load current and voltage. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same efficiency pattern for other quadrants. The block: - Assumes zero loss when either the voltage or current is zero. - Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.

Note The block does not support inversion. The polarity of the input voltage matches the polarity of the output voltage.

Theory

The Bidirectional DC-DC block uses the commanded voltage and the actual voltage to determine whether to boost or buck (lower) the voltage. You can specify a time constant for the voltage response.

If	Then
Volt $_{c m d}>$ Src $_{\text {Volt }}$	Boost
Volt $_{c m d}<$ Src $_{\text {Volt }}$	Buck

The Bidirectional DC-DC block uses a time constant-based regulator to provide a fixed output voltage that is independent of load current. Using the output voltage and current, the block determines the losses of the DC-to-DC conversion. The block uses the conversion losses to calculate the input current. The block accounts for:

- Bidirectional current flow
- Source to load - Battery discharge
- Load to source - Battery charge
- Rated power limits

The block provides voltage control that is power limited based on these equations. The voltage is fixed. The block does not implement a voltage drop because the load current approximates DC-to-DC conversion with a bandwidth that is greater than the load current draw.

DC-to-DC converter load voltage	$L d V o l t_{C m d}=\min \left(V o l t_{C m d}, \frac{P_{\text {limit }}}{L d_{A m p}}, 0\right)$
	$L d V o l t=L d V o l t_{C m d} \cdot \frac{1}{\tau s+1}$
Power loss for single efficiency source to load	$P w r_{\text {Loss }}=\frac{100-E f f}{E f f} \cdot L d_{\text {Volt }} \cdot L d_{A m p}$
Power loss for single efficiency load to source	$P w r_{\text {Loss }}=\frac{100-E f f}{E f f} \cdot\left\|L d_{\text {Volt }} \cdot L d_{A m p}\right\|$
Power loss for tabulated efficiency	$P r w_{\text {Loss }}=f\left(L d_{\text {Volt }}, L d_{A m p}\right)$
Source current draw from DC- to-DC converter	$\operatorname{Src_{Amp}=\frac {Ld_{Pwr}+Prw_{\text {Loss}}}{Src_{Volt}}}$
Source power from DC-to-DC converter	$\operatorname{Src_{Pwr}=\operatorname {Src_{Amp}}\cdot \operatorname {Src}_{\text {Volt}}}$

The equations use these variables.

Volt $_{\text {Cmd }}$	DC-to-DC converter commanded output voltage
$S r C_{\text {Volt }}$	Source input voltage to DC-to-DC converter
$L d_{\text {Amp }}$	Load current of DC-to-DC converter
$L d_{\text {Volt }}$	Load voltage of DC-to-DC converter
$S r C_{\text {Amp }}$	Source current draw from DC-to-DC converter
τ	Conversion time constant
$V_{\text {init }}$	Initial load voltage of the DC-to-DC converter
$P_{\text {limit }}$	Output power limit for DC-to-DC converter
$E f f$	Input to output efficiency
$S r C_{P w r}$	Source power to DC-to-DC converter
$L d_{P w r}$	Load power from DC-to-DC converter
$P w r_{\text {Loss }}$	Power loss
$L d V o l t_{C m d}$	Commanded load voltage of DC-to-DC converter before application of time constant

Ports

Inputs

VoltCmd - Commanded voltage
 scalar

DC-to-DC converter commanded output voltage, Volt $_{\text {Cmd }}$, in V.

SrcVolt - Input voltage

scalar
Source input voltage to DC-to-DC converter, $\operatorname{SrC}_{\text {Volt }}$, in V.

LdCurr - Load current

scalar
Load current of DC-to-DC converter, $L d_{\text {Amp }}$, in A.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
SrcPwr	Source power to DC-to-DC converter	$\operatorname{SrC}_{P w r}$	W
LdPwr	Load power from DC-to-DC converter	Ld $d_{P w r}$	W
PwrLoss	Power loss	Pwr $_{\text {Loss }}$	W
LdVoltCmd	Commanded load voltage of DC-to-DC converter before application of time constant	LdVolt	V

LdVolt - Load voltage

scalar
Load voltage of DC-to-DC converter, $L d_{\text {Volt }}$, in V .

SrcCurr - Source current

scalar

Source current draw from DC-to-DC converter, $\operatorname{Src}_{\text {Amp }}$, in A.

Parameters

Electrical Control
Converter response time constant - Constant scalar

Converter response time, τ, in s.

Converter response initial voltage, Vinit - Voltage scalar

Initial load voltage of the DC-to-DC converter, $V_{\text {init, }}$, in V.

Converter power limit, Plimit - Power
 scalar

Initial load voltage of the DC-to-DC converter, $P_{\text {limit }}$, in W.

Electrical Losses

Parameterize losses by - Loss calculation

Single efficiency measurement (default)|Tabulated loss dataTabulated efficiency data

This table summarizes the loss options used to calculate electrical options.

Parameter Option	Description
Single efficiency measurement	Electrical loss calculated using a constant value for conversion efficiency.
Tabulated loss data	Electrical loss calculated as a function of load current and voltage. DC-to-DC converter data sheets typically provide loss data in this format. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same loss pattern for other quadrants. The block does not extrapolate loss that is outside the range voltage and current that you provide. The block allows you to account for fixed losses that are still present for zero voltage or current.

Parameter Option	Description
Tabulated efficiency data	Electrical loss calculated using conversion efficiency that is a function of load current and voltage. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same efficiency pattern for other quadrants. The block:
	Assumes zero loss when either the voltage or current is zero.
	Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.

Overall DC to DC converter efficiency, eff - Constant scalar

Overall conversion efficiency, Eff, in \%.

Dependencies

To enable this parameter, for Parameterize losses by, select Single efficiency measurement.

Vector of voltages (v) for tabulated loss, v_loss_bp - Breakpoints

 1-by-M matrixTabulated loss breakpoints for M load voltages, in V.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

```
Vector of currents (i) for tabulated loss, i_loss_bp - Breakpoints
1-by-N matrix
```

Tabulated loss breakpoints for N load currents, in A .

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Corresponding losses, losses_table - 2-D lookup table N -by-M matrix

Electrical loss map, as a function of N load currents and M load voltages, in W .

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of voltages (v) for tabulated efficiency, v_eff_bp Breakpoints

1-by-M matrix
Tabulated efficiency breakpoints for M load voltages, in V.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Vector of currents (i) for tabulated efficiency, i_eff_bp Breakpoints

1-by-N matrix
Tabulated efficiency breakpoints for N load currents, in A.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table - 2-D lookup table N -by-M matrix

Electrical efficiency map, as a function of N load currents and Mload voltages, in \%.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

See Also

Equivalent Circuit Battery | Estimation Equivalent Circuit Battery

Topics
Battery Modeling
Introduced in R2017b

Propulsion Blocks - Alphabetical List

Boost Drive Shaft

Boost drive shaft speed
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Boost

Description

The Boost Drive Shaft block uses the compressor, turbine, and external torques to calculate the drive shaft speed. Use the block to model turbochargers and superchargers in an engine model.

You can specify these configurations:

- Turbocharger - Connect the compressor to the turbine
- Two-way ports for turbine and compressor connections
- Option to add an externally applied input torque
- Compressor only - Connect the drive shaft to the compressor
- Two-way port for compressor connection
- Externally applied input torque
- Turbine only - Connect the drive shaft to the turbine
- Two-way port for turbine connection
- Externally applied load torque

For the Turbine only and Turbocharger configurations, the block modifies the turbine torque with a mechanical efficiency.

Equations

The Boost Drive Shaft block applies Newton's Second Law for Rotation. Positive torques cause the drive shaft to accelerate. Negative torques impose a load and decelerate the drive shaft.

The block also calculates the power loss due to mechanical inefficiency.

Calculation	Equations
Shaft dynamics	$\frac{d \omega}{d t}=\frac{1}{J_{\text {shaft }}}\left(\eta_{\text {mech }} \tau_{\text {turb }}+\tau_{\text {comp }}+\tau_{\text {ext }}\right) \quad$ with initial speed ω_{0}
Speed constraint	$\omega_{\min } \leq \omega \leq \omega_{\max }$
Power loss	$\dot{W}_{\text {loss }}=\omega \tau_{\text {turb }}\left(1-\eta_{\text {mech }}\right)$

The equations use these variables.

ω	Shaft speed
ω_{0}	Initial drive shaft speed
$\omega_{\min }$	Minimum drive shaft speed
$\omega_{\max }$	Maximum drive shaft speed
$J_{\text {shaft }}$	Shaft inertia
$\eta_{\text {max }}$	Mechanical efficiency of turbine
$\tau_{\text {comp }}$	Compressor torque
$\tau_{\text {turb }}$	Turbine torque
$\tau_{\text {ext }}$	Externally applied torque.
$\dot{W}_{\text {loss }}$	Power loss due to mechanical inefficiency

Ports

Input

Cmprs - Compressor torque

two-way connector port
Compressor torque, $\tau_{\text {comp, }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for the Configuration parameter, select Turbocharger or Compressor only.

Turb - Turbine torque

two-way connector port
Turbine torque, $\tau_{t u r b}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for the Configuration parameter, select Turbocharger or Turbine only.

ExtTrq - Externally applied torque

scalar
Externally applied torque, $\tau_{\text {ext }}$, in $N \cdot \mathrm{~m}$.

Dependencies

For turbocharger configurations, to create this port, set Additional torque input to External torque input.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Variable	Units
DriveshftSpd	Shaft speed	ω	$\mathrm{rad} / \mathrm{s}$
MechPwrLoss	Mechanical power loss	$\dot{W}_{\text {loss }}$	W
ExtTrq	Applied external torque	$\tau_{\text {ext }}$	$\mathrm{N} \cdot \mathrm{m}$

Cmprs - Compressor speed

two-way connector port
Compressor speed, ω, in rad/s.

Dependencies

To create this port, for the Configuration parameter, select Turbocharger or Compressor only.

Turb - Turbine speed

two-way connector port
Turbine speed, ω, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for the Configuration parameter, select Turbocharger or Turbine only.

Parameters

Block Options

Configuration - Specify configuration

Turbocharger (default)| Turbine only|Compressor only

Dependencies

- Selecting Turbocharger or Compressor only creates the Cmprs port.
- Selecting Turbocharger or Turbine only creates the Turb port.

Additional torque input - Specify external torque input

External torque input (default)|No external torque input

Dependencies

- To enable this parameter, select a Turbocharger configuration.
- To create the Trq port, select External torque input.

Shaft inertia, J_shaft - Inertia

scalar

Shaft inertia, $J_{\text {shaft }}$ in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

```
Initial shaft speed, w_0 - Speed
scalar
```

Initial drive shaft speed, ω_{0}, in rad/s.

Min shaft speed, w_min - Speed scalar

Minimum drive shaft speed, $\omega_{\text {min }}$, in rad/s.
Max shaft speed, w_max - Speed scalar

Maximum drive shaft speed, $\omega_{\text {max }}$, in rad/s.
Turbine mechanical efficiency, eta_mech - Efficiency scalar

Mechanical efficiency of turbine $\eta_{\max }$.

Dependencies

To enable this parameter, select the Turbocharger or Turbine only configuration.

See Also

Compressor | Turbine
Introduced in R2017a

CI Controller

Compression-ignition controller that includes air mass flow, torque, and EGR estimation Library: Powertrain Blockset / Propulsion / Combustion Engine Controllers

Description

The CI Controller block implements a compression-ignition (CI) controller with air mass flow, torque, exhaust gas recirculation (EGR) flow, exhaust back-pressure, and exhaust gas temperature estimation. You can use the CI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine block requires the commands that are output from the CI Controller block.

The block uses the commanded torque and measured engine speed to determine these open-loop actuator commands:

- Injector pulse-width
- Fuel injection timing
- Variable geometry turbocharger (VGT) rack position
- EGR valve area percent

The CI Controller block has two subsystems:

- The Controller subsystem - Determines the commands based on tables that are functions of commanded torque and measured engine speed.

Based On	Determines Commands for
Commanded torque	Injector pulse-width
Measured engine speed	Fuel injection timing
	VGT rack position
	EGR valve area percent

- The Estimator subsystem - Determines estimates based on these engine attributes.

Based On	Estimates
Measured engine speed	Air mass flow
Fuel injection timing	Torque
Cycle average intake manifold pressure	Exhaust gas temperature
and temperature	Exhaust gas back-pressure
Fuel injector pulse-width	EGR valve gas mass flow
Absolute ambient pressure	
EGR valve area percent	
VGT rack position	
VGT speed	

The figure illustrates the signal flow.

The figure uses these variables.

N	Engine speed
$M A P$	Cycle average intake manifold absolute pressure
$M A T$	Cycle average intake manifold gas absolute temperature
$E G R a p$,	EGR valve area percent and EGR valve area percent command,
$E G R_{c m d}$	respectively
$V G T_{p o s}$	VGT rack position
$N_{v g t}$	Corrected turbocharger speed
$R P_{c m d}$	VGT rack position command
$P w_{i n j}$	Fuel injector pulse-width
$M A I N S O I$	Start of injection timing for main fuel injection pulse

The Model-Based Calibration Toolbox ${ }^{\text {TM }}$ was used to develop the tables that are available with the Powertrain Blockset.

Controller

The controller governs the combustion process by commanding VGT rack position, EGR valve area percent, fuel injection timing, and injector pulse-width. Feedforward lookup tables, which are functions of measured engine speed and commanded torque, determine the control commands.

The controller commands the EGR valve area percent and VGT rack position. Changing the VGT rack position modifies the turbine flow characteristics. At low-requested torques, the rack position can reduce the exhaust back pressure, resulting in a low turbocharger speed and boost pressure. When the commanded fuel requires additional air mass flow, the rack position is set to close the turbocharger vanes, increasing the turbocharger speed and intake manifold boost pressure.

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed

$$
R P_{c m d}=f_{R P c m d}\left(\operatorname{Tr} q_{c m d}, N\right)
$$

where:

- $R P_{\text {cmd }}$ is VGT rack position command, in percent.
- $T r q_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed

$$
E G R_{c m d}=f_{E G R c m d}\left(T r q_{c m d}, N\right)
$$

where:

- $E G R_{\text {cmd }}$ is commanded EGR valve area percent, in percent.
- $\operatorname{Tr} q_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

To initiate combustion, a CI engine injects fuel directly into the combustion chamber. After the injection, the fuel spontaneously ignites, increasing cylinder pressure. The total mass of the injected fuel and main injection timing determines the torque production.

Assuming constant fuel rail pressure, the CI controller commands the injector pulse-width based on the total requested fuel mass:

$$
P w_{i n j}=\frac{F_{c m d, t o t}}{S_{i n j}}
$$

The equation uses these variables.

$P w_{i n j}$	Fuel injector pulse-width
$S_{\text {inj }}$	Fuel injector slope
$F_{c m d, t o t}$	Commanded total fuel mass per injection
$M A I N S O I$	Main start-of-injection timing
N	Engine speed

The commanded total fuel mass per injection table is a function of the torque command and engine speed

$$
F_{c m d, t o t}=f_{F c m d, t o t}\left(\operatorname{Tr}_{c m d}, N\right)
$$

where:

- $F_{c m d, t o t}=F$ is commanded total fuel mass per injection, in mg per cylinder.
- $\operatorname{Tr} q_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed

$$
M A I N S O I=f\left(F_{c m d, t o t}, N\right)
$$

where:

- MAINSOI is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- $F_{c m d, t o t}=F$ is commanded fuel mass, in mg per injection.
- N is engine speed, in rpm.

When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.

If	Idle Speed Controller
$\operatorname{Tr} q_{\text {cmd,input }}<\operatorname{Tr} q_{\text {idlecmd,enable }}$	Enabled
$\operatorname{Tr} q_{\text {idlecmd,enable }} \leq \operatorname{Tr} q_{\text {cmd,input }}$	Not enabled

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:

$$
C_{i d l e}(z)=K_{p, i d l e}+K_{i, i d l e} \frac{t_{s}}{z-1}
$$

The idle speed commanded torque must be less than the maximum commanded torque:
$0 \leq \operatorname{Tr}_{\text {idlecomd }} \leq \operatorname{Tr}_{q_{\text {idlecmd }, \text { max }}}$
Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ($\operatorname{Tr} q_{\text {cmd,input }}<T r q_{i d l e c m d, e n a b l e ~}$), the commanded engine torque is given by:
$\operatorname{Tr} q_{c m d}=\max \left(\operatorname{Tr} q_{c m d, i n p u t}, \operatorname{Tr} q_{\text {idlecmd }}\right)$.
The equations use these variables.

$\operatorname{Tr} q_{\text {cmd }}$	Commanded engine torque
$\operatorname{Tr} q_{\text {cmd,input }}$	Input commanded engine torque
$\operatorname{Tr} q_{\text {idlecmd,enable }}$	Threshold for enabling idle speed controller
$\operatorname{Tr} q_{\text {idlecmd }}$	Idle speed controller commanded torque
$\operatorname{Tr} q_{\text {idlecmd,max }}$	Maximum commanded torque
$N_{\text {idle }}$	Base idle speed
$K_{p, \text { idle }}$	Idle speed controller proportional gain
$K_{i, \text { idle }}$	Idle speed controller integral gain

Estimator

Using the CI Core Engine block, the CI Controller block estimates the air mass flow rate, EGR valve mass flow, exhaust back-pressure, engine torque, AFR, and exhaust temperature from sensor feedback. The Info port provides the estimated values, but block does not use them to determine the open-loop engine actuator commands.

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

To calculate the estimated exhaust gas recirculation (EGR) valve mass flow, the block calculates the EGR flow that would occur at standard temperature and pressure conditions, and then corrects the flow to actual temperature and pressure conditions. The block EGR calculation uses estimated exhaust back-pressure, estimated exhaust temperature, standard temperature, and standard pressure.

$$
\dot{m}_{\text {egr }, \text { est }}=\dot{m}_{\text {egr }, s t d} \frac{P_{\text {exh }, \text { est }}}{P_{s t d}} \sqrt{\frac{T_{\text {std }}}{T_{\text {exh }, \text { est }}}}
$$

- The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area

$$
\dot{m}_{\text {egr }, \text { std }}=f\left(\frac{M A P}{P_{\text {exh,est }}}, E G R a p\right)
$$

where:
-
$\dot{m}_{e g r, s t d}$ is the standard EGR valve mass flow, in g / s.

- $P_{\text {exh,est }}$ is the estimated exhaust back-pressure, in Pa.
- MAP is the cycle average intake manifold absolute pressure, in Pa.
- EGRap is the measured EGR valve area, in percent.

The equations use these variables.

$\dot{m}_{\text {egr }, \text { est }}$	Estimated EGR valve mass flow
$\dot{m}_{e g r, s t d}$	Standard EGR valve mass flow
$P_{s t d}$	Standard pressure
$T_{s t d}$	Standard temperature
$T_{\text {exh }, \text { est }}$	Estimated exhaust manifold gas temperature
$M A P$	Measured cycle average intake manifold absolute pressure
$P_{\text {exh,est }}$	Estimated exhaust back-pressure
$P_{A m b}$	Absolute ambient pressure

EGRap Measured EGR valve area percent

To estimate the EGR valve mass flow, the block requires an estimate of the exhaust backpressure. To estimate the exhaust back-pressure, the block uses the ambient pressure and the turbocharger pressure ratio.

$$
P_{\text {exh }, \text { est }}=P_{A m b} P r_{\text {turbo }}
$$

For the turbocharger pressure ration calculation, the block uses two lookup tables. The first lookup table determines the approximate turbocharger pressure ratio as a function of turbocharger mass flow and corrected turbocharger speed. Using a second lookup table, the block corrects the approximate turbocharger pressure ratio for VGT rack position.

$$
P r_{\text {turbo }}=f\left(\dot{m}_{\text {airstd }}, N_{v g t c o r r}\right) f\left(V G T_{\text {pos }}\right)
$$

where:

$$
N_{v g t c o r r}=\frac{N_{v g t}}{\sqrt{T_{\text {exh,est }}}}
$$

The equations use these variables.

$\dot{m}_{\text {egr,est }}$	Estimated EGR valve mass flow
$\dot{m}_{\text {egr,std }}$	Standard EGR valve mass flow
$\dot{m}_{\text {port,est }}$	Estimated intake port mass flow rate
$\dot{m}_{\text {airstd }}$	Standard air mass flow
$E G R a p$	Measured EGR valve area
$M A P$	Measured cycle average intake manifold absolute pressure
$M A T$	Measured cycle average intake manifold gas absolute temperature
$P_{s t d}$	Standard pressure
$T_{s t d}$	Standard temperature

$T_{\text {exh,est }}$	Estimated exhaust manifold gas temperature
$P r_{v g t c o r r}$	Turbocharger pressure ratio correction for VGT rack position
$P r_{\text {turbo }}$	Turbocharger pressure ratio
$P_{\text {exh,est }}$	Estimated exhaust back-pressure
$P_{\text {Amb }}$	Absolute ambient pressure
$N_{v g t c o r r}$	
$V G T_{\text {pos }}$	Corrected turbocharger speed
	Measured VGT rack position

The exhaust-back pressure calculation uses these lookup tables:

- The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected
turbocharger speed, $P r_{\text {turbo }}=f\left(\dot{m}_{\text {airstd }}, N_{\text {vgtcorr }}\right)$, where:
- $P r_{\text {turbo }}$ is the turbocharger pressure ratio, corrected for VGT speed.
- $\dot{m}_{\text {airstd }}$ is the standard air mass flow, in g / s.
- $N_{\text {vgtcorr }}$ is the corrected turbocharger speed, in rpm $/ \mathrm{K}^{\wedge}(1 / 2)$.

To calculate the standard air mass flow through the turbocharger, the block uses conservation of mass, the estimated intake port, and EGR mass flows (from the last estimated calculation). The calculation assumes negligible exhaust manifold filling dynamics.

$$
\dot{m}_{\text {airstd }}=\left(\dot{m}_{p o r t, e s t}-\dot{m}_{\text {egr,est }}\right) \frac{P_{s t d}}{M A P} \sqrt{\frac{M A T}{T_{s t d}}}
$$

- The variable geometry turbocharger pressure ratio correction is a function of the rack position, $P r_{\text {vgtcorr }}=f\left(V G T_{p o s}\right)$, where:
- $P r_{v g t o r r}$ is the turbocharger pressure ratio correction.
- $V G T_{\text {pos }}$ is the variable geometry turbocharger (VGT) rack position.

To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model	Description
"CI Engine Torque	The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal:
	- Start of injection (SOI) timing -
	- Exhaust back-pressure -
	Intake manifold gas pressure, temperature, and oxygen percentage
	To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
"CI Engine Simple Torque	For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass.
Model"	

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.

Torque Model	Description	Equations
Simple Torque Lookup	Exhaust temperature lookup table is a function of the injected fuel mass and engine speed.	$T_{\text {exh }}=f_{T e x h}(F, N)$

Torque Model	Description	Equations
Torque Structur e	The exhaust temperature is a product of these exhaust temperature efficiencies: - SOI timing - Intake manifold gas pressure - Intake manifold gas temperature - Intake manifold gas oxygen percentage - Fuel rail pressure - Optimal temperature To determine the efficiencies, the block uses lookup tables.	$\begin{aligned} & T_{\text {exh }}=S O I_{\text {exhteff }} M A P_{\text {exhteff }} M A T_{\text {exhteff }} \\ & S O I_{\text {exhteff }}=f_{S O I_{\text {exheeff }}}(\Delta S O I, N) \\ & M A P_{\text {exhteff }}=f_{M A P_{\text {exheff }}}\left(M A P_{\text {ratio }}, \lambda\right) \\ & M A T_{\text {exhteff }}=f_{M A T_{\text {ehheff }}}(\Delta M A T, N) \\ & O 2 p_{\text {exhteff }}=f_{O 2 p_{\text {exheff }}}(\Delta O 2 p, N) \\ & T \text { exh } h_{\text {opt }}=f_{\text {Texh }}(F, N) \end{aligned}$

The equations use these variables.

F	Compression stroke injected fuel mass
N	Engine speed
$T e x h$	Exhaust manifold gas temperature
$T_{e x h_{\text {opt }}}$	Optimal exhaust manifold gas temperature
$S O I_{\text {exhteff }}$	Main SOI exhaust temperature efficiency multiplier
$\Delta S O I$	Main SOI timing relative to optimal timing
$M A P_{\text {exheff }}$	Intake manifold gas pressure exhaust temperature efficiency multiplier
$M A P_{\text {ratio }}$	Intake manifold gas pressure ratio relative to optimal pressure ratio
λ	Intake manifold gas lambda
$M A T_{\text {exheff }}$	Intake manifold gas temperature exhaust temperature efficiency multiplier
$\Delta M A T$	Intake manifold gas temperature relative to optimal temperature
$O 2 P_{\text {exheff }}$	Intake manifold gas oxygen exhaust temperature efficiency multiplier
$\Delta O 2 P$	Intake gas oxygen percent relative to optimal
$F U E L P_{\text {exheff }}$	Fuel rail pressure exhaust temperature efficiency multiplier

$\triangle F U E L P \quad$ Fuel rail pressure relative to optimal

The measured engine speed and fuel injector pulse-width determine the commanded fuel mass flow rate:

$$
\dot{m}_{f u e l, c m d}=\frac{N S_{i n j} P w_{i n j} N_{c y l}}{\operatorname{Cps}\left(\frac{60 s}{\min }\right)\left(\frac{1000 m g}{g}\right)}
$$

The commanded total fuel mass flow and estimated port mass flow rates determine the estimated AFR:

$$
A F R_{e s t}=\frac{\dot{m}_{\text {port }, \text { est }}}{\dot{m}_{\text {fuel,cmd }}}
$$

The equations use these variables.

$P w_{i n j}$	Fuel injector pulse-width
$A F R_{\text {est }}$	Estimated air-fuel ratio
$\dot{m}_{\text {fuel,cmd }}$	Commanded fuel mass flow rate
$S_{i n j}$	Fuel injector slope
N	Engine speed
$N_{\text {cyl }}$	Number of engine cylinders
$C p s$	Crankshaft revolutions per power stroke, rev/stroke
$\dot{m}_{\text {port,est }}$	Total estimated engine air mass flow at intake ports

Ports

Input

TrqCmd - Commanded engine torque scalar

Commanded engine torque, $\operatorname{Tr} q_{\text {cmd,input }}$, in $\mathrm{N} \cdot \mathrm{m}$.

EngSpd - Measured engine speed

 scalarMeasured engine speed, N, in rpm.
Map - Measured intake manifold absolute pressure scalar

Measured intake manifold absolute pressure, MAP, in Pa.

Mat - Measured intake manifold absolute temperature scalar

Measured intake manifold absolute temperature, MAT, in K.

AmbPrs - Ambient pressure

scalar
Absolute ambient pressure, $P_{A m b}$, in Pa.

EgrVlvAreaPct - EGR valve area percent scalar

Measured EGR valve area percent, EGRap, in \%.
VgtPos - VGT speed
scalar
Measured VGT rack position, $V G T_{\text {pos }}$.
VgtSpd - VGT speed
scalar

Measured VGT speed, $N_{v g t}$, in rpm.

Ect - Engine cooling temperature

scalar

Engine cooling temperature, $T_{\text {coolant }}$, in K.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
Inj Pw	Fuel injector pulse-width	$P w_{i n j}$	ms
EgrVlvAreaPctCmd	EGR valve area percent command	$E G R_{\text {cmd }}$	\%
TurbRackPosCmd	VGT rack position command	$R P_{\text {cmd }}$	N/A
TrqCmd	Engine torque	Tr $q_{\text {cmd }}$	$\mathrm{N} \cdot \mathrm{m}$
FuelMassTotCmd	Commanded total fuel mass per injection	$F_{\text {cmd,tot }}$	mg
FuelMainSoi	Main start-of-injection timing	MAINSOI	degATDC
FuelMassFlwCmd	Commanded fuel mass flow rate	$\dot{m}_{\text {fuel,cmd }}$	kg/s
EstIntkPortFlw	Estimated port mass flow rate	$\dot{m}_{\text {port,est }}$	kg/s
EstEngTrq	Estimated engine torque	Trq est	$\mathrm{N} \cdot \mathrm{m}$
EstExhManGasTemp	Estimated exhaust manifold gas temperature	$T_{\text {exh,est }}$	K
EstExhPrs	Estimated exhaust backpressure	Pex	Pa
EstEGRFlow	EstEGRFlow	EstEGRFlow	EstEGRFlow
EstAfr	Estimated air-fuel ratio	$A F R_{\text {est }}$	N/A

InjPw - Fuel injector pulse-width scalar

Fuel injector pulse-width, $P w_{i n j}$, in ms.

FuelMainSoi - Fuel main injecting timing scalar

Main start-of-injection timing, MAINSOI, in degrees crank angle after top dead center (degATDC).

TurbRackPosCmd - Rack position scalar

VGT rack position command, $R P_{c m d}$.

EgrVlvAreaPctCmd - Intake cam phaser angle command scalar

EGR valve area percent command, $E G R_{\text {cmd }}$.

Parameters

Controls

Air - EGR
EGR valve area percent, f_egrcmd - Lookup table array

The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed

$$
E G R_{c m d}=f_{E G R c m d}\left(T r q_{c m d}, N\right)
$$

where:

- $E G R_{\text {cmd }}$ is commanded EGR valve area percent, in percent.
- $T r q_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Commanded torque breakpoints, f_egr_tq_bpt - Breakpoints

 vectorCommanded torque breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.

Speed breakpoints, f_egr_n_bpt - Breakpoints vector

Speed breakpoints, in rpm.
Air - VGR
VGT rack position table, f_rpcmd - Lookup table array

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed

$$
R P_{c m d}=f_{R P c m d}\left(\operatorname{Tr} q_{c m d}, N\right)
$$

where:

- $R P_{c m d}$ is VGT rack position command, in percent.
- $T r q_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Commanded torque breakpoints, f_rp_tq_bpt - Breakpoints vector

Breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.
Speed breakpoints, f_rp_n_bpt - Breakpoints
vector
Breakpoints, in rpm.

Fuel

Injector slope, Sinj - Slope scalar

Fuel injector slope, $S_{i n j}$, in $\mathrm{mg} / \mathrm{ms}$.

Stoichiometric air-fuel ratio, afr_stoich - Ratio scalar

Stoichiometric air-fuel ratio, $A F R_{\text {stoich }}$.

```
Fuel lower heating value, fuel_lhv - Heat
```


scalar

Fuel lower heating value, in J/kg.

Fuel mass per injection table, f_fcmd_tot - Lookup table array

The commanded total fuel mass per injection table is a function of the torque command and engine speed

$$
F_{c m d, t o t}=f_{F c m d, t o t}\left(T r q_{c m d}, N\right)
$$

where:

- $F_{c m d, t o t}=F$ is commanded total fuel mass per injection, in mg per cylinder.
- $T r q_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Fuel main injection timing table, f_main_soi - Lookup table array

The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed

$$
M A I N S O I=f\left(F_{c m d, t o t}, N\right)
$$

where:

- MAINSOI is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- $F_{c m d, t o t}=F$ is commanded fuel mass, in mg per injection.
- N is engine speed, in rpm.

Fuel main injection timing fuel breakpoints, f_main_soi_f_bpt Breakpoints
vector
Fuel main injection timing fuel breakpoints, in mg per injection.

Fuel main injection timing speed breakpoints, f_main_soi_n_bpt Breakpoints

vector
Fuel main injection timing speed breakpoints, in rpm.
Commanded torque breakpoints, f_f_tot_tq_bpt - Breakpoints vector

Commanded torque breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.

Speed breakpoints, f_f_tot_n_bpt - Breakpoints

vector

Speed breakpoints, in rpm.

Idle Speed

```
Base idle speed, N_idle - Speed
scalar
```

Base idle speed, $N_{\text {idle }}$, in rpm.

Enable torque command limit, Trq_idlecmd_enable - Torque scalar

Torque to enable the idle speed controller, $\operatorname{Tr}_{\text {idlecmd,enable }}$, in $\mathrm{N} \cdot \mathrm{m}$.
Maximum torque command, Trq_idlecmd_max - Torque scalar

Maximum idle controller commanded torque, $\operatorname{Tr}_{\text {idlecmd,max }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Proportional gain, Kp_idle - PI Controller scalar

Proportional gain for idle speed control, $K_{p, i d l e}$, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rpm}$.
Integral gain, Ki_idle - PI Controller
scalar
Integral gain for idle speed control, $K_{i, i d l e}$, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rpm} \cdot \mathrm{s})$.

Estimation

Air

Number of cylinders, NCyl - Engine cylinders scalar

Number of engine cylinders, $N_{c y l}$.
Crank revolutions per power stroke, Cps - Revolutions per stroke scalar

Crankshaft revolutions per power stroke, $C p s$, in rev/stroke.
Total displaced volume, Vd - Volume scalar

Displaced volume, V_{d}, in $\mathrm{m}^{\wedge} 3$.
Ideal gas constant air, Rair - Constant scalar

Ideal gas constant, $R_{\text {air }}$, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

Air standard pressure, Pstd - Pressure scalar

Standard air pressure, $P_{s t d}$, in Pa.
Air standard temperature, Tstd - Temperature scalar

Standard air temperature, $T_{s t d}$, in K.

Speed density volumetric efficiency, f_nv - Lookup table array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed

$$
\eta_{v}=f_{\eta_{v}}(M A P, N)
$$

where:
η_{v} is engine volumetric efficiency, dimensionless.

- MAP is intake manifold absolute pressure, in KPa.
- N is engine speed, in rpm.

Speed density intake manifold pressure breakpoints, f_nv_prs_bpt Breakpoints

vector

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Speed density engine speed breakpoints, f_nv_n_bpt - Breakpoints

 vectorEngine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

EGR valve standard flow calibration, f_egr_stdflow - Lookup table

 arrayThe standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area

$$
\dot{m}_{\text {egr }, \text { std }}=f\left(\frac{M A P}{P_{\text {exh,est }}}, E G R a p\right)
$$

where:
$\dot{m}_{e g r, s t d}$ is the standard EGR valve mass flow, in g / s.

- $P_{\text {exh,est }}$ is the estimated exhaust back-pressure, in Pa.
- MAP is the cycle average intake manifold absolute pressure, in Pa.
- EGRap is the measured EGR valve area, in percent.

EGR valve standard flow pressure ratio breakpoints, f_egr_stdflow_pr_bpt - Breakpoints
 vector

EGR valve standard flow pressure ratio breakpoints, dimensionless.

```
EGR valve standard flow area percent breakpoints,
f_egr_stdflow_egrap_bpt - Breakpoints
vector
```

EGR valve standard flow area percent breakpoints, in percent.

```
Turbocharger pressure ratio, f_turbo_pr - Lookup table
array
```

The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected
turbocharger speed, $\operatorname{Pr}_{\text {turbo }}=f\left(\dot{m}_{\text {airstd }}, N_{\text {vgtcorr }}\right)$, where:

- $P r_{\text {turbo }}$ is the turbocharger pressure ratio, corrected for VGT speed.
-

$\dot{m}_{\text {airstd }}$ is the standard air mass flow, in g / s.

- $N_{v g t c o r r}$ is the corrected turbocharger speed, in $\mathrm{rpm} / \mathrm{K}^{\wedge}(1 / 2)$.

[^1]Turbocharger pressure ratio standard flow breakpoints, in g / s.

Turbocharger pressure ratio corrected speed breakpoints, f_turbo_pr_corrspd_bpt - Breakpoints
 vector

Turbocharger pressure ratio corrected speed breakpoints, in $\mathrm{rpm} / \mathrm{K}^{\wedge}(1 / 2)$.

Turbocharger pressure ratio VGT position correction, f_turbo_pr_vgtposcorr - Lookup table
 array

The variable geometry turbocharger pressure ratio correction is a function of the rack position, $P r_{\text {vgtcorr }}=f\left(V G T_{\text {pos }}\right)$, where:

- $P r_{\text {vgtoorr }}$ is the turbocharger pressure ratio correction.
- $V G T_{\text {pos }}$ is the variable geometry turbocharger (VGT) rack position.

Turbocharger pressure ratio VGT position correction breakpoints, f_turbo_pr_vgtposcorr_bpt - Breakpoints
vector
Turbocharger pressure ratio VGT position correction breakpoints, dimensionless.
Torque - Simple Torque Lookup
Torque table, f_tq_nf - Lookup table
array

For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, $T_{b r a k e}=f_{T n f}(F, N)$, where:

- $T q=T_{\text {brake }}$ is engine brake torque after accounting for engine mechanical and pumping friction effects, in $\mathrm{N} \cdot \mathrm{m}$.
- F is injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt Breakpoints

vector

Torque table fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.
Torque table speed breakpoints, f_tq_nf_n_bpt - Breakpoints vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Torque - Torque Structure

Fuel mass per injection breakpoints, f_tqs_f_bpt - Breakpoints vector

Fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Engine speed breakpoints, f_tqs_n_bpt - Breakpoints vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal main start of injection timing, f_tqs_mainsoi - Optimal MAINSOI

array

The optimal main start of injection (SOI) timing lookup table, $f_{\text {SOIC }}$, is a function of the engine speed and injected fuel mass, SOI $_{c}=f_{\text {SOIC }}(F, N)$, where:

- $S O I_{c}$ is optimal SOI timing, in degATDC.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal intake manifold gas pressure, f_tqs_map - Optimal intake MAP array

The optimal intake manifold gas pressure lookup table, $f_{\text {MAP }}$, is a function of the engine speed and injected fuel mass, MAP $=f_{\text {MAP }}(F, N)$, where:

- MAP is optimal intake manifold gas pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal exhaust manifold gas pressure, f_tqs_emap - Optimal exhaust MAP

array
The optimal exhaust manifold gas pressure lookup table, $f_{\text {EMAP }}$, is a function of the engine speed and injected fuel mass, $E M A P=f_{E M A P}(F, N)$, where:

- EMAP is optimal exhaust manifold gas pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal intake manifold gas temperature, f_tqs_mat - Optimal intake MAT

array
The optimal intake manifold gas temperature lookup table, $f_{\text {MAT }}$, is a function of the engine speed and injected fuel mass, $M A T=f_{M A T}(F, N)$, where:

- MAT is optimal intake manifold gas temperature, in K.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal intake gas oxygen percent, f_tqs_o2pct - Optimal intake gas oxygen

array
The optimal intake gas oxygen percent lookup table, f_{02}, is a function of the engine speed and injected fuel mass, $O 2 P C T=f_{O 2}(F, N)$, where:

- O2PCT is optimal intake gas oxygen, in percent.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal fuel rail pressure, f_tqs_fuelpress - Optimal fuel rail pressure array

The optimal fuel rail pressure lookup table, $f_{\text {fuelp }}$, is a function of the engine speed and injected fuel mass, $F U E L P=f_{\text {fuelp }}(F, N)$, where:

- FUELP is optimal fuel rail pressure, in MPa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal gross indicated mean effective pressure, f_tqs_imepg Optimal mean effective pressure array

The optimal gross indicated mean effective pressure lookup table, $f_{\text {imepg }}$, is a function of the engine speed and injected fuel mass, $I M E P G=f_{\text {imepg }}(F, N)$, where:

- IMEPG is optimal gross indicated mean effective pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal friction mean effective pressure, f_tqs_fmep - Optimal friction mean effective pressure

array
The optimal friction mean effective pressure lookup table, $f_{\text {fmep }}$, is a function of the engine speed and injected fuel mass, $F M E P=f_{\text {fmep }}(F, N)$, where:

- FMEP is optimal friction mean effective pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal pumping mean effective pressure, f_tqs_pmep - Optimal pumping mean effective pressure
 array

The optimal pumping mean effective pressure lookup table, $f_{\text {pmep }}$, is a function of the engine speed and injected fuel mass, $P M E P=f_{\text {pmep }}(F, N)$, where:

- $P M E P$ is optimal pumping mean effective pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Friction multiplier as a function of temperature, f_tqs_fric_temp_mod - Friction multiplier array

Friction multiplier as a function of temperature, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt Breakpoints

vector
Friction multiplier temperature breakpoints, in K.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Main start of injection timing efficiency multiplier, f_tqs_mainsoi_eff - MAINSOI efficiency multiplier array

The main start of injection (SOI) timing efficiency multiplier lookup table, $f_{\text {SOIeff }}$, is a function of the engine speed and main SOI timing relative to optimal timing, $S O I_{e f f}=$ $f_{\text {SOIeff }}(\Delta S O I, N)$, where:

- $S O I_{e f f}$ is main SOI timing efficiency multiplier, dimensionless.
- \triangle SOI is main SOI timing relative to optimal timing, in degBTDC.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

```
Main start of injection timing relative to optimal timing
breakpoints, f_tqs_mainsoi_delta_bpt - Breakpoints
vector
```

Main start of injection timing relative to optimal timing breakpoints, in degBTDC.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff Intake pressure efficiency multiplier
 array

The intake manifold gas pressure efficiency multiplier lookup table, $f_{\text {MAPeff, }}$, is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $M A P_{\text {eff }}=f_{\text {MAPeff }}\left(M A P_{\text {ratio }}, \lambda\right)$, where:

- $M A P_{\text {eff }}$ is intake manifold gas pressure efficiency multiplier, dimensionless.
- $M A P_{\text {ratio }}$ is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, f_tqs_map_ratio_bpt - Breakpoints
vector
Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt - Breakpoints vector

Intake manifold gas lambda breakpoints, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff - Intake temperature efficiency multiplier
 array

The intake manifold gas temperature efficiency multiplier lookup table, $f_{\text {MATeff }}$, is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $M A T_{\text {eff }}=f_{\text {MATeff }}(\triangle M A T, N)$, where:

- $M A T_{\text {eff }}$ is intake manifold gas temperature efficiency multiplier, dimensionless.
- $\triangle M A T$ is intake manifold gas temperature relative to optimal temperature, in K .
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas temperature relative to optimal gas temperature breakpoints, f_tqs_mat_delta_bpt - Breakpoints

vector

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K .

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas oxygen efficiency multiplier, f_tqs_o2pct_eff Intake oxygen efficiency multiplier

array
The intake manifold gas oxygen efficiency multiplier lookup table, $f_{\text {O2Peff, }}$, is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O 2 P_{\text {eff }}=$ $f_{\text {O2Peff }}(\triangle O 2 P, N)$, where:

- $O 2 P_{\text {eff }}$ is intake manifold gas oxygen efficiency multiplier, dimensionless.
- $\triangle O 2 P$ is intake gas oxygen percent relative to optimal, in percent.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake gas oxygen percent relative to optimal breakpoints, f_tqs_o2pct_delta_bpt - Breakpoints vector

Intake gas oxygen percent relative to optimal breakpoints, in percent.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

```
Fuel rail pressure efficiency multiplier, f_tqs_fuelpress_eff - Efficiency multiplier array
```

The fuel rail pressure efficiency multiplier lookup table, $f_{\text {FUELPeff }}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $F U E L P_{\text {eff }}=$ $f_{\text {FUELPeff }}(\triangle F U E L P, N)$, where:

- $F U E L P_{e f f}$ is fuel rail pressure efficiency multiplier, dimensionless.
- $\triangle F U E L P$ is fuel rail pressure relative to optimal, in MPa.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Fuel rail pressure relative to optimal breakpoints, f_tqs_fuelpress_delta_bpt - Breakpoints
 vector

Fuel rail pressure relative to optimal breakpoints, in MPa.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Fuel mass injection type identifier, f_tqs_f_inj_type - Type identifier vector

Fuel mass injection type identifier, dimensionless.
In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass injection type identifier parameter.

Type of Injection	Parameter Value
Pilot	0
Main	1
Post	2
Passed	3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit parameter to specify the threshold.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Indicated mean effective pressure post inject correction, f_tqs_imep_post_corr - Post inject correction array

The indicated mean effective pressure post inject correction lookup table, $f_{\text {IMEPpost }}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $\Delta I M E P_{\text {post }}=f_{\text {IMEPpost }}\left(\Delta S O I_{\text {post }}, F_{\text {post }}\right)$, where:

- $\triangle I M E P_{\text {post }}$ is indicated mean effective pressure post inject correction, in Pa.
- $\Delta S O I_{\text {post }}$ is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- $F_{\text {post }}$ is indicated mean effective pressure post inject mass sum, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Indicated mean effective pressure post inject mass sum breakpoints, f_tqs_f_post_sum_bpt - Breakpoints vector

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, f_tqs_soi_post_cent_bpt - Breakpoints vector

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit - Maximum SOI angle for burned fuel vector

Maximum start of injection angle for burned fuel, in degATDC.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Exhaust

Exhaust gas specific heat at constant pressure, cp_exh - Specific heat

 scalarExhaust gas-specific heat, $C p_{\text {exh }}$, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

Exhaust Temperature - Simple Torque Lookup

Exhaust temperature table, f_t_exh - Lookup table

 arrayThe lookup table for the exhaust temperature is a function of injected fuel mass and engine speed

$$
T_{e x h}=f_{\text {Texh }}(F, N)
$$

where:
$T_{\text {exh }}$ is exhaust temperature, in K.

- F is injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Fuel mass per injection breakpoints, f_t_exh_f_bpt - Breakpoints

 arrayEngine load breakpoints used for exhaust temperature lookup table, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Speed breakpoints, f_t_exh_n_bpt - Breakpoints array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Exhaust Temperature - Torque Structure

Optimal exhaust manifold gas temperature, f_tqs_exht - Optimal exhaust manifold gas temperature
 array

The optimal exhaust manifold gas temperature lookup table, $f_{\text {Texh }}$, is a function of the engine speed engine speed and injected fuel mass, $T e x h_{o p t}=f_{\text {Texh }}(F, N)$, where:

- $T_{e x h}^{\text {opt }}$ is optimal exhaust manifold gas temperature, in K.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff - Main SOI timing efficiency multiplier

 arrayThe main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, $f_{\text {SOIexhteff, }}$ is a function of the engine speed engine speed and injected fuel mass, $S O I_{\text {exhteff }}=f_{\text {SOIexhteff }}(\triangle S O I, N)$, where:

- $S O I_{\text {exhteff }}$ is main SOI exhaust temperature efficiency multiplier, dimensionless.
- \triangle SOI is main SOI timing relative to optimal timing, in degBTDC.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas pressure exhaust temperature efficiency multiplier, f_tqs_exht_map_eff - Intake manifold efficiency multiplier array

The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, $f_{\text {MAPexheff, }}$ is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $M A P_{\text {exheff }}=f_{\text {MAPexheff }}\left(M A P_{\text {ratio, }} \lambda\right)$, where:

- $M A P_{\text {exheff }}$ is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- $M A P_{\text {ratio }}$ is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas temperature exhaust temperature efficiency multiplier, f_tqs_exht_mat_eff - Intake manifold efficiency multiplier array

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, $f_{\text {MATexheff }}$, is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $M A T_{\text {exheff }}=f_{\text {MATexheff }}(\triangle M A T, N)$, where:

- $M A T_{\text {exheff }}$ is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- $\triangle M A T$ is intake manifold gas temperature relative to optimal temperature, in K .
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas oxygen exhaust temperature efficiency multiplier, f_tqs_exht_o2pct_eff - Intake manifold efficiency multiplier array

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, $f_{\text {O2Pexheff, }}$ is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O 2 P_{\text {exheff }}=f_{\text {O2Pexheff }}(\Delta O 2 P, N)$, where:

- $O 2 P_{\text {exheff }}$ is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- $\triangle O 2 P$ is intake gas oxygen percent relative to optimal, in percent.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Fuel rail pressure exhaust temperature efficiency multiplier, f_tqs_exht_fuelpress_eff - Fuel rail pressure exhaust temperature efficiency multiplier

array
The fuel rail pressure efficiency exhaust temperature multiplier lookup table, $f_{\text {FUELPexheff, }}$ is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $F U E L P_{\text {exheff }}=f_{F U E L P e x h e f f}(\triangle F U E L P, N)$, where:

- $F U E L P_{\text {exheff }}$ is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- $\triangle F U E L P$ is fuel rail pressure relative to optimal, in MPa.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Post injection torque energy conservation multiplier, f_tqs_exht_post_inj_tq_energy_mult - Post injection torque energy conservation multiplier

scalar

Post injection torque energy conservation multiplier, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

See Also

CI Core Engine | Mapped CI Engine

Topics

"Engine Calibration Maps"
"Generate Mapped CI Engine from a Spreadsheet"

Introduced in R2017a

Cl Core Engine

Compression-ignition engine from intake to exhaust port
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Core Engine

Description

The CI Core Engine block implements a compression-ignition (CI) engine from intake to the exhaust port. You can use the block for hardware-in-the-loop (HIL) engine control design or vehicle-level fuel economy and performance simulations.

The CI Core Engine block calculates:

- Brake torque
- Exhaust temperature
- Air-fuel ratio (AFR)
- Fuel rail pressure
- Engine-out (EO) exhaust emissions:
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$
- Particulate matter (PM)

Air Mass Flow

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density
equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

Brake Torque

To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model	Description
"CI Engine Torque	The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal:
	- Start of injection (SOI) timing - Exhaust back-pressure
	- Burned fuel mass
	Intake manifold gas pressure, temperature, and oxygen - Fuel rail pressure
	To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
"CI Engine Simple Torque	For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass.
Model"	

Fuel Flow

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass injection type identifier parameter.

Type of Injection	Parameter Value
Pilot	0
Main	1
Post	2

Type of Injection	Parameter Value
Passed	3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit parameter to specify the threshold.

To calculate the engine fuel mass flow, the CI Core Engine block uses fuel mass flow delivered by the injectors and the engine airflow.

$$
\dot{m}_{\text {fuel }}=\frac{N \cdot N_{c y l}}{\operatorname{Cps}\left(\frac{60 s}{\min }\right)\left(\frac{1000 m g}{g}\right)} \sum m_{f u e l, i n j}
$$

The equation uses these variables.
Engine fuel mass flow, g/s
$\dot{m}_{\text {fuel }}$
$m_{\text {fuel, inj }}$ Fuel mass per injection
Cps Crankshaft revolutions per power stroke, rev/stroke
Number of engine cylinders
$N_{c y l}$
$N \quad$ Engine speed, rpm

Air-Fuel Ratio

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.

$$
A F R=\frac{\dot{m}_{\text {air }}}{\dot{m}_{\text {fuel }}}
$$

The CI Core Engine uses this equation to calculate the relative AFR.

$$
\lambda=\frac{A F R}{A F R_{s}}
$$

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.

$$
E G R_{p c t}=100 \frac{\dot{\mathrm{~m}}_{\text {intk }, b}}{\dot{\mathrm{~m}}_{\text {intk }}}=100 y_{\text {intk,b}}
$$

The equations use these variables.
$A F R \quad$ Air-fuel ratio
$A F R_{s} \quad$ Stoichiometric air-fuel ratio
Engine air mass flow
$\dot{m}_{\text {int }}$
Fuel mass flow
$\dot{m}_{\text {fuel }}$
$\lambda \quad$ Relative AFR
$y_{\text {intk,b }} \quad$ Intake burned mass fraction
$E G R_{p c t}$ EGR percent
Recirculated burned gas mass flow rate
$\dot{m}_{\text {intk, }}$

Exhaust Temperature

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.

Torque Model	Description	Equations
Simple Torque Lookup	Exhaust temperature lookup table is a function of the injected fuel mass and engine speed.	$T_{\text {exh }}=f_{T e x h}(F, N)$

Torque Model	Description	Equations
Torque Structur e	The exhaust temperature is a product of these exhaust temperature efficiencies: - SOI timing - Intake manifold gas pressure - Intake manifold gas temperature - Intake manifold gas oxygen percentage - Fuel rail pressure - Optimal temperature To determine the efficiencies, the block uses lookup tables.	$\begin{aligned} & T_{\text {exh }}=S O I_{\text {exhteff }} M A P_{\text {exhteff }} M A T_{\text {exhteff }} \\ & S O I_{\text {exhteff }}=f_{S O I_{\text {exheeff }}}(\Delta S O I, N) \\ & M A P_{\text {exhteff }}=f_{M A P_{\text {exheff }}}\left(M A P_{\text {ratio }}, \lambda\right) \\ & M A T_{\text {exhteff }}=f_{M A T_{\text {ehheff }}}(\Delta M A T, N) \\ & O 2 p_{\text {exhteff }}=f_{O 2 p_{\text {exheff }}}(\Delta O 2 p, N) \\ & T \text { exh } h_{\text {opt }}=f_{\text {Texh }}(F, N) \end{aligned}$

The equations use these variables.

F	Compression stroke injected fuel mass
N	Engine speed
$T e x h$	Exhaust manifold gas temperature
$T_{e x h_{\text {opt }}}$	Optimal exhaust manifold gas temperature
$S O I_{\text {exhteff }}$	Main SOI exhaust temperature efficiency multiplier
$\Delta S O I$	Main SOI timing relative to optimal timing
$M A P_{\text {exheff }}$	Intake manifold gas pressure exhaust temperature efficiency multiplier
$M A P_{\text {ratio }}$	Intake manifold gas pressure ratio relative to optimal pressure ratio
λ	Intake manifold gas lambda
$M A T_{\text {exheff }}$	Intake manifold gas temperature exhaust temperature efficiency multiplier
$\Delta M A T$	Intake manifold gas temperature relative to optimal temperature
$O 2 P_{\text {exheff }}$	Intake manifold gas oxygen exhaust temperature efficiency multiplier
$\Delta O 2 P$	Intake gas oxygen percent relative to optimal
$F U E L P_{\text {exheff }}$	Fuel rail pressure exhaust temperature efficiency multiplier

$\triangle F U E L P \quad$ Fuel rail pressure relative to optimal

EO Exhaust Emissions

The block calculates these engine-out (EO) exhaust emissions:

- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$
- Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.

$$
h_{e x h}=C p_{e x h} T_{e x h}
$$

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.

$$
\dot{m}_{e x h}=\dot{m}_{\text {intake }}+\dot{m}_{\text {fuel }}
$$

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.

$$
\begin{aligned}
& y_{e x h, i}=f_{i_{-} f r a c}\left(T_{b r a k e}, N\right) \\
& \dot{m}_{\text {exh }, i}=\dot{m}_{\text {exh }} y_{\text {exh }, i}
\end{aligned}
$$

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.

$$
y_{\text {exh,air }}=\max \left[y_{\text {in,air }}-\frac{\dot{m}_{\text {fuel }}+y_{\text {in,fuel }} \dot{m}_{\text {intake }}}{\dot{m}_{\text {fuel }}+\dot{m}_{\text {intake }}} A F R_{s}\right]
$$

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.

$$
y_{\text {exh }, b}=\max \left[\left(1-y_{\text {exh,air }}-y_{\text {exh }, H C}\right), 0\right]
$$

The equations use these variables.
Engine exhaust temperature
$h_{\text {exh }}$
Exhaust manifold inlet-specific enthalpy
Exhaust gas specific heat
$C p_{\text {exh }}$
Intake port air mass flow rate
$\dot{m}_{\text {intk }}$
Fuel mass flow rate
$\dot{m}_{f u e l}$
Exhaust mass flow rate
$\dot{m}_{e x h}$
Intake fuel mass fraction
$y_{\text {in, fuel }}$
$y_{\text {exh,i }} \quad$ Exhaust mass fraction for $\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}$, air, burned gas, and PM
Exhaust mass flow rate for $\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}$, air, burned gas, and PM
$\dot{m}_{e x h, i}$
$T_{\text {brake }} \quad$ Engine brake torque
$N \quad$ Engine speed
$y_{\text {exh,air }}$ Exhaust air mass fraction
$y_{\text {exh,b }} \quad$ Exhaust air burned mass fraction

Ports

Input

FuelMass - Fuel injector pulse-width

vector
Fuel mass per injection, $m_{\text {fuel, inj }}$, in mg per injection.

Soi - Start of fuel injection timing

vector

Fuel injection timing, SOI, in degrees crank angle after top dead center (degATDC). First vector value, Soi(1), is main injection timing.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

EngSpd - Engine speed

scalar
Engine speed, N, in rpm.

FuelPrs - Fuel rail pressure

scalar

Fuel rail pressure, FUELP, in MPa.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Ect - Engine cooling temperature scalar

Engine cooling temperature, $T_{\text {coolant }}$, in K.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intk - Intake port pressure, temperature, enthalpy, mass fractions

two-way connector port
Bus containing the upstream:

- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Intake port mass fractions, dimensionless. Exhaust gas recirculation (EGR) mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Exh - Exhaust port pressure, temperature, enthalpy, mass fractions

two-way connector port
Bus containing the exhaust:

- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Variable	Units
IntkGasMassFlw	Air mass flow entering and exiting the engine from the intake ports to the exhaust ports.	$\dot{m}_{\text {intk }}$	kg / s
IntkAirMassFlw	Total engine air mass flow at intake ports, including EGR flow.	$\dot{m}_{\text {port }}$	kg / s
NrmlzdAirChrg	Engine load (that is, normalized cylinder air mass) at arbitrary cam phaser angles, corrected for final steady-state cam phase angles	L	$\mathrm{~N} / \mathrm{A}$
Afr	Air fuel ratio at engine exhaust port.	$A F R$	$\mathrm{~N} / \mathrm{A}$
FuelMassFlw	Fuel flow into engine	$\dot{m}_{\text {fuel }}$	kg / s
ExhManGasTemp	Exhaust gas temperature at exhaust manifold inlet	$T_{\text {exh }}$	K
EngTrq	Engine brake torque	$T_{\text {brake }}$	$\mathrm{N} \cdot \mathrm{m}$

Signal	Description	Variable	Units
EngSpd	Engine speed	N	rpm
CrkAng	Engine crankshaft absolute angle	$\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta$ where $C p s$ is crankshaft revolutions per power stroke	degrees crank angle
EgrPct	EGR percent	$E G R_{p c t}$	N/A
EoAir	EO air mass flow rate	$\dot{m}_{e x h}$	kg/s
EoBrndGas	EO burned gas mass flow rate	$y_{\text {exh, } b}$	kg/s
EoHC	EO hydrocarbon emission mass flow rate	$y_{\text {exh,HC }}$	kg/s
EoC0	EO carbon monoxide emission mass flow rate	$y_{\text {exh,co }}$	kg/s
EoN0x	EO nitric oxide and nitrogen dioxide emissions mass flow rate	$y_{\text {exh,NOx }}$	kg/s
EoC02	EO carbon dioxide emission mass flow rate	$y_{\text {exh,CO2 }}$	kg/s
EoPm	EO particulate matter emission mass flow rate	$y_{\text {exh, } P \text { M }}$	kg/s

EngTrq - Engine brake torque

scalar

Engine brake torque, $T_{b r a k e}$, in $\mathrm{N} \cdot \mathrm{m}$.
Intk - Intake port mass flow rate, heat flow rate, temperature, mass fraction two-way connector port

Bus containing:

- MassFlwRate - Intake port mass flow rate, in kg/s
- HeatFlwRate - Intake port heat flow rate, in J/s
- ExhManGasTemp - Intake port temperature, in K
- MassFrac - Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Exh - Exhaust port mass flow rate, heat flow rate, temperature, mass fraction

 two-way connector portBus containing:

- MassFlwRate - Exhaust port mass flow rate, in kg/s
- HeatFlwRate - Exhaust heat flow rate, in J/s
- ExhManGasTemp - Exhaust port temperature, in K
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Parameters

Block Options

Torque model - Select torque model
 Torque Structure (default)|Simple Torque Lookup

To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model	Description
"CI Engine Torque	The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal:
	- Start of injection (SOI) timing - Exhaust back-pressure
	- Burned fuel mass
	Intake manifold gas pressure, temperature, and oxygen - Fercentage
	To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
"CI Engine Simple Torque	For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass.
Model"	

Air

Number of cylinders, NCyl - Engine cylinders

scalar

Number of engine cylinders, $N_{c y l}$.

Crank revolutions per power stroke, Cps - Revolutions per stroke scalar

Crankshaft revolutions per power stroke, $C p s$, in rev/stroke.

```
Total displaced volume, Vd - Volume
scalar
```

Displaced volume, V_{d}, in $\mathrm{m}^{\wedge} 3$.

```
Ideal gas constant air, Rair - Constant
scalar
```

Ideal gas constant, $R_{\text {air }}$, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

Air standard pressure, Pstd - Pressure

scalar

Standard air pressure, $P_{s t d}$, in Pa.

Speed-density volumetric efficiency, f_nv - Lookup table array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed

$$
\eta_{v}=f_{\eta_{v}}(M A P, N)
$$

where:
η_{v} is engine volumetric efficiency, dimensionless.

- MAP is intake manifold absolute pressure, in KPa.
- N is engine speed, in rpm.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt Breakpoints

array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Speed-density engine speed breakpoints, f_nv_n_bpt - Breakpoints array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

Torque

Torque - Simple Torque Lookup

Torque table, f_tq_nf - Lookup table
array
For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, $T_{b r a k e}=f_{T n f}(F, N)$, where:

- $T q=T_{\text {brake }}$ is engine brake torque after accounting for engine mechanical and pumping friction effects, in $\mathrm{N} \cdot \mathrm{m}$.
- F is injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt Breakpoints
 vector

Torque table fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Torque table speed breakpoints, f_tq_nf_n_bpt - Breakpoints vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Torque - Torque Structure

Fuel mass per injection breakpoints, f_tqs_f_bpt - Breakpoints vector

Fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Engine speed breakpoints, f_tqs_n_bpt - Breakpoints vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

```
Optimal main start of injection timing, f_tqs_mainsoi - Optimal MAINSOI
```

array
The optimal main start of injection (SOI) timing lookup table, $f_{\text {SOIC }}$, is a function of the engine speed and injected fuel mass, $S O I_{c}=f_{\text {SOIC }}(F, N)$, where:

- $S O I_{c}$ is optimal SOI timing, in degATDC.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal intake manifold gas pressure, f_tqs_map - Optimal intake MAP array

The optimal intake manifold gas pressure lookup table, $f_{\text {MAP }}$, is a function of the engine speed and injected fuel mass, $M A P=f_{\text {MAP }}(F, N)$, where:

- MAP is optimal intake manifold gas pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal exhaust manifold gas pressure, f_tqs_emap - Optimal exhaust MAP

array

The optimal exhaust manifold gas pressure lookup table, $f_{\text {EMAP }}$, is a function of the engine speed and injected fuel mass, $E M A P=f_{\text {EMAP }}(F, N)$, where:

- EMAP is optimal exhaust manifold gas pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal intake manifold gas temperature, f_tqs_mat - Optimal intake MAT

array

The optimal intake manifold gas temperature lookup table, $f_{\text {MAT }}$, is a function of the engine speed and injected fuel mass, $M A T=f_{M A T}(F, N)$, where:

- MAT is optimal intake manifold gas temperature, in K.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal intake gas oxygen percent, f_tqs_o2pct - Optimal intake gas oxygen
 array

The optimal intake gas oxygen percent lookup table, $f_{O 2}$, is a function of the engine speed and injected fuel mass, $O 2 P C T=f_{O 2}(F, N)$, where:

- O2PCT is optimal intake gas oxygen, in percent.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal fuel rail pressure, f_tqs_fuelpress - Optimal fuel rail pressure array

The optimal fuel rail pressure lookup table, $f_{\text {fuelp }}$, is a function of the engine speed and injected fuel mass, $F U E L P=f_{\text {fuelp }}(F, N)$, where:

- FUELP is optimal fuel rail pressure, in MPa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal gross indicated mean effective pressure, f_tqs_imepg -

 Optimal mean effective pressurearray
The optimal gross indicated mean effective pressure lookup table, $f_{\text {imepg }}$, is a function of the engine speed and injected fuel mass, $I M E P G=f_{\text {imepg }}(F, N)$, where:

- IMEPG is optimal gross indicated mean effective pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal friction mean effective pressure, f_tqs_fmep - Optimal friction mean effective pressure

array
The optimal friction mean effective pressure lookup table, $f_{\text {fmep }}$, is a function of the engine speed and injected fuel mass, $F M E P=f_{\text {fmep }}(F, N)$, where:

- FMEP is optimal friction mean effective pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal pumping mean effective pressure, f_tqs_pmep - Optimal pumping mean effective pressure

array
The optimal pumping mean effective pressure lookup table, $f_{\text {pmep }}$, is a function of the engine speed and injected fuel mass, $P M E P=f_{\text {pmep }}(F, N)$, where:

- $P M E P$ is optimal pumping mean effective pressure, in Pa.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Friction multiplier as a function of temperature, f_tqs_fric_temp_mod - Friction multiplier array

Friction multiplier as a function of temperature, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt Breakpoints
 vector

Friction multiplier temperature breakpoints, in K.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Main start of injection timing efficiency multiplier,

 f_tqs_mainsoi_eff - MAINSOI efficiency multiplier arrayThe main start of injection (SOI) timing efficiency multiplier lookup table, $f_{\text {SOIeff }}$, is a function of the engine speed and main SOI timing relative to optimal timing, $S O I_{e f f}=$ $f_{\text {SOIeff }}(\Delta S O I, N)$, where:

- $S O I_{\text {eff }}$ is main SOI timing efficiency multiplier, dimensionless.
- \triangle SOI is main SOI timing relative to optimal timing, in degBTDC.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Main start of injection timing relative to optimal timing breakpoints, f_tqs_mainsoi_delta_bpt - Breakpoints
 vector

Main start of injection timing relative to optimal timing breakpoints, in degBTDC.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff Intake pressure efficiency multiplier
 array

The intake manifold gas pressure efficiency multiplier lookup table, $f_{\text {MAPeff }}$, is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $M A P_{\text {eff }}=f_{\text {MAPeff }}\left(M A P_{\text {ratio }}, \lambda\right)$, where:

- $M A P_{\text {eff }}$ is intake manifold gas pressure efficiency multiplier, dimensionless.
- $M A P_{\text {ratio }}$ is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, f_tqs_map_ratio_bpt - Breakpoints
vector
Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt - Breakpoints vector

Intake manifold gas lambda breakpoints, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff - Intake temperature efficiency multiplier
array

The intake manifold gas temperature efficiency multiplier lookup table, $f_{\text {MATeff }}$, is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $M A T_{\text {eff }}=f_{\text {MATeff }}(\triangle M A T, N)$, where:

- $M A T_{\text {eff }}$ is intake manifold gas temperature efficiency multiplier, dimensionless.
- $\triangle M A T$ is intake manifold gas temperature relative to optimal temperature, in K .
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas temperature relative to optimal gas temperature breakpoints, f_tqs_mat_delta_bpt - Breakpoints
 vector

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K .

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

```
Intake manifold gas oxygen efficiency multiplier, f_tqs_o2pct_eff - Intake oxygen efficiency multiplier
array
```

The intake manifold gas oxygen efficiency multiplier lookup table, $f_{\text {o2Peff }}$, is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O 2 P_{\text {eff }}=$ $f_{\text {O2Peff }}(\triangle O 2 P, N)$, where:

- $O 2 P_{\text {eff }}$ is intake manifold gas oxygen efficiency multiplier, dimensionless.
- $\triangle O 2 P$ is intake gas oxygen percent relative to optimal, in percent.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake gas oxygen percent relative to optimal breakpoints, f_tqs_o2pct_delta_bpt - Breakpoints
 vector

Intake gas oxygen percent relative to optimal breakpoints, in percent.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Fuel rail pressure efficiency multiplier, f_tqs_fuelpress_eff Efficiency multiplier
 array

The fuel rail pressure efficiency multiplier lookup table, $f_{\text {FUELPeff }}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $F U E L P_{\text {eff }}=$ $f_{\text {FUELPeff }}(\triangle F U E L P, N)$, where:

- FUELP $P_{\text {eff }}$ is fuel rail pressure efficiency multiplier, dimensionless.
- $\triangle F U E L P$ is fuel rail pressure relative to optimal, in MPa.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Fuel rail pressure relative to optimal breakpoints, f_tqs_fuelpress_delta_bpt - Breakpoints vector

Fuel rail pressure relative to optimal breakpoints, in MPa.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Fuel mass injection type identifier, f_tqs_f_inj_type - Type identifier vector

Fuel mass injection type identifier, dimensionless.
In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass injection type identifier parameter.

Type of Injection	Parameter Value
Pilot	0
Main	1
Post	2

Type of Injection	Parameter Value
Passed	3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit parameter to specify the threshold.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Indicated mean effective pressure post inject correction, f_tqs_imep_post_corr - Post inject correction array

The indicated mean effective pressure post inject correction lookup table, $f_{\text {IMEPpost }}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $\Delta I M E P_{\text {post }}=f_{\text {IMEPpost }}\left(\Delta S O I_{\text {post }}, F_{\text {post }}\right)$, where:

- $\triangle I M E P_{\text {post }}$ is indicated mean effective pressure post inject correction, in Pa.
- $\Delta S O I_{\text {post }}$ is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- $F_{\text {post }}$ is indicated mean effective pressure post inject mass sum, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Indicated mean effective pressure post inject mass sum breakpoints, f_tqs_f_post_sum_bpt - Breakpoints

vector

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

```
Indicated mean effective pressure post inject start of inject timing
centroid breakpoints, f_tqs_soi_post_cent_bpt - Breakpoints
vector
```

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.
Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit - Maximum SOI angle for burned fuel vector

Maximum start of injection angle for burned fuel, in degATDC.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Exhaust

Exhaust Temperature - Simple Torque Lookup
Exhaust temperature table, f_t_exh - Lookup table array

The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed

$$
T_{e x h}=f_{T e x h}(F, N)
$$

where:
$T_{\text {exh }}$ is exhaust temperature, in K.

- F is injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.
Fuel mass per injection breakpoints, f_t_exh_f_bpt - Breakpoints array

Engine load breakpoints used for exhaust temperature lookup table, in mg per injection.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Speed breakpoints, f_t_exh_n_bpt - Breakpoints
 array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

Dependencies

To enable this parameter, for Torque model, select Simple Torque Lookup.

Exhaust Temperature - Torque Structure

Optimal exhaust manifold gas temperature, f_tqs_exht - Optimal exhaust manifold gas temperature

array
The optimal exhaust manifold gas temperature lookup table, $f_{\text {Texh }}$, is a function of the engine speed engine speed and injected fuel mass, $\operatorname{Texh}_{\text {opt }}=f_{\text {Texh }}(F, N)$, where:

- Texh ${ }_{\text {opt }}$ is optimal exhaust manifold gas temperature, in K.
- F is compression stroke injected fuel mass, in mg per injection.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff - Main SOI timing efficiency multiplier array

The main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, $f_{\text {SoIexhteff }}$, is a function of the engine speed engine speed and injected fuel mass, $S O I_{\text {exhteff }}=f_{\text {SOIexhteff }}(\triangle S O I, N)$, where:

- $S O I_{\text {exhteff }}$ is main SOI exhaust temperature efficiency multiplier, dimensionless.
- $\Delta S O I$ is main SOI timing relative to optimal timing, in degBTDC.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas pressure exhaust temperature efficiency multiplier, f_tqs_exht_map_eff - Intake manifold efficiency multiplier array

The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, $f_{\text {MAPexheff, }}$ is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $M A P_{\text {exheff }}=f_{\text {MAPexheff }}\left(M A P_{\text {ratio }}, \lambda\right)$, where:

- $M A P_{\text {exheff }}$ is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- $M A P_{\text {ratio }}$ is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas temperature exhaust temperature efficiency multiplier, f_tqs_exht_mat_eff - Intake manifold efficiency multiplier array

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, $f_{\text {MATexheff }}$, is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $M A T_{\text {exheff }}=f_{\text {MATexheff }}(\triangle M A T, N)$, where:

- $M A T_{\text {exheff }}$ is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- $\triangle M A T$ is intake manifold gas temperature relative to optimal temperature, in K .
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas oxygen exhaust temperature efficiency multiplier, f_tqs_exht_o2pct_eff - Intake manifold efficiency multiplier array

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, $f_{\text {O2Pexheff, }}$ is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O 2 P_{\text {exheff }}=f_{\text {O2Pexheff }}(\Delta O 2 P, N)$, where:

- $O 2 P_{\text {exheff }}$ is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- $\triangle O 2 P$ is intake gas oxygen percent relative to optimal, in percent.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

```
Fuel rail pressure exhaust temperature efficiency multiplier,
f_tqs_exht_fuelpress_eff - Fuel rail pressure exhaust temperature efficiency
multiplier
array
```

The fuel rail pressure efficiency exhaust temperature multiplier lookup table, $f_{\text {FUELPexheff, }}$ is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $F U E L P_{\text {exheff }}=f_{\text {FUELPexheff }}(\triangle F U E L P, N)$, where:

- FUELP $P_{\text {exheff }}$ is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- $\triangle F U E L P$ is fuel rail pressure relative to optimal, in MPa.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Post injection torque energy conservation multiplier, f_tqs_exht_post_inj_tq_energy_mult - Post injection torque energy conservation multiplier
 scalar

Post injection torque energy conservation multiplier, dimensionless.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Emissions

CO2 mass fraction table, f_CO2_frac - Carbon dioxide (CO_{2}) emission lookup table
array
The CI Core Engine CO_{2} emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:

- CO2 Mass Fraction is the CO_{2} emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select CO2.

CO mass fraction table, f_CO_frac - Carbon monoxide (CO) emission lookup table
 array

The CI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:

- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select CO.

HC mass fraction table, f_HC_frac - Hydrocarbon (HC) emission lookup table

array
The CI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction $=$ f(Speed, Torque), where:

- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select HC.

NOx mass fraction table, f_NOx_frac - Nitric oxide and nitrogen dioxide (NOx) emission lookup table array

The CI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction = f(Speed, Torque), where:

- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select NOx.

PM mass fraction table, f_PM_frac - Particulate matter (PM) emission lookup table

array
The CI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:

- $\quad P M$ is the $P M$ emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select PM.

Engine speed breakpoints, f_exhfrac_n_bpt - Breakpoints vector

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

Dependencies

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.
Engine torque breakpoints, f_exhfrac_trq_bpt - Breakpoints vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.
Exhaust gas specific heat at constant pressure, cp_exh - Specific heat scalar

Exhaust gas-specific heat, $C p_{\text {exh }}$, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

Fuel

Stoichiometric air-fuel ratio, afr_stoich - Air-fuel ratio scalar

Air-fuel ratio, $A F R$.
Fuel lower heating value, fuel_lhv - Heating value scalar

Fuel lower heating value, fuel_lhv, in J/kg.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

See Also

CI Controller | Mapped CI Engine

Topics
 "CI Core Engine Air Mass Flow and Torque Production"
 "Engine Calibration Maps"

Introduced in R2017a

Compressor

Compressor for boosted engines
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Boost

Description

The Compressor block simulates engine boost by using the drive shaft energy to increase the intake manifold pressure. The block is a component of supercharger and turbocharger models. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. The control volumes provide the pressure, temperature, and specific enthalpy for the compressor to calculate the mass and energy flow rates. To calculate the torque and flow rates, the drive shaft provides the speed to the compressor. Typically, compressor manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. You can specify the lookup tables to calculate the mass flow rate and efficiency. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to the outlet control volume.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description	
Import compressor data	Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox). - Pressure ratio, dimensionless - Speed, rad/s - Mass flow rate, kg/s - Efficiency, dimensionless Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.	
Generate response models	Model-Based Calibration Toolbox fits the imported data to the response models.	
	Data	Response Model
	Mass flow rate	Extended ellipse response model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
	Efficiency	Polynomial
	To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).	
Generate calibration	Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables. To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).	

Task	Description
Update block	Update these mass flow rate and efficiency parameters with the parameters
	calibration.
	- Corrected mass flow rate table, mdot_corr_tbl
	- Efficiency table, eta_comp_tbl
	- Corrected speed breakpoints, w_corr_bpts1
	Pressure ratio breakpoints, Pr_bpts2

Thermodynamics

The block uses these equations to model the thermodynamics.

Calculation	Equations
Forward mass flow	$\dot{m}_{\text {comp }}>0$
	$p_{01}=p_{\text {inlet }}=p_{\text {outlet }}$
	$T_{01}=T_{\text {inlet }}$
	$h_{01}=h_{\text {inlet }}$
First law of thermodynamics	$\dot{W}_{\text {comp }}=\dot{m}_{\text {comp }} c_{p}\left(T_{01}-T_{02}\right)$
Isentropic efficiency	$\eta_{\text {comp }}=\frac{h_{02 s}-h_{01}}{h_{02}-h_{01}}=\frac{T_{02 s}-T_{01}}{T_{02}-T_{01}}$
Isentropic outlet temperature, assuming ideal gas and constant specific heats	$T_{02 s}=T_{01}\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}$

Calculation	Equations
Specific heat ratio	$\gamma=\frac{c_{p}}{c_{p}-R}$
Outlet temperature	$T_{02}=T_{01}+\frac{T_{01}}{\eta_{\text {comb }}}\left\{\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}-1\right\}$
Heat flows	$q_{\text {inlet }}=\dot{m}_{\text {comp }} h_{01}$
	$q_{\text {outlet }}=\dot{m}_{\text {comp }} h_{02}=\dot{m}_{\text {comp }} c_{p} T_{02}$
Corrected mass flow rate	$\dot{m}_{\text {corr }}=\dot{m}_{\text {comp }} \frac{\sqrt{T_{01} / T_{r e f}}}{p_{01} / p_{\text {ref }}}$
Corrected speed	$\omega_{\text {corr }}=\frac{\omega}{\sqrt{T_{01} / T_{\text {ref }}}}$
Pressure ratio	$p_{r}=\frac{p_{01}}{p_{02}}$

The equations use these variables.

$$
\begin{array}{ll}
p_{\text {inlet }}, p_{01} & \text { Inlet control volume total pressure } \\
T_{\text {inlet }}, T_{01} & \text { Inlet control volume total temperature } \\
h_{\text {inlet }}, h_{01} & \text { Inlet control volume total specific enthalpy } \\
p_{\text {outlet }}, p_{02} & \text { Outlet control volume total pressure } \\
T_{\text {outlet }} & \text { Outlet control volume total temperature } \\
h_{\text {outlet }} & \text { Outlet control volume total specific enthalp }
\end{array}
$$

Diver
$\dot{W}_{\text {comp }}$
T_{02}
h_{02}
$\dot{m}_{\text {comp }}$
$q_{\text {inlet }}$
$q_{\text {outlet }}$
$\eta_{\text {comp }}$
$T_{02 s}$
$h_{02 s}$
R
c_{p}
γ
$\dot{m}_{\text {corr }}$
ω
$\omega_{\text {corr }}$
$T_{r e f}$
$P_{\text {ref }}$
$\tau_{\text {comp }}$
p_{r}
$\eta_{c o m b, t b l}$
orr
p_{r}

Outlet total temperature
Outlet total specific enthalpy
Mass flow rate through compressor
Inlet heat flow rate
Outlet heat flow rate
Compressor isentropic efficiency
Isentropic outlet total temperature
Isentropic outlet total specific enthalpy
Ideal gas constant
Specific heat at constant pressure
Specific heat ratio
Corrected mass flow rate
Drive shaft speed
Corrected drive shaft speed

Lookup table reference temperature
Lookup table reference pressure
Compressor drive shaft torque
Pressure ratio
Compressor efficiency 3-D lookup table

Corrected mass flow rate 3-D lookup table
$\dot{m}_{c o r r, t b l}$
Corrected speed breakpoints
$\omega_{c o r r, b p t s 1}$
Pressure ratio breakpoints
$p_{r, b p t s 2}$

Ports

Input

Ds - Drive shaft speed

two-way connector port
ShftSpd - Signal containing the drive shaft angular speed, ω, in rad/s.

A - Inlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the inlet control volume:

InPrs - Pressure, $p_{\text {inlet }}$, in Pa
InTemp - Temperature, $T_{\text {inlet }}$, in K
InEnth - Specific enthalpy, $h_{\text {inlet }}$, in J/kg

B - Outlet pressure, temperature, enthalpy, mass fractions

two-way connector port
Bus containing the outlet control volume:

OutPrs - Pressure, $p_{\text {outlet }}$, in Pa

- Out Temp - Temperature, $T_{\text {outlet }}$, in K
- OutEnth - Specific enthalpy, $h_{\text {outlet }}$, in J/kg

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
Cmprs0utletTemp	Temperature exiting the compressor	T_{02}	K
DriveshftPwr	Drive shaft power	$\dot{W}_{\text {comp }}$	W
DriveshftTrq	Drive shaft torque	$\tau_{\text {comp }}$	$\mathrm{N} \cdot \mathrm{m}$
CmprsMassFlw	Mass flow rate through compressor	$\dot{m}_{\text {comp }}$	kg/s
PrsRatio	Pressure ratio	p_{r}	N/A
DriveshftCorrSpd	Corrected drive shaft speed	$\omega_{\text {corr }}$	rad/s
CmprsEff	Compressor isentropic efficiency	$\eta_{\text {comp }}$	N/A
CorrMassFlw	Corrected mass flow rate	$\dot{m}_{\text {corr }}$	kg/s

Ds - Drive shaft torque

two-way connector port

Trq - Signal containing the drive shaft torque, $\tau_{\text {comp }}$, in $\mathrm{N} \cdot \mathrm{m}$.
A - Inlet mass flow rate, heat flow rate, temperature, mass fractions
two-way connector port
Bus containing:

MassFlwRate - Mass flow rate through inlet, $\dot{m}_{\text {comp }}$, in kg / s

- HeatFlwRate - Inlet heat flow rate, $q_{\text {inlet }}$, in J/s
- Temp - Inlet temperature, in K
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port
Bus containing:

MassFlwRate - Outlet mass flow rate, $\dot{m}_{\text {comp }}$, in kg / s
HeatFlwRate - Outlet heat flow rate, $q_{\text {outlet }}$, in J/s

- Temp - Outlet temperature, in K
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Parameters

Performance Tables

Calibrate Performance Maps - Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description
Import compressor data	Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox). - Pressure ratio, dimensionless - Speed, rad/s - Mass flow rate, kg/s - Efficiency, dimensionless Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.

Task	Description	
Generate response models	Model-Based Calibration Toolbox fits the imported data to the response models.	
	Data	Response Model
	Mass flow rate	Extended ellipse response model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
	Efficiency	Polynomial
	To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).	
Generate calibration	Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables. To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).	
Update block parameters	Update these mass flow rate and efficiency parameters with the calibration. - Corrected mass flow rate table, mdot_corr_tbl - Efficiency table, eta_comp_tbl - Corrected speed breakpoints, w_corr_bpts1 - Pressure ratio breakpoints, Pr_bpts2	

Corrected mass flow rate table, mdot_corr_tbl - Lookup table array

Corrected mass flow rate lookup table, $\dot{m}_{c o r r, t b l}$, as a function of corrected driveshaft speed, $\omega_{\text {corr }}$, and pressure ratio, p_{r}, in kg / s.

Efficiency table, eta_comp_tbl - Lookup table array

Efficiency lookup table, $\eta_{\text {comb,tbl }}$, as a function of corrected driveshaft speed, $\omega_{\text {corr }}$, and pressure ratio, p_{r}, dimensionless.

Corrected speed breakpoints, w_corr_bpts1 - Breakpoints vector

Corrected drive shaft speed breakpoints, $\omega_{\text {corr,bpts1 }}$, in rad/s.

Pressure ratio breakpoints, Pr_bpts2 - Breakpoints vector

Pressure ratio breakpoints, $p_{r, b p t s 2}$.
Reference temperature, T_ref - Reference
scalar

Lookup table reference temperature, $T_{\text {ref }}$, in K.
Reference pressure, P_ref - Reference scalar

Lookup table reference pressure, $P_{r e f}$, in Pa.

Gas Properties

Ideal gas constant, R Constant scalar

Ideal gas constant, R, in $\mathrm{J} /\left(\mathrm{kg}^{*} \mathrm{~K}\right)$.

Specific heat at constant pressure, cp - Specific heat scalar

Specific heat at constant pressure, c_{p}, in $\mathrm{J} /(\mathrm{kg} * \mathrm{~K})$.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
[2] Eriksson, Lars and Lars Nielsen. Modeling and Control of Engines and Drivelines. Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2014.

See Also

Two-Way Connection | Boost Drive Shaft | Turbine

Topics

"Model-Based Calibration Toolbox"

Introduced in R2017a

Control Volume System

Constant volume open thermodynamic system with heat transfer
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow

Description

The Control Volume System block models a constant volume open thermodynamic system with heat transfer. The block uses the conservation of mass and energy, assuming an ideal gas, to determine the pressure and temperature. The block implements an automotivespecific Constant Volume Pneumatic Chamber block that includes thermal effects related to the under hood of passenger vehicles. You can specify heat transfer models:

- Constant
- External input
- External wall convection

You can use the Control Volume System block to represent engine components that contain volume, including pipes and manifolds.

Thermodynamics

The Control Volume System block implements a constant volume chamber containing an ideal gas. To determine the rate changes in temperature and pressure, the block uses the continuity equation and the first law of thermodynamics.

$$
\begin{aligned}
\frac{d T_{v o l}}{d t} & =\frac{R T_{v o l}}{c_{v} V_{c h} P_{v o l}}\left(\sum\left(q_{i}-T_{v o l} c_{v} \dot{m}_{i}\right)-Q_{w a l l}\right) \\
\frac{d P_{v o l}}{d t} & =\frac{P_{v o l}}{T_{v o l}} \frac{d T_{v o l}}{d t}+\frac{R T_{v o l}}{V_{c h}} \sum \dot{m}_{i}
\end{aligned}
$$

The block uses this equation for the volume-specific enthalpy.

$$
h_{v o l}=c_{p} T_{v o l}
$$

The equations use these variables.

\dot{m}_{i}	Mass flow rate at port
q_{i}	Heat flow rate at port
$V_{c h}$	Chamber volume
$P_{\text {vol }}$	Absolute pressure in the chamber
R	Ideal gas constant
c_{v}	Specific heat at constant volume
$T_{\text {vol }}$	Absolute gas temperature
$Q_{\text {wall }}$	Wall heat transfer rate
$h_{\text {vol }}$	Volume-specific enthalpy
c_{p}	Specific heat capacity

Mass Fractions

The Control Volume Source block is part of a flow network. Blocks in the network determine the mass fractions that the block will track during simulation. The block can track these mass fractions:

- 02 - Oxygen
- N2 - Nitrogen
- UnburnedFuel - Unburned fuel
- $\mathrm{CO2}$ - Carbon dioxide
- H2O - Water
- CO - Carbon monoxide
- NO - Nitric oxide
- NO2 - Nitrogen dioxide
- PM - Particulate matter
- Air - Air
- BurnedGas - Burned gas

Using the conservation of mass for each gas constituent, this equation determines the rate change:

$$
\frac{d y_{v o l}, j}{d t}=\frac{R T_{v o l}}{P_{v o l} V_{c h}}\left(\sum \dot{m}_{i} y_{i, j}+y_{v o l, j} \sum \dot{m}_{i}\right)
$$

The equations use these variables.
$V_{c h} \quad$ Chamber volume
$P_{\text {vol }} \quad$ Absolute pressure in the chamber
$R \quad$ Ideal gas constant
$T_{\text {vol }} \quad$ Absolute gas temperature
$y_{i, j} \quad$ I-th port mass fraction for $\mathrm{j}=\mathrm{O}_{2}, \mathrm{~N}_{2}$, unburned fuel, $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}$, PM, air, and burned gas
$y_{\text {vol }, j} \quad$ Control volume mass fraction for $\mathrm{j}=\mathrm{O}_{2}, \mathrm{~N}_{2}$, unburned fuel, $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}$, NO_{2}, PM, air, and burned gas
Mass flow rate for $\mathrm{i}=\mathrm{O}_{2}, \mathrm{~N}_{2}$, unburned fuel, $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{PM}$, air, $\dot{m}_{i} \quad$ and burned gas

External Wall Convection Heat Transfer Model

To calculate the heat transfer, you can configure the Control Volume Source block to calculate the heat transfer across the wall of the control volume.

The block implements these equations to calculate the heat transfer, Q_{1}, from the internal control volume gas to the internal wall depth, $D_{\text {int_cond }}$.

$$
Q_{1}=Q_{1, \text { conv }}=Q_{1, \text { cond }}
$$

$$
\begin{aligned}
& Q_{1, \text { conv }}=h_{i n t}\left(x_{i n t}\right) \bullet A_{\text {int_conv }} \bullet\left(T_{\text {int_gas }}-T_{w_{-} i n t}\right) \\
& Q_{1, \text { cond }}=k_{\text {int }} \bullet \frac{A_{\text {int_cond }}}{D_{\text {int_cond }}} \bullet\left(T_{w_{-} i n t}-T_{\text {mass }}\right)
\end{aligned}
$$

The block implements these equations to calculate the heat transfer, Q_{2}, from the external wall depth, $D_{\text {ext_cond }}$ to the external gas.

$$
\begin{aligned}
& Q_{2}=Q_{2, \text { conv }}=h_{\text {ext }}\left(x_{e x t}\right) \bullet A_{\text {ext_conv }} \bullet\left(T_{w_{-} e x t}-T_{\text {ext_gas }}\right) \\
& Q_{2, \text { cond }}=k_{\text {ext }} \bullet \frac{A_{\text {ext_cond }}}{D_{\text {ext_cond }}} \bullet\left(T_{\text {mass }}-T_{w_{-} e x t}\right)
\end{aligned}
$$

This equation expresses the heat stored in the thermal mass.

$$
\frac{d T_{\text {mass }}}{d t}=\frac{Q_{1}-Q_{2}}{c_{p_{\text {wall }}} m_{\text {wall }}}
$$

The block determines the interior convection heat transfer coefficient using a lookup table that is a function of the average mass flow rate.

$$
\dot{m}_{\text {int_gas }}=\frac{1}{2} \sum\left|\dot{m}_{i}\right|
$$

The equations use these variables.
$Q_{1} \quad$ Heat flow from the internal gas to a specified wall depth
$Q_{1, \text { conv }} \quad$ Heat flow convection from the internal gas to the internal wall
$Q_{1, \text { cond }} \quad$ Conduction heat transfer rate
$Q_{2} \quad$ Heat transfer rate
$Q_{2, \text { conv }} \quad$ Convection heat transfer
$Q_{2, \text { cond }} \quad$ Heat flow conduction from the external middle portion of the wall to the external wall
$Q_{\text {mass }} \quad$ Heat stored in thermal mass

$h_{\text {int }}$	Internal convection heat transfer coefficient
$x_{\text {int }}$	Internal mass flow rate breakpoints
$A_{\text {int_conv }}$	Internal flow convection area
$T_{\text {int_gas }}$	Temperature of the gas inside the chamber
$T_{w_{_i n t}}$	Temperature of the inside wall of the chamber
$k_{\text {int }}$	Internal wall thermal conductivity
$A_{\text {int_cond }}$	Internal conduction area
$D_{\text {int_cond }}$	Internal wall thickness
$h_{\text {ext }}$	External convection heat transfer coefficient
$x_{\text {ext }}$	External velocity breakpoints
$A_{\text {ext_conv }}$	External convection area
$T_{\text {ext_gas }}$	External gas temperature
$T_{w_{_} \text {ext }}$	Temperature of the external wall of the chamber
$k_{\text {ext }}$	External wall thermal conductivity
$A_{\text {ext_cond }}$	External conduction area
$D_{\text {ext_cond }}$	External wall thickness
$T_{\text {mass }}$	Temperature of the thermal mass
$c_{p_{_} \text {wall }}$	Wall heat capacity
$m_{\text {wall }}$	Thermal mass
$F l w_{\text {spd }}$	External flow velocity
$\dot{m}_{\text {int_gas }}$	Average internal mass flow rate

Ports

Input

C - Inlet mass flow rate, heat flow rate, mass fractions

two-way connector port
Bus containing:

- MassFlw - Mass flow rate through inlet, in kg/s
- HeatFlw - Inlet heat flow rate, in J/s
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Dependencies

To create input ports, specify the Number of inlet ports parameter.

HeatTrnsfrRate - Heat transfer

scalar

External heat transfer input to control volume, $q_{h e}$, in Kg / s.

Dependencies

To create this port, select External input for the Heat transfer model parameter.

ExtnlFlwVel - External flow velocity scalar

External flow velocity, $F l w_{s p d}$, in m / s.

Dependencies

To create this port, select External wall convection for the Heat transfer model parameter.

ExtnlTemp - Ambient temperature, K

scalar

Dependencies

To create this port, select External wall convection for the Heat transfer model parameter.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal			Description	Units
Vol	Prs		Volume pressure	Pa
	Temp		Volume temperature	K
	Enth		Volume specific enthalpy	J/kg
	Species	02MassFrac	Oxygen mass fraction	NA
		N2MassFrac	Nitrogen mass fraction	NA
		UnbrndFuelMassFr ac	Unburned gas mass fraction	NA
		C02MassFrac	Carbon dioxide mass fraction	NA
		H20MassFrac	Water mass fraction	NA
		COMassFrac	Carbon monoxide mass fraction	NA
		NOMassFrac	Nitric oxide mass fraction	NA

C - Outlet pressure, temperature, enthalpy, mass fractions

two-way connector port
Bus containing the outlet control volume:

- Prs - Chamber pressure, in Pa
- Temp - Gas temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Dependencies

To create outlet ports, specify the Number of outlet ports parameter.

Parameters

Block Options

```
Number of inlet ports - Number of ports
1 (default)| 0| 2| 3|4
```

Number of inlet ports.

Dependencies

To create inlet ports, specify the number.

Number of outlet ports - Number of ports

1 (default) | $0|2| 3 \mid 4$
Number of outlet ports.

Dependencies

To create outlet ports, specify the number.

Heat transfer model - Select model

Constant (default)|External input|External wall convection
Dependencies
Selecting Constant or External wall convection enables the Heat Transfer parameters.

Image type - Icon color Cold (default) | Hot

Select color for block icon:

- Cold for blue
- Hot for red

General

Chamber volume, Vch - Volume scalar

Chamber volume, $V_{\text {ch }}$, in $\mathrm{m}^{\wedge} 3$.

Initial chamber pressure, Pinit - Pressure scalar

Initial chamber pressure, $P_{\text {vol }}$, in Pa.

Initial chamber temperature, Tinit - Temperature scalar

Initial chamber temperature, $T_{\text {vol }}$, in K.
Ideal gas constant, R - Ideal gas constant scalar

Ideal gas constant, R, in $\mathrm{J} /(\mathrm{kg} * \mathrm{~K})$.

```
Specific heat capacity, cp - Specific heat
scalar
```

Specific heat capacity, c_{p}, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

Heat Transfer

Heat transfer rate, q_he - Rate scalar

Constant heat transfer rate, $q_{h e}$, in J/s.

Dependencies

To enable this parameter, select Constant for the Heat transfer model parameter.

External convection heat transfer coefficient, ext_tbl - Manifold external air

vector
External convection heat transfer coefficient, $h_{\text {ext }}$, in $W /\left(m^{\wedge} 2 K\right)$.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

External velocity breakpoints, ext_bpts - Manifold external air linspace (0,180,4) (default)

External velocity breakpoints, $x_{\text {ext }}$, in m / s.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

External convection area, Aext_conv - Manifold external air scalar

External convection area, $A_{\text {ext conv, }}$ in $\mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Thermal mass, m_wall - Manifold wall general scalar

Thermal mass, $m_{\text {wall, }}$ in kg .

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Wall heat capacity, cp_wall - Manifold wall general

 scalarWall heat capacity, $c_{p _ \text {wall, }}$ in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Initial mass temperature, Tmass - Manifold wall general scalar

Initial mass temperature, $T_{\text {mass }}$, in K .

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

```
External wall thickness, Dext_cond - Manifold wall external
scalar
```

External wall thickness, $D_{\text {ext_cond, }}$ in m .

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

```
External conduction area, Aext_cond - Manifold wall external
scalar
```

External conduction area, $A_{\text {ext_cond }}$, in $\mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

External wall thermal conductivity, kint - Manifold wall external scalar

External wall thermal conductivity, $k_{\text {ext }}$, in $\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal wall thickness, Dint_cond - Manifold wall internal scalar

Internal wall thickness, $D_{\text {int_cond, }}$ in m .

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal conduction area, Aint_cond - Manifold wall internal scalar

Internal conduction area, $A_{\text {int_cond, }}$ in $\mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal wall thermal conductivity, kint - Manifold wall internal scalar

Internal wall thermal conductivity, $k_{\text {int }}$, in $\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

```
Internal convection heat transfer coefficient, int_tbl - Manifold internal air
```


vector

Internal convection heat transfer coefficient, $h_{\text {int }}$, in $\mathrm{W} /\left(\mathrm{m}^{\wedge} 2 \mathrm{~K}\right)$.
Dependencies
To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal mass flow rate breakpoints, int_bpts - Manifold internal air vector

Internal velocity breakpoints, $x_{i n t}$, in kg / s.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal flow convection area, Aint_conv - Manifold internal air scalar

Internal convection area, $A_{\text {int_conv, }}$ in $\mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select External wall convection for the Heat transfer model parameter.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

See Also
Constant Volume Pneumatic Chamber | Two-Way Connection | Flow Restriction | Heat Exchanger
Introduced in R2017a

Interior PMSM

Three-phase interior permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Powertrain Blockset / Propulsion / Electric Motors

Description

The Interior PMSM block implements a three-phase interior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Motor Construction

This figure shows the motor construction with a single pole pair on the rotor.

The rotor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with rotor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when rotor angle θ_{r} is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the rotor flux reference frame (dq frame). All quantities in the rotor reference frame are referred to the stator.

$$
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d}{d t} i_{d}=\frac{1}{L_{d}} v_{d}-\frac{R}{L_{d}} i_{d}+\frac{L_{q}}{L_{d}} P \omega_{m} i_{q} \\
& \frac{d}{d t} i_{q}=\frac{1}{L_{q}} v_{q}-\frac{R}{L_{q}} i_{q}-\frac{L_{d}}{L_{q}} P \omega_{m} i_{d}-\frac{\lambda_{p m} P \omega_{m}}{L_{q}} \\
& T_{e}=1.5 P\left[\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]
\end{aligned}
$$

The L_{q} and L_{d} inductances represent the relation between the phase inductance and the rotor position due to the saliency of the rotor.

The equations use these variables.

L_{q}, L_{d}	q-and d-axis inductances
R	Resistance of the stator windings
i_{q}, i_{d}	q-and d-axis currents
v_{q}, v_{d}	q-and d-axis voltages
ω_{m}	Angular mechanical velocity of the rotor
ω_{e}	Angular electrical velocity of the rotor
$\lambda_{p m}$	Permanent magnet flux linkage
P	Number of pole pairs
T_{e}	Electromagnetic torque
Θ_{e}	Electrical angle

Mechanical System

The rotor angular velocity is given by:

$$
\begin{aligned}
\frac{d}{d t} \omega_{m} & =\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t} & =\omega_{m}
\end{aligned}
$$

The equations use these variables.

J	Combined inertia of rotor and load
F	Combined viscous friction of rotor and load
θ_{m}	Rotor mechanical angular position
T_{m}	Rotor shaft torque
T_{e}	Electromagnetic torque
T_{f}	Rotor shaft static friction torque
ω_{m}	Angular mechanical velocity of the rotor

Ports

Input

LdTrq - Rotor shaft torque

scalar
Rotor shaft input torque, T_{m}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select Torque for the Port Configuration parameter.

Spd - Rotor shaft speed
 scalar

Angular velocity of the rotor, ω_{m}, in rad/s.

Dependencies

To create this port, select Speed for the Port Configuration parameter.

PhaseVolt - Stator terminal voltages

vector

Stator terminal voltages, V_{a}, V_{b}, and V_{c}, in V .

Dependencies

To create this port, select Speed or Torque for the Port Configuration parameter.

Output

Info - Bus signal

bus
The bus signal contains these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_{a}	A
IbStator	Stator phase current B	i_{b}	A
IcStator	Stator phase current C	i_{c}	A
IdSync	Direct axis current	i_{d}	A
IqSync	Quadrature axis current	i_{q}	A
VdSync	Direct axis voltage	v_{d}	V
VqSync	Quadrature axis voltage	v_{q}	V
MtrSpd	Angular mechanical velocity of the rotor	ω_{m}	$\mathrm{rad} / \mathrm{s}$
MtrPos	Rotor mechanical angular position	θ_{m}	rad
MtrTrq	Electromagnetic torque	T_{e}	$\mathrm{~N} \cdot \mathrm{~m}$

Parameters

Port Configuration - Select port configuration

Torque (default) | Speed
This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	LdTrq
	PhaseVolt
	Info
Speed	Spd
	PhaseVolt
	Info

Stator phase resistance, Rs - Resistance
 scalar

Stator phase resistance, R_{s}, in ohm.
D and Q axis inductances, Ldq - Inductance vector

D and Q axis inductances, L_{d}, L_{q}, in H .
Permanent magnet flux, lambda_pm - Flux

scalar

Permanent magnet flux linkage, $\lambda_{p m}$, in Wb .
Number of pole pairs, P - Pole pairs
scalar
Motor pole pairs, P.
Initial dq current, idq0 - Current vector

Initial q- and d-axis currents, i_{q}, i_{d}, in A.

Initial mechanical position, theta_init - Angle scalar

Initial rotor angular position, $\theta_{m 0}$, in rad.

Initial mechanical speed, omega_init - Speed scalar

Initial angular velocity of the rotor, $\omega_{m 0}$, in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

Physical inertia, viscous damping, and static friction, mechanical Inertia, damping, friction
 vector

Mechanical properties of the rotor:

- Inertia, J, in $\mathrm{kgm}^{\wedge} 2$
- Viscous damping, F, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$
- Static friction, T_{f}, in $\mathrm{N} \cdot \mathrm{m}$

Dependencies

To enable this parameter, select the Torque configuration parameter.

References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

See Also

Flux-Based PMSM | Induction Motor | Interior PM Controller | Interior PMSM | Mapped Motor | Surface Mount PMSM

Introduced in R2017a

Interior PM Controller

Torque-based, field-oriented controller for an internal permanent magnet synchronous motor
Library: Powertrain Blockset / Propulsion / Electric Motor Controllers

Description

The Interior PM Controller block implements a torque-based, field-oriented controller for an internal permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Interior PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.

ω	Rotor speed
ω^{*}	Rotor speed command
T^{*}	Torque command
i_{d}	d-axis current
$i^{*}{ }_{d}$	d-axis current command
i_{q}	q-axis current
$i^{*}{ }_{q}$	q -axis current command
v_{d},	d -axis voltage
$v^{*}{ }_{d}$	d-axis voltage command
v_{q}	q-axis voltage
$v^{*}{ }_{q}$	q-axis voltage command
v_{a}, v_{b}, v_{c}	Stator phase a, b, c voltages
i_{a}, i_{b}, i_{c}	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Interior PM Controller block.

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the Speed Controller tab:

- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:

$$
z+K_{s f} T_{s m}-1
$$

The filter calculates the gain using this equation.

$$
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
$$

The equations use these variables.

$E V_{s f}$	Bandwidth of the speed command filter
$T_{s m}$	Motion controller sample time
$K_{s f}$	Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the Speed Controller tab, select Calculate Speed Regulator Gains to calculate:

- Proportional gain, ba
- Angular gain, Ksa

- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value on the Motor Parameters tab.

The gains for the state feedback are calculated using these equations.

Calculation	Equations
Discrete forms of characteristic equation	$z^{3}+\frac{\left(-3 J_{p}+T_{s} b_{a}+T_{s}^{2} K_{s a}+T_{s}^{3} K_{i s a}\right)}{J_{p}} z^{2}+\frac{\left(3 J_{p}-2 T_{s} b_{a}-T_{s}^{2} K_{s a}\right)}{J_{p}} z+\frac{J_{p}+T_{s} b_{a}}{J_{p}}$
$\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)=z^{3}+\left(p_{1}+p_{2}+p_{3}\right) z^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} 3\right) z^{2}-p_{1} p_{2} p_{3}$	
Speed regulator proportional gain	$b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}$
Speed regulator integral gain	$K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}$
Speed regulator double integral gain	$K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s m}^{2}}{T_{s m}^{3}}$

The equations use these variables.

P	Motor pole pairs
b_{a}	Speed regulator proportional gain
$K_{s a}$	Speed regulator integral gain

$K_{i s a}$	Speed regulator double integral gain
J_{p}	Motor inertia
$T_{s m}$	Motion controller sample time

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameters tab.

The feedforward torque command uses this equation.

$$
T_{c m d_{-} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
$$

where:

J_{p}	Motor inertia
$T_{c m d f f}$	Torque command feedforward
F_{s}	Static friction torque constant
F_{v}	Viscous friction torque constant
F_{s}	Static friction torque constant
ω_{m}	Rotor speed

Torque Determination

The block uses a maximum torque per ampere (MTPA) trajectory to calculate the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.

Calculation	Equations
Electrical base speed transition into field weakening	$\omega_{\text {base }}=\frac{v_{\max }}{\square}$
d-axis voltage	$\left.v_{d}=-\omega_{e} L_{q} L_{q} i_{q} i_{q}\right)^{2}+\left(L_{d} i_{d}+\lambda_{p m}\right)^{2}$
q-axis voltage	$v_{q}=\omega_{e}\left(L_{d} i_{d_{-} \max }+\lambda_{p m}\right)$
Maximum phase current	$i_{\text {max }}{ }^{2}=i_{d_{-} \max }^{2}+i_{q_{-} \max }^{2}$
Maximum line to neutral voltage	$v_{\max }=\frac{v_{b u s}}{\sqrt{3}}$
d-axis phase current MTPA table	$I_{m}=\frac{2 T_{\max }}{3 P \lambda_{p m}}$
q-axis phase current MTPA table	$\begin{aligned} & i_{d_{-} m t p a}=\frac{\Lambda_{p m}}{4\left(L_{p m}^{L}-L_{d}\right)}-\frac{\Lambda_{p m}}{i_{m}^{2}-\left(i_{m t p a}\right)^{2}}+\frac{\Lambda_{m}}{2} \\ & i_{q_{-} m t p a}=\sqrt{\left.I_{m}^{2}-L_{d}\right)^{2}} \end{aligned}$
Torque MTPA breakpoints	$T_{\text {mtpa }}=\frac{3}{2} P\left(\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right)$

Calculation	Equations
Field weakening, using the speed-based voltage limits	$\begin{aligned} & \left(L_{q} i_{q}\right)^{2}+\left(L_{d} i_{d}+\lambda_{p m}\right)^{2} \leq \frac{v_{\max }^{2}}{\omega_{e}^{2}} \\ & i_{q}=\sqrt{i_{\max }^{2}-i_{d}^{2}} \end{aligned}$ $\left(L_{d}^{2}-L_{q}^{2}\right) i_{d}^{2}+2 \lambda_{p m} L_{d} i_{d}+\lambda_{p m}+L_{q}^{2} i_{\max }^{2}-\frac{v_{\max }^{2}}{\omega_{e}^{2}}=0$
	$\begin{aligned} & i_{d f w}=\frac{-\lambda_{p m} L_{d}+\sqrt{\left(\lambda_{p m} L_{d}\right)^{2}-\left(L_{d}^{2}-L_{q}^{2}\right)\left(\lambda_{p m}^{2}+L_{q}^{2} i_{\max }^{2}-\frac{v_{\max }^{2}}{\omega_{e}^{2}}\right.}}{\left(L_{d}^{2}-L_{q}^{2}\right)} \\ & T_{f w}=\frac{3}{2} P\left(\lambda_{p m} i_{q f w}+\left(L_{d}-L_{q}\right) i_{d f w} i_{q f w}\right) \end{aligned}$

Calculation	Equations
Current command	If $\left\|\omega_{e}\right\| \leq \omega_{\text {base }}$
	$\begin{aligned} & \quad \begin{array}{l} i_{\text {dref }}=i_{d_{m p p a}}\left(T_{\text {ref }}\right) \\ \text { Else } \\ i_{\text {qref }} \end{array}=i_{q_{m \text { mpa }}}\left(T_{\text {ref }}\right) \end{aligned}$
	$\begin{aligned} & i_{d f w}=\max \left(i_{d f w},-i_{\max }\right) \\ & i_{q f w}=\sqrt{i_{m a x}^{2}-i_{d}^{2}} \\ & \mathrm{I}_{f w}<T_{r e f} \end{aligned}$
	$\begin{aligned} i_{\text {dref }} & =i_{d_{f w}} \\ \mathrm{Else}^{i_{\text {qref }}} & =i_{q_{f w}} \end{aligned}$
	$i_{d r e f}=i_{d_{f v}}$ $T_{r e f}$
	End \quad End $i_{\text {qref }}=\frac{\frac{3}{2} P\left(\lambda_{p m}+\left(L_{d}-L_{q}\right) i_{d f w}\right)}{}$

The equations use these variables.

$i_{\max }$	Maximum phase current
i_{d}	d-axis current
i_{q}	q-axis current
$i_{d-m a x}$	Maximum d-axis phase current
$i_{q-m a x}$	Maximum q-axis phase current
$i_{d _m t p a}$	d-axis phase current MTPA table
$i_{q-m t p a}$	q-axis phase current MTPA table
I_{m}	Estimated maximum current
$i_{d f w}$	d-axis field weakening current

$i_{a f w}$	q-axis field weakening current
ω_{e}	Rotor electrical speed
$\lambda_{p m}$	Permanent magnet flux linkage
v_{d}	d-axis voltage
v_{q}	q -axis voltage
$v_{\max }$	Maximum line to neutral voltage
$v_{\text {bus }}$	DC bus voltage
L_{d}	d-axis winding inductance
L_{q}	q-axis winding inductance
P	Motor pole pairs
$T_{f w}$	Field weakening torque
$T_{m t p a}$	Torque MTPA breakpoints

Current Regulators

The block regulates the current with an anti-windup feature. Classic proportionalintegrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- d-axis and q-axis current cross-coupling
- Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of $E V_{\text {current }}$.
The block implements these equations.

Calculation	Equations
Motor voltage, in the rotor reference frame	
	$L_{d} \frac{d i_{d}}{d t}=v_{d}-R_{s} i_{d}+p \omega_{m} L_{q} i_{q}$
	$L_{d} \frac{d i_{q}}{d t}=v_{q}-R_{s} i_{q}-p \omega_{m} L_{d} i_{d}-p \omega_{m} \lambda_{p m}$

Calculation	Equations
Current regulator gains	$\begin{aligned} & \omega_{b}=2 \pi E V_{\text {current }} \\ & K_{p_{-} d}=L_{d} \omega_{b} \\ & K_{p \quad q}=L_{q} \omega_{b} \end{aligned}$
Transfer functions	$\begin{aligned} & K_{i}=R_{s} \omega_{b} \\ & \frac{i_{d}}{i_{d r e f}}=\frac{\omega_{b}}{s+\omega_{b}} \end{aligned}$

$E V_{\text {current }}$	Current regulator bandwidth
i_{d}	d -axis current
i_{q}	q -axis current
$K_{p_{-} d}$	Current regulator d-axis gain
$K_{p_{-} q}$	Current regulator q-axis gain
L_{d}	d -axis winding inductance
L_{q}	q -axis winding inductance
R_{s}	Stator phase winding resistance
ω_{m}	Rotor speed
v_{d}	d-axis voltage
v_{q}	q -axis voltage
$\lambda_{p m}$	Permanent magnet flux linkage
P	Motor pole pairs

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
$$

$\left.\begin{array}{|l|l|l|}\hline \text { Transform } & \text { Description } & \text { Equations } \\ \hline \text { Clarke } & \begin{array}{l}\text { Converts balanced three-phase } \\ \text { quantities }(a, b) \text { into balanced two- } \\ \text { phase quadrature quantities }(\alpha, \beta) .\end{array} & \begin{array}{l}x_{\alpha}=\frac{2}{3} x_{a}-\frac{1}{3} x_{b}-\frac{1}{3} x_{c} \\ x_{\beta}=\frac{\sqrt{3}}{2} x_{b}=\frac{\sqrt{3}}{2} x_{c} \\ \text { Park } \\ \end{array} \begin{array}{l}\text { Converts balanced two-phase } \\ \text { orthogonal stationary quantities } \\ (\alpha, \beta) \text { into an orthogonal rotating } \\ \text { reference frame }(d, q) .\end{array}\end{array} \begin{array}{l}x_{d}=x_{\alpha} \cos \theta_{e}+x_{\beta} \sin \theta_{e} \\ x_{q}=-x_{\alpha} \sin \theta_{e}+x_{\beta} \cos \theta_{e}\end{array}\right]$

The transforms use these variables.

ω_{m}	Rotor speed
P	Motor pole pairs
ω_{e}	Rotor electrical speed
Θ_{e}	Rotor electrical angle
x	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

Load power	$L d_{P w r}=v_{a} i_{a}+v_{b} i_{b}+v_{c} i_{c}$
Source power	$S r c_{P w r}=L d_{P w r}+P w r_{L o s s}$
DC bus current	$i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}$
Estimated rotor torque	$M t r T r q_{e s t}=1.5 P\left[\lambda i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]$
Power loss for single efficiency source to load	$P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}$
Power loss for single efficiency load to source	$P w r_{\text {Loss }}=\frac{100-E f f}{100} \cdot\left\|L d_{P w r}\right\|$
Power loss for tabulated efficiency	$P w r_{L o s s}=f\left(\omega_{m}, M t r T r q_{e s t}\right)$

The equations use these variables.
$v_{a}, v_{b}, v_{c} \quad$ Stator phase $\mathrm{a}, \mathrm{b}, \mathrm{c}$ voltages
$v_{\text {bus }} \quad$ Estimated DC bus voltage
$i_{a}, i_{b}, i_{c} \quad$ Stator phase $\mathrm{a}, \mathrm{b}, \mathrm{c}$ currents
$i_{\text {bus }} \quad$ Estimated DC bus current
Eff Overall inverter efficiency
$\omega_{m} \quad$ Rotor mechanical speed
$L_{q} \quad \mathrm{q}$-axis winding inductance
$L_{d} \quad \mathrm{~d}$-axis winding inductance
$i_{q} \quad q$-axis current

i_{d}	d-axis current
λ	Permanent magnet flux linkage
P	Motor pole pairs

Electrical Losses

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. - Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. - Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. - Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. - Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq - Rotor speed command scalar

Rotor speed command, $\omega^{*}{ }_{m}$, in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd - Torque command scalar

Torque command, T^{*}, in $N \cdot m$.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt - DC bus voltage

scalar
DC bus voltage, $v_{\text {bus }}$, in V.
PhaseCurrA - Current scalar

Stator current phase a, i_{a}, in A.

PhaseCurrB - Current

 scalarStator current phase b, i_{b}, in A.
SpdFdbk - Rotor speed scalar

Rotor speed, ω_{m}, in rad/s.

PosFdbk - Rotor electrical angle

scalar

Rotor electrical angle, Θ_{m}, in rad.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	$\mathrm{N} \cdot \mathrm{m}$

BusCurr - Bus current

scalar
Estimated DC bus current, $i_{\text {bus }}$, in A.

PhaseVolt - Stator terminal voltages

array
Stator terminal voltages, V_{a}, V_{b}, and V_{c}, in V.

Parameters

Block Options

Control Type - Select control
Speed Control (default) | Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor Parameters

Stator resistance, Rs - Resistance
 scalar

Stator phase winding resistance, R_{s}, in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Stator resistance, Rs	D and Q axis integral gain, Ki	Current Controller

D-axis inductance, Ld - Inductance
 scalar

D-axis winding inductance, L_{d}, in H .

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	Tab
	Parameter	Id and Iq Calculation
D-axis inductance, Ld	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa	
	D, q, and max current limits, idq_limits	

Q-axis inductance, Lq - Inductance scalar

Q-axis winding inductance, L_{q}, in H .

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	Tab
	Parameter	Id and Iq Calculation
Qq-axis inductance,	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa	
D, Q, and max current limits, idq_limits		

Permanent magnet flux, lambda_pm - Flux

scalar

Permanent magnet flux, $\lambda_{p m}$, in Wb.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	Tab
	Parameter	Id and Iq Calculation
Permanent magnet flux, lambda_pm	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa	
D, Q, and max current limits, idq_limits		

Number of pole pairs, PolePairs - Poles scalar

Motor pole pairs, P.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	Tab
	Parameter	Id and Iq Calculation
Number of pole pairs, PolePairs	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa	
	D, Q, and max current limits, idq_limits	

Physical inertia, viscous damping, static friction, Mechanical Inertia, damping, friction
vector
Mechanical properties of the motor:

- Motor inertia, F_{v}, in $\mathrm{kgm}^{\wedge} 2$
- Viscous friction torque constant, F_{v}, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$
- Static friction torque constant, F_{s}, in $\mathrm{N} \cdot \mathrm{m}$

Dependencies

To enable this parameter, set the Control Type parameter to Speed Control.
For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value that is on the Motor Parameters tab.

This table summarizes the parameter dependencies.

Parameter	Used to Derive	Tab
	Parameter	Speed Controller
Physical inertia, viscous damping, Mechanical	Proportional gain, ba	
Angular gain, Ksa		
Rotational gain, Kisa		
Inertia compensation,		
Jcomp		
Viscous damping		
compensation, Fv		
Static friction, Fs		

Id and Iq Calculation

```
Maximum torque, T_max - Torque
scalar
```

Maximum torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	Tab
	Parameter	Id and Iq Calculation
T_max	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, Q, and max current limits, idq_limits	

MTPA table breakpoints, bp - Number of breakpoints scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
MTPA table breakpoints, pb	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa	
	D, Q, and max current limits, idq_limits	

Calculate MTPA Table Data - Derive parameters
button
Click to derive parameters.

Dependencies

On the Id and Iq Calculation tab, when you select Calculate MPTA Table data, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.

Derived Parameter on Id and Iq Calculation tab	Depends OnParameter	Tab	
Torque Breakpoints, T_mtpa	$T_{m t p a}=\frac{3}{2} P\left(\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right)$	Maximum torque, T_max Id and Iq Calculation MTPA table breakpoints, pb	

The equations use these variables.

$i_{\text {max }}$	Maximum phase current
i_{d}	d -axis current
i_{q}	q -axis current
$i_{d _m a x}$	Maximum d-axis phase current
$i_{q-m a x}$	Maximum q-axis phase current
$i_{d _m t p a}$	d -axis phase current MTPA table
$i_{q-m t p a}$	q -axis phase current MTPA table
$\lambda_{p m}$	Permanent magnet flux linkage
L_{d}	d-axis winding inductance
L_{q}	q-axis winding inductance
P	Motor pole pairs
$T_{m t p a}$	Torque MTPA breakpoints
I_{m}	Estimated maximum current

[^2]Derived torque breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	Tab
	Parameter	Torque
Breakpoints, T_mtpa	Maximum torque, T_max MTPA table breakpoints, pb	Id and Iq Calculation
	Permanent magnet flux, lambda_pm D-axis inductance, Ld Q-axis inductance, Lq Number of pole pairs, PolePairs	Motor Parameters

D-axis table data, id_mtpa - Derived vector

Derived d-axis table data, in A.
Dependencies
This table summarizes the parameter dependencies.

Parameter	Dependency	Tab
	Parameter	Id and Iq Calculation
D-axis table data, id_mtpa	Maximum torque, T_max MTPA table breakpoints, pb	

Parameter	Dependency	Tab
	Parameter	Motor Parameters
	Permanent magnet flux, lambda_pm D-axis inductance, Ld Q-axis inductance, Lq Number of pole pairs, PolePairs	

Q-axis table data, iq_mtpa - Derived vector

Derived q-axis table data, in A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	Tab
	Parameter	Id and Iq Calculation
D-axis table data,	Maximum torque, T_max MTPA table breakpoints, pb	Permanent magnet flux, lambda_pm D-axis inductance, Ld Q-axis inductance, Lq Number of pole pairs, PolePairs

D, Q, and max current limits, idq_limits - Derived array

Derived d, q, and maximum current limits, in A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	Tab
	Parameter	Md and Iq Calculation
D, Q, and max current limits, idq_limits	Maximum torque, T_max MTPA table breakpoints, pb	
Permanent magnet flux, lambda_pm D-axis inductance, Ld Q-axis inductance, Lq Number of pole pairs, PolePairs	Motor Parameters	

Current Controller

Bandwidth of the current regulator, EV_current - Bandwidth scalar

Derived current regulator bandwidth, in Hz .

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	Tab
	Parameter	Current Controller
Bandwidth of the current regulator, EV_current	D-axis proportional gain, Kp_d Q-axis proportional gain, Kp_q D and Q axis proportional gain, Ki	

Sample time for the torque control, Tst - Time scalar

Derived torque control sample time, in s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	Tab
	Parameter	Speed Controller
Sample time for the torque control, Tst	Speed time constant, Ksf	

Calculate Current Regulator Gains - Derive parameters
 button

Click to derive parameters.

Dependencies

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.

Derived Parameter on Current Controller tab	Dependency	Parameter
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller
Q-axis proportional gain, Kp_q	Stator resistance, Rs	Motor Parameters
D and Q axis integral gain, Ki		

D-axis proportional gain, Kp_d - Derived
scalar
Derived d-axis proportional gain, in V/A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller

Q-axis proportional gain, Kp_q-Derived scalar

Derived q-axis proportional gain, in V/A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Q-axis proportional gain, Kp_q	Bandwidth of the current regulator, EV_current	Current Controller

D and Q axis integral gain, Ki - Derived scalar

Derived d- and q- axis integral gains, in V/A•s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
D and Q axis integral gain, Ki	Stator resistance, Rs	Motor Parameters

Speed Controller

Bandwidth of the motion controller, EV_motion - Bandwidth

 vectorMotion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to $1 / 5$ the value of the previous element. For example, if the desired cutoff frequency is 20 Hz , specify [2040.8].

Dependencies

The parameter is enabled when the Control Type parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the motion controller, EV_motion	Proportional gain, ba	Speed Controller
Angular gain, Ksa		
Rotational gain, Kisa		

Bandwidth of the state filter, EV_sf - Bandwidth
scalar
State filter bandwidth, in Hz .

Dependencies

The parameter is enabled when the Control Type parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the state filter, EV_sf	Speed time constant, Ksf	Speed Controller

Sample time for the motion control, Tsm - Time scalar

Sample time for the motion controller, in s.

Dependencies

The parameter is enabled when the Control Type parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Sample time for the motion control, Tsm	Proportional gain, ba	Speed Controller
Angular gain, Ksa		
Rotational gain, Kisa		

Calculate Speed Regulator Gains - Derive parameters
button

Click to derive parameters.

Dependencies

On the Speed Controller tab, when you select Calculate Speed Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Speed Controller tab		Depends On	
		Parameter	Tab
Proportional gain, ba	$b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}$	Sample time for the motion control, Tsm Bandwidth of the motion controller, EV_motion Bandwidth of the state filter, EV_sf	Speed Controller
Angular gain, Ksa	$K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)}{T_{s m}^{2}}$	Sampletime for the torques control, Tst	Current Controller
Rotational gain, Kisa	$K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}}{T_{s m}^{3}}$	Physical inertia, viscours $K_{s a} T_{s m}^{2}$ damping, static friction,	Motor Parameters
Speed time constant, Ksf	$K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}$	Mechanical	
Inertia compensatio n, Jcomp	$J_{\text {comp }}=J_{p}$	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Derived Parameter on Speed Controller tab	Depends On		
	Parameter	Tab	
Viscous damping Compensatio n, Fv	F_{v}		
Static friction, Fs	F_{s}		

The equations use these variables.

P	Motor pole pairs
b_{a}	Speed regulator proportional gain
$K_{s a}$	Speed regulator integral gain
$K_{i s a}$	Speed regulator double integral gain
$K_{s f}$	Speed regulator time constant
J_{p}	Motor inertia
$T_{s m}$	Motion controller sample time
$E V_{s f}$	State filter bandwidth
$E V_{\text {motion }}$	Motion controller bandwidth

Proportional gain, ba - Derived

scalar

Derived proportional gain, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Proportional gain, ba	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Parameter	Dependency	Tab
	Parameter	Speed Controller
	Bandwidth of the motion controller, EV_motion Sample time for the motion control, Tsm	

Angular gain, Ksa - Derived scalar

Derived angular gain, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	Tab
	Parameter damsical inertia, viscous Mechanical	Motor Parameters
Bandwidth of the motion controller, EV_motion	Speed Controller	
Sample time for the motion control, Tsm		

Rotational gain, Kisa - Derived
scalar
Derived rotational gain, in $\mathrm{N} \cdot \mathrm{m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)$.
Dependencies
This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Rotational gain, Kisa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion Sample time for the motion control, Tsm	Speed Controller

Speed time constant, Ksf - Derived
scalar
Derived speed time constant, in 1/s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Speed time constant, Ksf	Sample time for the torque control, Tst	Current Controller
	Bandwidth of the state filter, EV_sf	Speed Controller

Inertia compensation, Jcomp - Derived scalar

Derived inertia compensation, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$.
Dependencies
This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Inertia compensation, Jcomp	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Viscous damping compensation, Fv - Derived
scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Viscous damping compensation, Fv	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Static friction, Fs - Derived
scalar
Derived static friction, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Static friction, Fs	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Electrical Losses

Parameterize losses by - Select type

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	-Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	-Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff - Constant scalar

Overall inverter efficiency, Eff, in \%.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Corresponding losses, losses_table - Table

M-by-N matrix
Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

```
Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints 1-by-M matrix
```

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

```
Vector of torques (T) for tabulated efficiency, T_eff_bp -
Breakpoints
1-by-N matrix
```

Torque breakpoints for lookup table when calculating efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table - Table M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

References

[1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.
[2] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." IEEE Transactions on Industry Applications, Vol. 30, Issue 4, July/ August 1994, pp. 920-926.
[3] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, ePublications@Marquette, Fall 2014.
[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42-50.

See Also

Flux-Based PM Controller | IM Controller | Interior PMSM | Surface Mount PM Controller Introduced in R2017a

Flow Boundary

Flow boundary for ambient temperature and pressure
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow

Description

The Flow Boundary block implements a flow boundary that typically represents ambient temperature and pressure. Engine models require flow boundaries at the intake inlet and exhaust outlet. In dynamic engine models, flow-modifying components (for example, flow restriction, turbines, and compressors) connect to control volumes and flow boundaries.

You can specify these block configurations:

- Constant pressure and temperature
- Externally input pressure and temperature

The Flow Boundary block outputs pressure, temperature, and specific enthalpy:

$$
h=c_{p} T
$$

The block models the mass fractions as dry air, resulting in these mass fractions:

- $y_{N 2}=0.767$
- $y_{02}=.233$

The equation uses these variables.

T	Temperature
h	Specific enthalpy
c_{p}	Specific heat at constant pressure
$y_{N 2}$	Nitrogen mass fraction
$y_{O 2}$	Oxygen mass fraction

Ports

Input

Prs - Pressure

scalar
External input pressure, P, in Pa.

Dependencies

To create this port, select External input for the Pressure and temperature source parameter.

Temp - Temperature
 scalar

External input temperature, T, in K .

Dependencies

To create this port, select External input for the Pressure and temperature source parameter.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Units
BndryPrs	Boundary pressure	Pa
BndryTemp	Boundary temperature	K
BndryEnth	Boundary specific enthalpy	J / kg

C - Boundary pressure, temperature, enthalpy, mass fractions

two-way connector port
Bus containing the flow boundary:

- Prs - Pressure, P, in Pa
- Temp - Temperature, T, in K
- Enth - Specific enthalpy, h, in J/kg
- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Parameters

Block Options

Pressure and temperature source - Select source External input (default)|Constant

Pressure and temperature source.

Dependencies

The table summarizes the parameter and port dependencies.

Value	Enables Parameters	Creates Ports
Constant	Pressure, Pcnst Temperature, Tcnst	None
External input	None	Prs Temp

Image type - Icon color

Cold (default) | Hot
Select color for block icon:

- Cold for blue
- Hot for red

Pressure, Pcnst - Constant scalar

Constant pressure, P, in Pa.

Dependencies

To enable this parameter, select Constant for the Pressure and temperature source parameter.

Temperature, Tcnst - Constant
 scalar

Constant temperature, T, in K .

Dependencies

To enable this parameter, select Constant for the Pressure and temperature source parameter.

```
Specific heat at constant pressure, cp - Constant, J/(kg(K)
scalar
```

Specific heat at constant pressure, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

See Also

Compressor | Flow Restriction | Turbine

Introduced in R2017a

Flow Restriction

Isentropic ideal gas flow through an orifice
Library:
Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow

Description

The Flow Restriction block models isentropic ideal gas flow through an orifice. The block uses the conservation of mass and energy to determine the mass flow rate. The flow velocity is limited by choked flow.

You can specify these orifice area models:

- Constant
- External input
- Throttle body geometry

Equations

The Flow Restriction block implements these equations.

Calculation	Equations	
Standard Orifice	$\dot{m}_{\text {orf }}=\Gamma \cdot \Psi\left(P_{\text {ratio }}\right)$	
	$P_{\text {ratio }}=\frac{P_{\text {downstr }}}{P_{\text {upstr }}}$	
	$\begin{aligned} & \Gamma=\frac{A_{\text {eff }} \cdot P_{\text {upstr }}}{\sqrt{R \cdot T_{u p s t r}}} \\ & P_{c r}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} \end{aligned}$	
	$\int \sqrt{\gamma\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}$	$P_{\text {ratio }}<P_{c r}$
	$\Psi=\left\{\sqrt{\frac{2 \gamma}{\gamma-1}\left(P_{\text {ratio }}{ }^{\frac{2}{\gamma}}-P_{\text {ratio }}{ }^{\frac{\gamma+1}{\gamma}}\right)}\right.$	$P_{c r} \leq P_{\text {ratio }} \leq P_{\text {lim }}$
Constituent Mass Flow Rates	$\dot{m}_{i}=\dot{m}_{\text {orf }} y_{\text {upstr },} \quad(\quad 2 \quad \gamma+1)$	
Constant Orifice Area		$P_{\text {lim }}<P_{\text {ratio }}$
External Input Orifice Area	$A_{\text {eff }}=A_{\text {orf_ext }} \cdot C d_{\text {ext }}$	

Calculation	Equations
Throttle Body Geometry	$\theta_{t h r}=P c t_{t h r} \cdot \frac{90}{100}$
	$A_{\text {eff_thr }}=\frac{\pi}{4} D_{t h r}{ }^{2} C_{d_{-} t h r}\left(\theta_{t h r}\right)$

The equations use these variables.

$A_{e f f}, A_{\text {eff _ }}$ thr	Effective orifice cross-sectional area
$A_{\text {orf_cnst }}$,	Orifice area
$A_{\text {orf_ext }}$	
$C d_{\text {cnst }}, C d_{\text {ext }}$	Discharge coefficient
R	Ideal gas constant
$P_{c r}$	Critical pressure at which choked flow occurs
γ	Ratio of specific heats
Γ	Flow function based on pressure ratio
$P_{\text {ratio }}$	Pressure ratio
$P_{u p s t r}$	Upstream orifice pressure
$P_{\text {downstr }}$	Downstream orifice pressure
$P_{\text {lim }}$	Pressure ratio limit to avoid singularities as the pressure ratio approaches 1
$y_{\text {upstr,i }}$	Upstream species mass fraction for $\mathrm{i}=\mathrm{O}_{2}, \mathrm{~N}_{2}$, unburned fuel, CO_{2}, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{PM}$, air, and burned gas
\dot{m}_{i}	Mass flow rate for $\mathrm{i}=\mathrm{O}_{2}, \mathrm{~N}_{2}$, unburned fuel, $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}$, PM, air, and burned gas
$\theta_{t h r}$	Throttle angle

$P c t_{t h r}$
$C_{d _t h r}$
$D_{t h r}$

Percentage of throttle body that is open
Throttle discharge coefficient Throttle body diameter at opening

Ports

Input

A - Inlet orifice pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing orifice:

- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet orifice pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing orifice:

- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Area - Orifice area

scalar

External area input for orifice area, $A_{\text {orf_ext }}$, in $\mathrm{m}^{\wedge} 2$.

Dependencies

To create this port, select External input for the Orifice area model parameter.

ThrPct - Throttle body percent open
 scalar

Percentage of throttle body that is open, $P c t_{t h r}$.

Dependencies

To create this port, select Throttle body geometry for the Orifice area model parameter.

Output

A - Inlet mass flow rate, heat flow rate, temperature

two-way connector port
Bus containing:

- MassFlw - Mass flow rate through inlet, in kg/s
- HeatFlw - Inlet heat flow rate, in J/s
- Temp - Inlet temperature, in K
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet mass flow rate, heat flow rate, temperature

two-way connector port

Bus containing:

- MassFlw - Outlet mass flow rate, in kg/s
- HeatFlw - Outlet heat flow rate, in J/s
- Temp - Outlet temperature, in K
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal			Description	Units
Flw	PrsAdj	DwnstrmPrs	Downstream pressure	Pa
		UpstrmPrs	Upstream pressure	Pa
		PrsRatio	Pressure ratio	NA
		DwnstrmTemp	Downstream temperature	K

Signal	ThrAng	Throttle area, if applicable	deg

Parameters

Block Options

Orifice area model - Select model

Constant (default)|External input|Throttle body geometry
Orifice area model.

Dependencies

The orifice area model enables the parameters on the Area Parameters tab.

Image type - Icon color
 Cold (default) | Hot

Block icon color:

- Cold for blue.
- Hot for red.

General

Ratio of specific heats, gamma - Ratio

scalar
Ratio of specific heats, γ.
Ideal gas constant, R-Constant
scalar

Ideal gas constant, R, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.
Pressure ratio linearize limit, Plim - Limit
scalar

Pressure ratio limit to avoid singularities as the pressure ratio approaches 1, $P_{\text {lim }}$.

Area

Constant area value, Aorf_cnst - Area scalar

Constant area value, $A_{\text {orf_cnst }}$, in $\mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Constant for the Orifice area model parameter.
Discharge coefficient, Cd_cnst-Coefficient
scalar

Discharge coefficient for constant area, $C d_{\text {cnst }}$.

Dependencies

To enable this parameter, select Constant for the Orifice area model parameter.
Discharge coefficient, Cd_ext - Coefficient
scalar

Discharge coefficient for external area input, $C d_{\text {ext }}$.

Dependencies

To enable this parameter, select External input for the Orifice area model parameter.

Throttle diameter, Dthr - Diameter scalar

Throttle body diameter at opening, $D_{t h r}$, in mm.

Dependencies

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

```
Discharge coefficient table, ThrCd - Coefficient
array
```

Discharge coefficient table, $C_{d_{-}} t h r$.

Dependencies

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

Angle breakpoints, ThrAngBpts - Angle array

Angle breakpoints, $T h r_{\text {ang_bpts }}$, in deg.

Dependencies

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

See Also
Control Volume System | Heat Exchanger
Introduced in R2017a

Flux-Based PMSM

Flux-based permanent magnet synchronous motor
Library: Powertrain Blockset / Propulsion / Electric Motors

Description

The Flux-Based PMSM block implements a flux-based three-phase permanent magnet synchronous motor (PMSM) with a tabular-based electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Flux-based motor models take into account magnetic saturation and iron losses. To calculate the magnetic saturation and iron loss, the Flux-Based PMSM block uses the inverse of the flux linkages. To obtain the block parameters, you can use finite-element analysis (FEA) or measure phase voltages using a dynamometer.

Three-Phase Sinusoidal Model Electrical System

The block implements equations that are expressed in a stationary rotor reference (dq) frame. The d-axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

The block uses these equations.

Calculation	Equation
q - and d-axis voltage	
	$v_{d}=\frac{d \psi_{d}}{d t}+R_{s} i_{d}-\omega_{e} \psi_{q}$
q - and d-axis current	$v_{q}=\frac{d \psi_{q}}{d t}+R_{s} i_{q}+\omega_{e} \psi_{d}$
Electromechanical torque	$i_{d}=f\left(\psi_{d}, \psi_{q}\right)$ $i_{q}=g\left(\psi_{d}, \psi_{q}\right)$

The equations use these variables.

$$
T_{e}=1.5 P\left[\psi_{d} i_{q}-\psi_{q} i_{d}\right]
$$

$\omega_{m} \quad$ Rotor mechanical speed

ω_{e}	Rotor electrical speed
$\Theta_{d a}$	dq stator electrical angle with respect to the rotor a-axis
R_{s}, R_{r}	Resistance of the stator and rotor windings, respectively
i_{q}, i_{d}	q - and d-axis current, respectively
v_{q}, v_{d}	q - and d-axis voltage, respectively
Ψ_{q}, Ψ_{d}	q - and d-axis magnet flux, respectively
P	Number of pole pairs
T_{e}	Electromagnetic torque

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two- phase quadrature quantities (α, β).	$x_{\alpha}=\frac{2}{3} x_{a}-\frac{1}{3} x_{b}-\frac{1}{3} x_{c}$ Park
Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q).	$x_{\beta}=\frac{\sqrt{3}}{2} x_{b}=\frac{\sqrt{3}}{2} x_{c}$ $x_{d}=x_{\alpha} \cos \theta_{e}+x_{\beta} \sin \theta_{e}$ $x_{q}=-x_{\alpha} \sin \theta_{e}+x_{\beta} \cos \theta_{e}$	

Transform	Description	Equations
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b).	$\begin{aligned} & x_{a}=x_{a} \\ & x_{b}=-\frac{1}{2} x_{\alpha}+\frac{\sqrt{3}}{2} x_{\beta} \end{aligned}$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β).	

The transforms use these variables.

ω_{m}	Rotor mechanical speed
P	Motor pole pairs
ω_{e}	Rotor electrical speed
Θ_{e}	Rotor electrical angle
x	Phase current or voltage

Mechanical System

The rotor angular velocity is given by:

$$
\begin{aligned}
\frac{d}{d t} \omega_{m} & =\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t} & =\omega_{m}
\end{aligned}
$$

The equations use these variables.

J	Combined inertia of rotor and load
F	Combined viscous friction of rotor and load
θ_{m}	Rotor mechanical angular position
T_{m}	Rotor shaft torque

T_{e}	Electromagnetic torque
T_{f}	Combined rotor and load friction torque
ω_{m}	Rotor mechanical speed

Ports

Input

LdTrq - Rotor shaft torque

scalar
Rotor shaft input torque, T_{m}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select Torque for the Port Configuration parameter.

Spd - Rotor shaft speed
 scalar

Angular velocity of the rotor, ω_{m}, in rad/s.

Dependencies

To create this port, select Speed for the Port Configuration parameter.

PhaseVolt - Stator terminal voltages
 vector

Stator terminal voltages, V_{a}, V_{b}, and V_{c}, in V .

Dependencies

To create this port, select Speed or Torque for the Port Configuration parameter.

Output

Info - Bus signal

bus

The bus signal contains these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_{a}	A
IbStator	Stator phase current B	i_{b}	A
IcStator	Stator phase current C	i_{c}	A
IdSync	d-axis current	i_{d}	A
IqSync	q axis current	i_{q}	A
VdSync	d-axis voltage	v_{d}	V
VqSync	q-axis axis voltage	v_{q}	V
MtrSpd	Angular mechanical velocity of the rotor	ω_{m}	$\mathrm{rad} / \mathrm{s}$
MtrPos	Rotor mechanical angular position	θ_{m}	rad
MtrTrq	Electromagnetic torque	T_{e}	$\mathrm{~N} \cdot \mathrm{~m}$

Parameters

Port Configuration - Select port configuration

Torque (default) | Speed
This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	LdTrq
	PhaseVolt
	Info
Speed	Spd
	PhaseVolt
	Info

Stator phase resistance, Rs - Resistance scalar

Stator phase resistance, R_{s}, in ohm.
Vector of d-axis flux, flux_d - Flux vector
d-axis flux, Ψ_{d}, in Wb .
Vector of q-axis flux, flux_q-Flux vector
q-axis flux, Ψ_{q}, in Wb .
Corresponding d-axis current, id - Current vector
d-axis current, i_{d}, in A.
Corresponding q-axis current, iq-Current vector
q-axis current, i_{q}, in A.
Number of pole pairs, P - Pole pairs scalar

Motor pole pairs, P.

Initial flux, fluxdq0 - Flux

vector
Initial d - and q-axis flux, $\Psi_{q 0}$ and $\Psi_{d 0}$, in Wb .
Initial mechanical position, theta_init - Angle scalar

Initial rotor angular position, $\theta_{m 0}$, in rad.
Initial mechanical speed, omega_init - Speed scalar

Initial angular velocity of the rotor, $\omega_{m 0}$, in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

Physical inertia, viscous damping, and static friction, mechanical Inertia, damping, friction
 vector

Mechanical properties of the rotor:

- Inertia, J, in $\mathrm{kgm}^{\wedge} 2$
- Viscous damping, F, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$
- Static friction, T_{f}, in $\mathrm{N} \cdot \mathrm{m}$

Dependencies

To enable this parameter, select the Torque configuration parameter.

References

[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." IEEE Transactions on Industry Applications, Vol. 51, No. 4, July/August 2015.
[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.

See Also

Flux-Based PM Controller | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PMSM

Topics

"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

Flux-Based PM Controller

Controller for a flux-based permanent magnet synchronous motor
Library: Powertrain Blockset / Propulsion / Electric Motor Controllers

Description

The Flux Based PM Controller block implements a flux-based, field-oriented controller for an interior permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Flux Based PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations using these variables.

ω	Rotor speed
ω^{*}	Rotor speed command
T^{*}	Torque command
i_{d}	d-axis current
$i^{*}{ }_{d}$	d-axis current command
i_{q}	q-axis current
$i^{*}{ }_{q}$	q-axis current command
v_{d},	d-axis voltage
v_{d}^{*}	d-axis voltage command
v_{q}	q-axis voltage
v_{q}^{*}	q-axis voltage command
v_{a}, v_{b}, v_{c}	Stator phase a, b, c voltages
i_{a}, i_{b}, i_{c}	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Flux Based PM Controller block.

The state filter is a low-pass filter that generates the acceleration command based on the speed command. The discrete form of characteristic equation is given by:

$$
z+K_{s f} T_{s m}-1
$$

The filter calculates the gain using this equation.

$$
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
$$

The equations use these variables.

$E V_{s f}$	Bandwidth of the speed command filter
$T_{s m}$	Motion controller sample time
$K_{s f}$	Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. To filter the speed, the block uses a proportional integral (PI) controller.

$$
T_{c m d}=K p_{\omega}\left(\omega_{m}^{*}-\omega_{m}\right)+K i_{\omega} \frac{z T_{s m}}{z-1}\left(\omega_{m}^{*}-\omega_{m}\right)
$$

The equations use these variables.

ω_{m}	Rotor speed
ω_{m}^{*}	Rotor speed command
$T_{c m d}$	Torque command
$K p_{\omega}$	Speed regulator proportional gain
$K i_{\omega}$	Speed regulator integral gain
$T_{s m}$	Speed regulator sample rate

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

The feedforward torque command uses this equation.

$$
T_{c m d_{-} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
$$

where:

J_{p}	Rotor inertia
$T_{c m d f f}$	Torque command feedforward
F_{s}	Static friction torque constant
F_{v}	Viscous friction torque constant
F_{s}	Static friction torque constant
ω_{m}	Rotor speed

The block uses lookup tables to determine the d-axis and q-axis current commands. The lookup tables are functions of mechanical speed and torque. To determine the lookup tables, you can use an external finite element analysis (FEA) models or dynamometer test results.

$$
\begin{aligned}
& i_{\text {dref }}=f\left(\left|\omega_{m}\right|,\left|T_{\text {ref }}\right|\right) \\
& i_{\text {qref }}=\operatorname{sign}\left(T_{\text {ref }}\right) * f\left(\left|\omega_{m}\right|,\left|T_{\text {ref }}\right|\right)
\end{aligned}
$$

The equations use these variables.

ω_{m}	Rotor speed
$T_{\text {ref }}$	Torque command
$i_{\text {dref }}, i_{\text {qref }}$	d - and q-axis reference current, respectively

The block uses these equations to calculate the voltage in the motor reference frame.

$$
\begin{aligned}
& v_{d}=\frac{d \psi_{d}}{d t}+R_{s} i_{d}-\omega_{e} \psi_{q} \\
& v_{q}=\frac{d \psi_{q}}{d t}+R_{s} i_{q}+\omega_{e} \psi_{d} \\
& \frac{d \psi_{d}}{d t}+R_{s} i_{d}=K p_{d}\left(i_{d}^{*}-i_{d}\right)+K i_{d} \frac{z T_{s t}}{z-1}\left(i_{d}^{*}-i_{d}\right) \\
& \frac{d \psi_{q}}{d t}+R_{s} i_{q}=K p_{q}\left(i_{q}^{*}-i_{q}\right)+K i_{q} \frac{z T_{s t}}{z-1}\left(i_{q}^{*}-i_{q}\right) \\
& v_{d}=K p_{i}\left(i_{d}^{*}-i_{d}\right)+K i_{d} \frac{z T_{s t}}{z-1}\left(i_{d}^{*}-i_{d}\right)+\omega_{e} \psi_{q} \\
& v_{q}=K p_{i}\left(i_{q}^{*}-i_{q}\right)+K i_{q} \frac{z T_{s t}}{z-1}\left(i_{q}^{*}-i_{q}\right)-\omega_{e} \psi_{d} \\
& \psi_{q}=f\left(i_{d}, i_{q}\right) \\
& \psi_{d}=f\left(i_{d}, i_{q}\right)
\end{aligned}
$$

The equations use these variables.

ω_{m}	Rotor mechanical speed
ω_{e}	Rotor electrical speed
R_{s}, R_{r}	Resistance of the stator and rotor windings, respectively
i_{q}, i_{d}	q - and d-axis current, respectively
v_{q}, v_{d}	q - and d-axis voltage, respectively

Ψ_{q}, Ψ_{d}	q - and d-axis magnet flux, respectively
$T_{s t}$	Current regulator sample rate
$K i_{d}, K i_{q}$	d - and q - axis integral gain, respectively
$K p_{d}, K p_{q}$	d - and q - axis proportional gain, respectively

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two- phase quadrature quantities (α, β).	$x_{\alpha}=\frac{2}{3} x_{a}-\frac{1}{3} x_{b}-\frac{1}{3} x_{c}$ $x_{\beta}=\frac{\sqrt{3}}{2} x_{b}=\frac{\sqrt{3}}{2} x_{c}$ $x_{d}=x_{\alpha} \cos \theta_{e}+x_{\beta} \sin \theta_{e}$ $x_{q}=-x_{\alpha} \sin \theta_{e}+x_{\beta} \cos \theta_{e}$
Inverse Clarke	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q).	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b).
$x_{a}=x_{a}$		
$x_{b}=-\frac{1}{2} x_{\alpha}+\frac{\sqrt{3}}{2} x_{\beta}$		

Transform	Description	Equations
Inverse Park	Converts an orthogonal rotating	
	reference frame (d, q) into	
	balanced two-phase orthogonal	
stationary quantities (α, β).	$x_{\alpha}=x_{d} \cos \theta_{e}-x_{q} \sin \theta_{e}$	
$x_{\beta}=x_{d} \sin \theta_{e}+x_{q} \cos \theta_{e}$		

The transforms use these variables.

ω_{m}	Rotor speed
P	Rotor pole pairs
ω_{e}	Rotor electrical speed
Θ_{e}	Rotor electrical angle
x	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge.

The block uses these equations.

Load power	$L d_{P w r}=v_{a} i_{a}+v_{b} i_{b}+v_{c} i_{c}$
Source power	$S r c_{P w r}=L d_{P w r}+P w r_{L o s s}$
DC bus current	$i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}$
Estimated rotor torque	$T_{e}=1.5 P\left[\psi_{d} i_{q}-\psi_{q} i_{d}\right]$
Power loss for single efficiency source to load	$P w r_{\text {Loss }}=\frac{100-E f f}{E f f} \cdot L d_{P w r}$
Power loss for single efficiency load to source	$P w r_{\text {Loss }}=\frac{100-E f f}{100} \cdot\left\|L d_{P w r}\right\|$

Power loss for tabulated efficiency	$P w r_{L o s s}=f\left(\omega_{m}, M t r T r q_{e s t}\right)$

The equations use these variables.
$v_{a}, v_{b}, v_{c} \quad$ Stator phase $\mathrm{a}, \mathrm{b}, \mathrm{c}$ voltages
$v_{\text {bus }} \quad$ Estimated DC bus voltage
$i_{a}, i_{b}, i_{c} \quad$ Stator phase a, b, c currents
$i_{\text {bus }} \quad$ Estimated DC bus current
Eff Overall inverter efficiency
$\omega_{m} \quad$ Rotor mechanical speed
$L_{q}, L_{d} \quad q$ - and d-axis winding inductance, respectively
$\Psi_{q}, \Psi_{d} \quad q$ - and d-axis magnet flux, respectively
$i_{q}, i_{d} \quad q$ - and d-axis current, respectively
$\lambda \quad$ Permanent magnet flux linkage
$P \quad$ Rotor pole pairs

Electrical Losses

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.

Setting	Block Implementation
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	-Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. -Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq - Rotor speed command
 scalar

Rotor speed command, $\omega^{*}{ }_{m}$, in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd - Torque command
 scalar

Torque command, T^{*}, in $N \cdot m$.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt - DC bus voltage

scalar
DC bus voltage, $v_{\text {bus }}$, in V .

PhaseCurrA - Current

scalar
Stator current phase a, i_{a}, in A .

PhaseCurrB - Current

scalar
Stator current phase b, i_{b}, in A.

SpdFdbk - Rotor speed scalar

Rotor speed, ω_{m}, in rad/s.

PosFdbk - Rotor electrical angle

scalar
Rotor electrical angle, Θ_{m}, in rad.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W

Signal	Description	Units
MtrTrqEst	Estimated motor torque	$\mathrm{N} \cdot \mathrm{m}$

BusCurr - Bus current scalar

Estimated DC bus current, $i_{\text {bus }}$, in A.

PhaseVolt - Stator terminal voltages

array
Stator terminal voltages, V_{a}, V_{b}, and V_{c}, in V.

Parameters

Block Options

Control Type - Select control

Speed Control (default)|Torque Control

If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor Parameters

```
Number of pole pairs, PolePairs - Poles
scalar
```

Motor pole pairs, P.

```
Vector of d-axis current breakpoints, id_index - Current
```

vector
d-axis current, $i_{d-i n d e x}$, in A.
Vector of q-axis current breakpoints, iq_index - currentvector
q-axis current, $i_{q_{-} \text {index, }}$ in A.
Corresponding d-axis flux, lambda_d - Flux
vector
d-axis flux, λ_{d}, in Wb .
Corresponding q-axis flux, lambda_q - Flux
vector
q-axis flux, λ_{q}, in Wb .
Current Controller
Sample time for the torque control, Tst - Timescalar
Torque control sample time, $T_{s t}$, in s.
D-axis proportional gain, Kp_d - Gain
scalar
d-axis proportional gain, $K p_{d}$, in V/A.
Q-axis proportional gain, Kp_q - Gain
scalar
q-axis proportional gain, $K p_{q}$, in V/A.
D-axis integral gain, Ki_d - Gain
scalar
d-axis integral gain, $K i_{d}$, in V/A•s.
Q-axis integral gain, Ki_q - Gain
scalar
q - axis integral gain, $K i_{q}$, in V/A•s.
Vector of speed breakpoints, wpb - Breakpoints
vector

Speed breakpoints, $\omega_{b p}$, in rad/s.
Vector of torque breakpoints, tpb - Breakpoints vector

Torque breakpoints, $T_{b p}$, in $\mathrm{N} \cdot \mathrm{m}$.
Corresponding d-axis current reference, id_ref - Current vector
d-axis reference current, $i_{d r e f}$, in A.
Corresponding q-axis current reference, iq_ref - Current vector
q-axis reference current, $i_{\text {qref }}$, in A.

Speed Controller

Sample time for the motion control, Tsm - Time scalar

Sample time for the motion controller, $T_{s m}$, in s.

Dependencies

To enable this parameter, for the Control Type parameter, select Speed Control.
Speed time constant, Ksf - Time scalar

Speed regulator time constant, $K_{s f}$, in $1 / \mathrm{s}$.

Dependencies

To enable this parameter, for the Control Type parameter, select Speed Control.

Proportional gain, Kp_w - Gain

scalar
Proportional gain, $K p_{\omega}$, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$.

Dependencies

To enable this parameter, for the Control Type parameter, select Speed Control.

Integral gain, Ki_w - Gain

scalar
Integral gain, $K i_{\omega} \mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

Dependencies

To enable this parameter, for the Control Type parameter, select Speed Control.

Inertia compensation, Jcomp - Inertia
 scalar

Inertia compensation, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$.

Dependencies

To enable this parameter, for the Control Type parameter, select Speed Control.

Static friction, Fs - Friction
 scalar

Static friction, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, for the Control Type parameter, select Speed Control.

Viscous damping compensation, Fv - Dampint scalar

Viscous damping compensation, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$.

Dependencies

To enable this parameter, for the Control Type parameter, select Speed Control.
Electrical Losses
Parameterize losses by - Select type
Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. - Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. - Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. - Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. - Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff - Constant scalar

Overall inverter efficiency, Eff, in \%.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Corresponding losses, losses_table - Table

M-by-N matrix
Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints

 1-by-M matrixSpeed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

```
Vector of torques (T) for tabulated efficiency, T_eff_bp -
Breakpoints
1-by-N matrix
```

Torque breakpoints for lookup table when calculating efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table - Table M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

References

[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." IEEE Transactions on Industry Applications, Vol. 51, No. 4, July/August 2015.
[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.

See Also

Flux-Based PMSM | IM Controller | Interior PM Controller | Surface Mount PM Controller

Topics

"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

Heat Exchanger

Intercooler or exhaust gas recirculation (EGR) cooler
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow

Description

The Heat Exchanger block models a heat exchanger, for example, an intercooler or exhaust gas recirculation (EGR) cooler. The inlet (port C) connects to an engine flow component (flow restriction, compressor, turbine, or engine block). The outlet (port B) connects to a volume (control volume or environment). Based on the upstream temperature, heat exchanger effectiveness, and cooling medium temperature, the block determines the heat transfer rate and downstream temperature.

For the heat exchanger effectiveness and cooling medium temperature, you can specify either a constant value or an external input. For example, if you specify a heat exchanger effectiveness that is:

- Equal to 1, the downstream temperature is equal to the cooling medium temperature.
- Equal to 0 , there is no heat transfer to the cooling medium. The downstream temperature is equal to the upstream temperature.

The block assumes no pressure drop. To model pressure losses, use a Flow Restriction block.

Equations

The Heat Exchanger block implements equations that use these variables.

$T_{\text {upstr }}$	Upstream temperature
$T_{d n s t r}$	Downstream temperature
$T_{\text {cool }}$	Cooling medium temperature

Constant cooling medium temperature

$T_{\text {cool,cnst }}$	Constant cooling medium temperature
$T_{\text {cool,input }}$	External input cooling medium temperature
ε	Heat exchanger effectiveness
$\varepsilon_{\text {cnst }}$	Constant heat exchanger effectiveness
$\varepsilon_{\text {input }}$	Input heat exchanger effectiveness
c_{p}	Specific heat at constant pressure
$q_{h t}$	Heat exchanger heat transfer rate
$p_{\text {flw,in }}$	Pressure at inlet
$p_{\text {vol,out }}$	Temperature at outlet
$T_{\text {vol,out }}$	Specific enthalpy at outlet
$h_{\text {vol,out }}$	Heat flow rate at inlet
$q_{\text {in }}$	Heat flow rate at outlet
$q_{\text {out }}$	Temperature at inlet
\dot{m}	Heat exchanger inlet temperature
$T_{\text {flw,in }}$	Heat exchanger outlet temperature specific enthalpy
$T_{\text {in }}$	Inler mass flow rate
$T_{\text {out }}$	$h_{\text {in }}$

Heat exchanger effectiveness measures the effectiveness of heat transfer from the incoming hot fluid to the cooling medium:

$$
\varepsilon=\frac{T_{u p s t r}-T_{d n s t r}}{T_{\text {upstr }}-T_{\text {cool }}}
$$

In an ideal heat exchanger, the downstream temperature equals the cooling temperature. The effectiveness is equal to 1.

$$
\begin{aligned}
& T_{d n s t r}=T_{\text {cool }} \\
& \varepsilon=1
\end{aligned}
$$

The Heat Exchanger block uses the effectiveness to determine the downstream temperature and heat transfer rate.

$$
\begin{aligned}
& T_{d n s t r}=T_{u p s t r}-\varepsilon\left(T_{u p s t r}-T_{c o o l}\right) \\
& q_{h t}=\dot{m} c_{p}\left(T_{u p s t r}-T_{d n s t r}\right)
\end{aligned}
$$

Since the block assumes no pressure drop, $P_{f l u, i n}=P_{v o l, \text { out }}$.
The flow component connection to the heat exchanger inlet determines the direction of the mass flow. Based on the mass flow rate direction, these temperature and heat flow equations apply.

Fluid Flow	Mass Flow Rate	Temperatures and Heat Flow
Forward - From	$\dot{m} \geq 0$	$T_{u p s t r}=T_{f l w, i n}$
engine flow		$T_{\text {in }}=T_{u p s t r}$
component to outlet		$T_{\text {out }}=T_{d n s t r}$
volume		$q_{\text {out }}=\dot{m} c_{p} T_{d n s t r}$

Fluid Flow	Mass Flow Rate	Temperatures and Heat Flow
Reverse - From	$\dot{m}<0$	$T_{\text {upstr }}=T_{\text {vol,out }}$
outlet volume to		$T_{\text {in }}=T_{\text {dnstr }}$
engine flow		$T_{\text {out }}=T_{\text {vol,out }}$
component		$h_{\text {in }}=c_{p} T_{d n s t r}$
		$q_{\text {out }}=\dot{m} h_{\text {vol,out }}$

Ports

Input

C - Inlet mass flow rate, heat flow rate, temperature, mass fractions two-way connector port

Bus containing the heat exchanger:

- MassFlwRate - Mass flow rate at inlet, \dot{m}, in kg / s

HeatFlwRate - Heat flow rate at inlet, $q_{i n}$, in J/s
Temp - Temperature at inlet, $T_{f l w, i n}$, in K

- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet volume pressure, temperature, enthalpy, mass fractions

two-way connector port
Bus containing the heat exchanger:
-
Prs - Pressure at outlet, $p_{\text {vol,out }}$, in Pa
Temp - Temperature at outlet, $T_{\text {vol, out }}$, in K
-
Enth — Specific enthalpy at outlet, $h_{\text {vol, out }}$, in J/kg

- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Effct - Heat exchanger effectiveness
scalar

Heat exchanger effectiveness, $\varepsilon_{\text {input }}$.

Dependencies

To create this port, select External input for the Effectiveness model parameter.

CoolTemp - Cooling medium temperature

scalar

Cooling medium temperature, $T_{\text {cool }, \text { input }}$.

Dependencies

To create this port, select External input for the Cooling medium temperature input parameter.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Units
InletTemp	Heat exchanger inlet temperature	K
OutletTemp	Heat exchanger outlet temperature	K
HeatTrnsfrRate	Heat exchanger heat transfer rate	J / s

C - Inlet flow pressure, temperature, enthalpy, mass fractions

two-way connector port
Bus containing the heat exchanger:

Prs - Pressure at inlet, $p_{f l w, \text { in }}$, in Pa

- Temp - Temperature at inlet, $T_{i n}$, in K
- Enth - Specific enthalpy at inlet, $h_{\text {in }}$, in J/kg
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet volume mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port
Bus containing the heat exchanger:

- MassFlwRate - Mass flow rate at outlet, \dot{m}, in kg / s

HeatFlwRate - Heat flow rate at outlet, $q_{\text {out }}$, in J/s

- Temp - Temperature at outlet, $T_{\text {out }}$, in K
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Parameters

Block Options

Effectiveness model - Model type for heat effectiveness
Constant (default)|External input
Type of model to calculate the heat exchanger effectiveness.

Dependencies

- Selecting External input creates the Effct port.
- Selecting Constant enables the Heat exchanger effectiveness, ep_cnst parameter.

Cooling medium temperature input - Specify type

Constant (default)|External input
Cooling medium temperature input.

Dependencies

- Selecting External input creates the CoolTemp port.
- Selecting Constant enables the Cooling medium temperature, T_cool_cnst parameter.

Image type - Icon color

Intercooler (default) |EGR cooler
Block icon color:

- Intercooler for blue, to indicate an intercooler
- EGR cooler for red, to indicate exhaust-gas-recirculation (EGR) cooling

Heat exchanger effectiveness, ep_cnst - Effectiveness

 scalarConstant heat exchanger effectiveness, $\varepsilon_{c n s t}$.

Dependencies

To enable this parameter, select Constant for the Effectiveness model parameter.
Cooling medium temperature, T_cool_cnst - Temperature scalar

Constant cooling medium temperature, $T_{\text {cool,cnst }}$, in K.

Dependencies

To enable this parameter, select Constant for the Cooling medium temperature input parameter.

Specific heat at constant pressure, cp - Specific heat scalar

Specific heat at constant pressure, c_{p}, in $\mathrm{J} /(\mathrm{kg} * \mathrm{~K})$.

References

[1] Eriksson, Lars and Nielsen, Lars. Modeling and Control of Engines and Drivelines.
Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2014.

See Also

Control Volume System | Flow Restriction

Introduced in R2017a

Mapped Motor

Mapped motor and drive electronics operating in torque-control mode Library: Powertrain Blockset / Propulsion / Electric Motors Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped Motor block implements a mapped motor and drive electronics operating in torque-control mode. The output torque tracks the torque reference demand and includes a motor-response and drive-response time constant. Use the block for fast system-level simulations when you do not know detailed motor parameters, for example, for motor power and torque tradeoff studies. The block assumes that the speed fluctuations due to mechanical load do not affect the motor torque tracking.

You can specify:

- Port configuration - Input torque or speed
- Electrical torque range - Torque speed envelope or maximum motor power and torque
- Electrical loss - Single operating point, measured efficiency, or measured loss

Electrical Torque

To specify the range of torque and speed that the block allows, on the Electrical Torque tab, for Parametrized by, select one of these options.

Setting	Block Implementation
Tabulated torque-speed envelope	Range specified as a set of speed data points and corresponding maximum torque values.
Maximum torque and power	Range specified with maximum torque and maximum power.

For either method, the block implements an envelope similar to this.

Electrical Losses

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Sum of these terms, measured at a single measurement point: -
	Fixed losses independent of torque and speed, P_{0}. Use P_{0} to account for fixed converter losses. A torque-dependent electrical loss $k \tau^{2}$, where k is a constant and τ is the torque. Represents ohmic losses in the copper windings. A speed-dependent electrical loss $k_{\mathrm{w}} \omega^{2}$, where k_{w} is a constant and ω is the speed. Represents iron losses due to eddy currents.
Tabulated loss data	Loss lookup table that is a function of motor speeds and load torques.

Setting	Block Implementation
Tabulated efficiency data	Efficiency lookup table that is a function of motor speeds and load torques:
	-Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Battery Current

The block calculates the battery current using the mechanical power, power loss, and battery voltage. Positive current indicates battery discharge. Negative current indicates battery charge.

$$
\text { BattAmp }=\frac{\text { MechPwr }+ \text { PwrLoss }}{\text { BattVolt }}
$$

The equation uses these variables.

BattVolt Battery voltage

MechPwr Mechanical power
PwrLoss Power loss
BattCurr Battery current

Ports

Input

BattVolt - Battery voltage

scalar
Battery voltage, BattVolt, in V.

TrqCmd - Commanded motor torque scalar
 Commanded motor torque, $\operatorname{Tr} q_{c m d}$, in $\mathrm{N} \cdot \mathrm{m}$.
 Dependencies

To create this input port, for the Port configuration, select Torque.

MtrSpd - Motor output shaft speed
 scalar

Motor shaft speed, $M t r_{\text {spd }}$, in rad/s.

Dependencies

To create this input port, for the Port configuration, select Speed.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Units
MechPwr	Mechanical power	W
PwrLoss	Internal inverter and motor power loss	W

BattCurr - Battery current
 scalar

Battery current draw or demand, $I_{\text {batt }}$, in A.

MtrTrq - Motor torque

scalar
Motor output shaft torque, $\mathrm{Mtr}_{t r q}$, in $\mathrm{N} \cdot \mathrm{m}$.

MtrSpd - Motor shaft speed

scalar
Motor shaft speed, $M t r_{\text {spd }}$, in rad/s.

Dependencies

To create this output port, for the Port configuration, select Torque.

Parameters

Block Options

Port configuration - Select port configuration

Torque (default) | Speed
This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	Outpost Mt rSpd
Speed	Input Mt rSpd

Electrical Torque

Parameterized by - Select type

Tabulated torque-speed envelope (default) | Maximum torque and power

Setting	Block Implementation
Tabulated torque-speed envelope	Range specified as a set of speed data points and corresponding maximum torque values.
Maximum torque and power	Range specified with maximum torque and maximum power.

For either method, the block implements an envelope similar to this.

Vector of rotational speeds, w_t - Rotational speeds vector

Rotational speeds for permissible steady-state operation, in rad/s. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

Dependencies

To create this parameter, for the Parameterized by parameter, select Tabulated torque-speed envelope.

Vector of maximum torque values, T_t-Torque
vector
Maximum torque values for permissible steady state, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this parameter, for the Parameterized by parameter, select Tabulated torque-speed envelope.

Maximum torque, torque_max - Torque
scalar
The maximum permissible motor torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this parameter, for the Parameterized by parameter, select Maximum torque and power.

Maximum power, power_max - Power scalar

The maximum permissible motor power, in W.

Dependencies

To create this parameter, for the Parameterized by parameter, select Maximum torque and power.

```
Torque control time constant, Tc - Time constant
scalar
```

Time constant with which the motor driver tracks a torque demand, in s.

Electrical Losses

Parameterize losses by - Select type

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Sum of these terms, measured at a single measurement point:
	- Fixed losses independent of torque and speed, P_{0}. Use P_{0} to account for fixed converter losses. A torque-dependent electrical loss $k \tau^{2}$, where k is a constant and τ is the torque. Represents ohmic losses in the copper windings. A speed-dependent electrical loss $k_{\mathrm{w}} \omega^{2}$, where k_{w} is a constant and ω is the speed. Represents iron losses due to eddy currents.
Tabulated loss data	Loss lookup table that is a function of motor speeds and load torques.

Setting	Block Implementation
Tabulated efficiency data	Efficiency lookup table that is a function of motor speeds and load torques:
	-Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Motor and drive overall efficiency, eff - Efficiency scalar

The block defines overall efficiency as:

$$
\eta=100 \frac{\tau_{0} \omega_{0}}{\tau_{0} \omega_{0}+P_{0}+k \tau_{0}^{2}+k_{w} \omega_{0}^{2}}
$$

The equation uses these variables.

τ_{0}	Torque at which efficiency is measured
ω_{0}	Speed at which efficiency is measured
P_{0}	Fixed losses independent of torque or speed
$k \tau_{0}^{2}$	Torque-dependent electrical losses

$k_{w} \omega^{2} \quad$ Speed-dependent iron losses
At initialization, the block solves the efficiency equation for k. The block neglects losses associated with the rotor damping.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Speed at which efficiency is measured, w_eff - Speed scalar

Speed at which efficiency is measured, in rad/s.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Torque at which efficiency is measured, T_eff - Torque scalar

Torque at which efficiency is measured, in $N \cdot m$.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Iron losses, Piron - Power

scalar
Iron losses at the speed and torque at which efficiency is defined, in W.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Fixed losses independent of torque and speed, Pbase - Power scalar

Fixed electrical loss associated with the driver when the motor current and torque are zero, in W.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

```
Vector of speeds (w) for tabulated losses, w_eff_bp - Breakpoints
[1 x m] vector
```

Speed breakpoints for lookup table when calculating losses, in rad/s. Array dimensions are 1 by the number of speed breakpoints, m.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Tabulated loss data or Tabulated efficiency data

```
Vector of torques (T) for tabulated losses, T_eff_bp - Breakpoints
[1 x n] vector
```

Torque breakpoints for lookup table when calculating losses, in $\mathrm{N} \cdot \mathrm{m}$. Array dimensions are 1 by the number of torque breakpoints, n.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Tabulated loss data or Tabulated efficiency data

Corresponding losses, losses_table - Table

 [m x n] arrayArray of values for electrical losses as a function of speed and torque, in W. Each value specifies the losses for a specific combination of speed and torque. The [mxn] array dimensions must match the speed, m, and torque, n, breakpoint vector dimensions.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Tabulated loss data.

Corresponding efficiency, efficiency_table - Table [m x n] array

Array of efficiency as a function of speed and torque, in \%. Each value specifies the losses for a specific combination of speed and torque. The [mxn] array dimensions must match the speed, m, and torque, n, breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Tabulated efficiency data.

Mechanical

Rotational inertia, J - Inertia scalar

Rotor resistance to change in motor motion, in $\mathrm{kg}^{*} \mathrm{~m}^{2}$. The value can be zero.

Dependencies

To create this parameter, for the Port configuration parameter, select Torque.

Rotor damping, b - Damping

scalar
Rotor damping, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Dependencies

To create this parameter, for the Port configuration parameter, select Torque.

Initial rotor speed, omega_o - Speed scalar

Rotor speed at the start of the simulation, in rad/s.

Dependencies

To create this parameter, for the Port configuration parameter, select Torque.

See Also
Flux-Based PMSM | Induction Motor | Interior PMSM | Surface Mount PMSM
Introduced in R2017a

Induction Motor

Three-phase induction motor

Library: Powertrain Blockset / Propulsion / Electric Motors

Description

The Induction Motor block implements a three-phase induction motor. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Three-Phase Sinusoidal Model Electrical System

The block implements equations that are expressed in a stationary rotor reference (qd) frame. The d-axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

The block uses these equations to calculate the electrical speed ($\omega_{\text {em }}$) and slip speed ($\omega_{\text {slip }}$).

$$
\begin{aligned}
& \omega_{e m}=P \omega_{m} \\
& \omega_{s l i p}=\omega_{s y n}-\omega_{e m}
\end{aligned}
$$

To calculate the dq rotor electrical speed with respect to the rotor A-axis ($d A$), the block uses the difference between the stator a-axis (da) speed and slip speed:

$$
\omega_{d A}=\omega_{d a}-\omega_{e m}
$$

To simplify the equations for the flux, voltage, and current transformations, the block uses a stationary reference frame:

$$
\begin{aligned}
\omega_{d a} & =0 \\
\omega_{d A} & =-\omega_{e m}
\end{aligned}
$$

Calculation	Equation
Flux	$\begin{aligned} & \frac{d}{d t}\left[\begin{array}{l} \lambda_{s d} \\ \lambda_{s q} \end{array}\right]=\left[\begin{array}{l} v_{s d} \\ v_{s q} \end{array}\right]-R_{s}\left[\begin{array}{l} i_{s d} \\ i_{s q} \end{array}\right]-\omega_{d a}\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{l} \lambda_{s d} \\ \lambda_{s q} \end{array}\right] \\ & \frac{d}{d t}\left[\begin{array}{l} \lambda_{r d} \\ \lambda_{r q} \end{array}\right]=\left[\begin{array}{l} v_{r d} \\ v_{r q} \end{array}\right]-R_{r}\left[\begin{array}{l} i_{r d} \\ i_{r q} \end{array}\right]-\omega_{d A}\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{l} \lambda_{r d} \\ \lambda_{r q} \end{array}\right] \\ & {\left[\begin{array}{l} \lambda_{s d} \\ \lambda_{s q} \\ \lambda_{r d} \\ \lambda_{r q} \end{array}\right]=\left[\begin{array}{cccc} L_{s} & 0 & L_{m} & 0 \\ 0 & L_{s} & 0 & L_{m} \\ L_{m} & 0 & L_{r} & 0 \\ 0 & L_{m} & 0 & L_{r} \end{array}\right]\left[\begin{array}{l} i_{s d} \\ i_{s q} \\ i_{r d} \\ i_{r q} \end{array}\right]} \end{aligned}$
Current	$\left[\begin{array}{c}i_{s d} \\ i_{s q} \\ i_{r d} \\ i_{r q}\end{array}\right]=\left(\frac{1}{L_{m}^{2}-L_{r} L_{s}}\right)\left[\begin{array}{cccc}-L_{r} & 0 & L_{m} & 0 \\ 0 & -L_{r} & 0 & L_{m} \\ L_{m} & 0 & -L_{s} & 0 \\ 0 & L_{m} & 0 & -L_{s}\end{array}\right]\left[\begin{array}{c}\lambda_{s d} \\ \lambda_{s q} \\ \lambda_{r d} \\ \lambda_{r d}\end{array}\right]$
Inductance	$\begin{aligned} & L_{s}=L_{l s}+L_{m} \\ & L_{r}=L_{l r}+L_{m} \end{aligned}$
Electromagnetic torque	$T_{e}=P L_{m}\left(i_{s q} i_{r d}-i_{s d} i_{r q}\right)$
Power invariant dq transformation to ensure that the dq and three phase powers are equal	$\begin{aligned} & {\left[\begin{array}{l} v_{s d} \\ v_{s q} \end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc} \cos \left(\Theta_{d a}\right) & \cos \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & \cos \left(\Theta_{d a}+\frac{2 \pi}{3}\right) \\ -\sin \left(\Theta_{d a}\right) & -\sin \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & -\sin \left(\Theta_{d a}+\frac{2 \pi}{3}\right) \end{array}\right]\left[\begin{array}{l} v_{a} \\ v_{b} \\ v_{c} \end{array}\right.} \\ & {\left[\begin{array}{l} i_{a} \\ i_{b} \\ i_{c} \end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{cc} \cos \left(\Theta_{d a}\right) & -\sin \left(\Theta_{d a}\right) \\ \cos \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & -\sin \left(\Theta_{d a}-\frac{2 \pi}{3}\right) \\ \cos \left(\Theta_{d a}+\frac{2 \pi}{3}\right) & -\sin \left(\Theta_{d a}+\frac{2 \pi}{3}\right) \end{array}\right]\left[\begin{array}{l} i_{s d} \\ i_{s q} \end{array}\right]} \end{aligned}$

The equations use these variables.

ω_{m}	Angular velocity of the rotor
$\omega_{e m}$	Electrical rotor speed
$\omega_{s l i p}$	Electrical rotor slip speed
$\omega_{s y n}$	Synchronous rotor speed
$\omega_{d a}$	dq stator electrical speed with respect to the rotor a-axis
$\omega_{d A}$	dq stator electrical speed with respect to the rotor A-axis
$\Theta_{d a}$	dq stator electrical angle with respect to the rotor a-axis
$\Theta_{d A}$	dq stator electrical angle with respect to the rotor A-axis
L_{q}, L_{d}	q-and d-axis inductances
L_{s}	Stator inductance
L_{r}	Rotor inductance
L_{m}	Magnetizing inductance
$L_{l s}$	Stator leakage inductance
$L_{l r}$	Rotor leakage inductance
$v_{s q}, v_{s d}$	Stator q-and d-axis voltages
$i_{s q}, i_{s d}$	Stator q-and d-axis currents
$\lambda_{s q}, \lambda_{s d}$	Stator q-and d-axis flux
$i_{r q}, i_{r d}$	Rotor q-and d-axis currents
$\lambda_{r q}, \lambda_{r d}$	Rotor q-and d-axis flux
v_{a}, v_{b}, v_{c}	Stator voltage phases a, b, c
i_{a}, i_{b}, i_{c}	Stator currents phases a, b, c
R_{s}	Resistance of the stator windings
R_{r}	Resistance of the rotor windings
P	Number of pole pairs
T_{e}	

Mechanical System

The rotor angular velocity is given by:

$$
\begin{aligned}
\frac{d}{d t} \omega_{m} & =\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t} & =\omega_{m}
\end{aligned}
$$

The equations use these variables.

J	Combined inertia of rotor and load
F	Combined viscous friction of rotor and load
θ_{m}	Rotor mechanical angular position
T_{m}	Rotor shaft torque
T_{e}	Electromagnetic torque
T_{f}	Rotor shaft static friction torque
ω_{m}	Angular mechanical velocity of the rotor

Ports

Input

LdTrq - Rotor shaft torque

scalar
Rotor shaft input torque, T_{m}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select Torque for the Port configuration parameter.

Spd - Rotor shaft speed

scalar

Angular velocity of the rotor, ω_{m}, in rad/s.

Dependencies

To create this port, select Speed for the Port configuration parameter.

PhaseVolt - Stator terminal voltages
 vector

Stator terminal voltages, V_{a}, V_{b}, and V_{c}, in V .

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_{a}	A
IbStator	Stator phase current B	i_{b}	A
IcStator	Stator phase current C	i_{c}	A
IdSta	Direct axis current	$i_{s d}$	A
IqSta	Quadrature axis current	$i_{s q}$	A
VdSta	Direct axis voltage	$v_{s d}$	V
VqSta	Quadrature axis voltage	$v_{s q}$	V
MtrSpd	Angular velocity of the rotor	ω_{m}	$\mathrm{rad} / \mathrm{s}$
MtrPos	Rotor angular position	θ_{m}	rad
MtrTrq	Electromagnetic torque	T_{e}	$\mathrm{~N} \cdot \mathrm{~m}$

Parameters

Configuration

Port configuration - Select port configuration

Torque (default) | Speed
This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	PhaseV
	Info
	LdTrq
Speed	PhaseV
	Info
	Spd

Stator resistance and leakage inductance, Zs - Resistance and inductance

vector
Stator resistance, R_{S}, in ohms and leakage inductance, $L_{l s}$, in H.
Rotor resistance and leakage inductance, Zr - Resistance and inductance vector

Rotor resistance, R_{r}, in ohms and leakage inductance, $L_{l r}$, in H .

Magnetizing inductance, Lm - Inductance

scalar

Magnetizing inductance, L_{m}, in H .
Number of pole pairs, P - Pole pairs
scalar
Motor pole pairs, P.
Initial mechanical position, theta_init - Angular position scalar

Initial rotor angular position, $\theta_{m 0}$, in rad.
Initial mechanical speed, omega_init - Angular speed scalar

Initial angular velocity of the rotor, $\omega_{m 0}$, in rad/s.

Dependencies

To enable this parameter, select Torque for the Port configuration.
Physical inertia, viscous damping, static friction, mechanical Inertia, damping, friction

vector

Mechanical properties of the rotor:

- Inertia, J, in $\mathrm{kgm}^{\wedge} 2$
- Viscous damping, F, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$
- Static friction, T_{f}, in $N \cdot m$

Dependencies

To enable this parameter, select Torque for the Port configuration.

References

[1] Mohan, Ned. Advanced Electric Drives: Analysis, Control and Modeling Using Simulink. Minneapolis, MN: MNPERE, 2001.

See Also

Flux-Based PMSM | IM Controller | Interior PMSM | Mapped Motor | Surface Mount PMSM

Introduced in R2017a

IM Controller

Internal torque-based, field-oriented controller for an induction motor with an optional outer-loop speed controller
Library: Powertrain Blockset / Propulsion / Electric Motor Controllers

Description

The IM Controller block implements an internal torque-based, field-oriented controller for an induction motor (IM) with an optional outer-loop speed controller. The torque control implements a strategy to control the motor flux. You can specify either speed or torque control.

The IM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.

ω	Rotor speed
ω^{*}	Rotor speed command
T^{*}	Torque command
i_{d}	d-axis current
$i^{{ }^{*}}{ }_{d}$	d-axis current command
i_{q}	q-axis current
$i^{*}{ }_{q}$	q -axis current command
v_{d},	d -axis voltage
$v^{*}{ }_{d}$	d-axis voltage command
v_{q}	q-axis voltage
$v^{*}{ }_{q}$	q-axis voltage command
v_{a}, v_{b}, v_{c}	Stator phase a, b, c voltages
$i_{a,}, i_{b}, i_{c}$	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the IM Controller block.

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the Speed Controller tab:

- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:

$$
z+K_{s f} T_{s m}-1
$$

The filter calculates the gain using this equation.

$$
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
$$

The equation uses these variables.

$E V_{s f}$	Bandwidth of the speed command filter
$T_{s m}$	Motion controller sample time
$K_{s f}$	Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the Speed Controller tab, select Calculate Speed Regulator Gains to compute:

- Proportional gain, ba
- Angular gain, Ksa

- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value on the Motor Parameter tab.

The gains for the state feedback are calculated using these equations.

Calculation	Equations
Discrete forms of characteristic equation	$z^{3}+\frac{\left(-3 J_{p}+T_{s} b_{a}+T_{s}^{2} K_{s a}+T_{s}^{3} K_{i s a}\right)}{J_{p}} z^{2}+\frac{\left(3 J_{p}-2 T_{s} b_{a}-T_{s}^{2} K_{s a}\right)}{J_{p}} z+\frac{J_{p}+T_{s} b_{a}}{J_{p}}$
$\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)=z^{3}+\left(p_{1}+p_{2}+p_{3}\right) z^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} 3\right) z^{2}-p_{1} p_{2} p_{3}$	
Speed regulator proportional gain	$b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}$
Speed regulator integral gain	$K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}$
Speed regulator double integral gain	$K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s m}^{2}}{T_{s m}^{3}}$

The equations use these variables.

P	Motor pole pairs
b_{a}	Speed regulator proportional gain
$K_{s a}$	Speed regulator integral gain

$K_{\text {isa }}$	Speed regulator double integral gain
J_{p}	Motor inertia
$T_{s m}$	Motion controller sample time

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameter tab.

The feedforward torque command uses this equation.

$$
T_{c m d_{-} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
$$

The equation uses these variables.

J_{p}	Motor inertia
$T_{c m d f f}$	Torque command feedforward
F_{s}	Static friction torque constant
F_{v}	Viscous friction torque constant
F_{s}	Static friction torque constant
ω_{m}	Rotor mechanical speed

Torque Determination

The block uses a quadrature current to determine the base speed and the current commands. The motor ratings determine the rated electrical speed.

Calculation	Equations
Current commands	
	$\begin{aligned} & i_{\text {qref }}=\frac{T_{\text {cmd }}}{i_{\text {sq_0 }} \cdot P \cdot\left(\frac{L^{2}}{L_{m}}\right)} \\ & \text { If } \left.\left\|\omega_{e}\right\| \leq \omega_{\text {rated }}\right) \\ & \text { Else } i_{\text {dref }}=i_{\text {sd_0 } 0} \\ & \text { End } \quad i_{\text {dref }}=\frac{i_{\text {sd_0 }}}{\left\|\omega_{e}\right\|} \end{aligned}$
Inductance	$L_{r}=L_{l r}+L_{m}$

The equations use these variables.

$i_{\text {dref }}$	d-axis reference current
$i_{\text {aref }}$	q-axis reference current
$i_{\text {sd_o }}$	d-axis rated current
$i_{\text {sq_o }}$	q-axis rated current
ω_{e}	Rotor electrical speed
$\omega_{\text {rated }}$	Rated electrical speed
$L_{l r}$	Rotor leaking inductance
L_{r}	Rotor winding inductance
$L_{l s}$	Stator leaking inductance
L_{s}	Stator winding inductance
L_{m}	Motor magnetizing inductance
P	Motor pole pairs
$T_{c m d}$	Commanded motor maximum torque

Current Regulators

The block regulates the current with an anti-windup feature. Classic proportionalintegrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- d-axis and q-axis current cross-coupling
- Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of $E V_{\text {current }}$.
The block implements these equations.

Calculation	Equations
Motor voltage, in the stator reference frame	$\begin{aligned} & \sigma=1-\frac{L_{m}^{2}}{L_{s} L_{r}} \\ & v_{s d}=R_{s} i_{s d}+\sigma L_{s} \frac{d i_{s d}}{d t}+\frac{L_{m}}{L_{r}} \frac{d \lambda_{r d}}{d t}-P \omega_{m} \sigma L_{s} i_{s q} \end{aligned}$
Current regulator gains	$\begin{aligned} & v_{s q}=R_{s} i_{s s}+\sigma L_{s} \frac{d i_{s q}}{d t}+\omega_{d} \frac{L_{m}}{L_{r}} \frac{d \lambda_{r d}}{d t}+P \omega_{m} \sigma L_{s} i_{s d} \\ & \omega_{b}=2 \pi E V_{\text {current }} \\ & K_{p}=\sigma L_{d} \omega_{b} \end{aligned}$
Transfer functions	$\begin{aligned} & K_{i}=R_{s} \omega_{b} \\ & \frac{i_{d}}{i_{d r e f}}=\frac{\omega_{b}}{s+\omega_{b}} \end{aligned}$
The equations use these variaibles. $s+\omega_{b}$	

$E V_{\text {current }}$	Current regulator bandwidth
i_{d}	d -axis current
i_{q}	q -axis current
$i_{s q}$	Stator q-axis current
$i_{s d}$	Stator d-axis current
$v_{s d}$	Stator d-axis voltage
$v_{s q}$	Stator q-axis voltage
K_{p}	Current regulator d-axis gain
K_{i}	Current regulator integrator gain
L_{s}	Stator winding inductance
L_{m}	Motor magnetizing inductance
L_{r}	Rotor winding inductance
R_{s}	Stator phase winding resistance
$\lambda_{r d}$	Rotor d-axis magnetic flux
σ	Leakage factor
p	Motor pole pairs

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced twophase quadrature quantities (α, β).	$\begin{aligned} & x_{\alpha}=\frac{2}{3} x_{a}-\frac{1}{3} x_{b}-\frac{1}{3} x_{c} \\ & x_{\Omega}=\sqrt{3} \end{aligned}$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q).	$\begin{aligned} & x_{\beta}=\frac{v}{2} x_{b}-\frac{v o}{2} x_{c} \\ & x_{d}=x_{\alpha} \cos \theta_{e}+x_{\beta} \sin \theta_{e} \\ & x_{q}=-x_{\alpha} \sin \theta_{e}+x_{\beta} \cos \theta_{e} \end{aligned}$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b).	$\begin{aligned} & x_{a}=x_{a} \\ & x_{b}=-\frac{1}{2} x_{\alpha}+\frac{\sqrt{3}}{2} x_{\beta} \end{aligned}$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β).	$\begin{aligned} & x_{c}=-\frac{1}{x_{\alpha}} x_{\theta}=\frac{\sqrt{3}}{x_{2}} x_{\beta} \sin \theta_{e} \\ & x_{\beta}=x_{d} \sin \theta_{e}+x_{q} \cos \theta_{e} \end{aligned}$

The transforms use these variables.

ω_{m}	Rotor mechanical speed
P	Motor pole pairs
ω_{e}	Rotor electrical speed
Θ_{e}	Rotor electrical angle
x	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current.
Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

Load power	$L d_{P w r}=v_{a} i_{a}+v_{b} i_{b}+v_{c} i_{c}$
Source power	$S r c_{P w r}=L d_{P w r}+P w r_{L o s s}$
DC bus current	$i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}$
Estimated rotor torque	$M t r T r q_{e s t}=P \lambda_{r d} i_{s q} \frac{L_{m}}{L_{r}}$
Power loss for single efficiency source to load	$P w r_{\text {Loss }}=\frac{100-E f f}{E f f} \cdot L d_{P w r}$
Power loss for single efficiency load to source	$P w r_{\text {Loss }}=\frac{100-E f f}{100} \cdot\left\|L d_{P w r}\right\|$
Power loss for tabulated efficiency	$P w r_{L o s s}=f\left(\omega_{m}, M t r T r q_{e s t}\right)$

The equations use these variables.

v_{a}, v_{b}, v_{c}	Stator phase a, b, c voltages
$v_{b u s}$	Estimated DC bus voltage
i_{a}, i_{b}, i_{c}	Stator phase a, b, c currents
$i_{b u s}$	Estimated DC bus current
$E f f$	Overall inverter efficiency
ω_{m}	Rotor mechanical speed
L_{r}	Rotor winding inductance
L_{m}	Motor magnetizing inductance
$\lambda_{r d}$	Rotor d-axis magnetic flux
$i_{s q}$	q-axis current
P	Motor pole pairs

Electrical Losses

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	-Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. -Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq - Rotor mechanical speed command

scalar

Rotor mechanical speed command, $\omega^{*}{ }_{m}$, in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd - Torque command scalar

Torque command, T^{*}, in $N \cdot m$.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt - DC bus voltage

scalar
DC bus voltage $v_{\text {bus }}$, in V .

PhaseCurrA - Current

scalar
Stator current phase a, i_{a}, in A.
PhaseCurrB - Current
scalar
Stator current phase b, i_{b}, in A.

SpdFdbk - Rotor mechanical speed scalar

Rotor mechanical speed, ω_{m}, in rad/s.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	$\mathrm{N} \cdot \mathrm{m}$

BusCurr - Bus current

scalar
Estimated DC bus current, $i_{\text {bus }}$, in A.

PhaseVolt - Stator terminal voltages

array
Stator terminal voltages, V_{a}, V_{b}, and V_{c}, in V.

Parameters

Block Options

Control Type - Select control
Speed Control (default) | Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor

Stator resistance, Rs - Resistance scalar

Stator phase winding resistance, R_{s}, in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Stator resistance, Rs	D-axis rated current, Isd_0 Q-axis rated current, Isq_0	Id and Iq Calculation
	Torque at rated current, Tem	
	D and Q axis integral gain, Ki	Current Controller

Stator leakage inductance, Lls - Inductance
scalar
Stator leakage inductance, $L_{l s}$, in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Stator leakage inductance, Lls	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation
	D and Q axis proportional gain, Kp D and Q axis integral gain, Ki	Current Controller

Rotor resistance, Rr - Resistance
scalar

Rotor resistance, R_{r}, in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor resistance, R	D-axis rated current, Isd_0 Q-axis rated current, Isq_0	Id and Iq Calculation
	Torque at rated current, Tem	

Rotor leakage inductance, Llr - Inductance

scalar

Rotor leakage inductance, $L_{l r}$, in H .

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive			Tab
	Parameter			
Rotor leakage inductance, Llr	D-axis rated current, Isd_0 Q-axis rated current, Isq_0	Id and Iq Calculation		
	Torque at rated current, Tem			
D and Q axis proportional gain, Kp	Current Controller			

Rotor magnetizing inductance, Lm - Inductance scalar

Rotor magnetizing inductance, L_{m}, in H .

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor leakage inductance, Llr	D-axis rated current, Isd_0 Q-axis rated current, Isq_0	Id and Iq Calculation
	Torque at rated current, Tem	
D and Q axis proportional gain, Kp	Current Controller	

Number of pole pairs, PolePairs - Poles
 scalar

Motor pole pairs, P.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor leakage inductance, Llr	Torque at rated current, Tem	Id and Iq Calculation

Physical inertia, viscous damping, static friction, Mechanical Mechanical properties of motor

vector

Mechanical properties of the motor:

- Motor inertia, F_{v}, in $\mathrm{kgm}^{\wedge} 2$
- Viscous friction torque constant, F_{v}, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$
- Static friction torque constant, F_{s}, in $\mathrm{N} \cdot \mathrm{m}$

Dependencies

To enable this parameter, set the Control Type parameter to Speed Control.
For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value that is on the Motor Parameters tab.

Parameter	Used to Derive	Tab
	Proportional gain, ba Angular gain, Ksa Rotational gain, Kisa Inertia compensation, Jcomp Viscous damping compensation, Fv Static friction, Fs	Speed Controller

Id and Iq Calculation

Rated synchronous speed, Frate - Motor frequency scalar

Motor-rated electrical frequency, $F_{\text {rate }}$, in Hz .

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rated synchronous speed, Frate	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation

Rated line to line voltage RMS, Vrate - Motor voltage scalar

Motor-rated line-to-line voltage, $V_{\text {rate }}$, in V .

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rated synchronous speed, Frate	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation

Rated slip, Srate - Motor slip speed

 scalarMotor-rated slip speed, $S_{\text {rate }}$, dimensionless.
Dependencies
This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rated slip, Srate	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation

Calculate Rated Stator Flux Current - Derive parameters
 button

Click to derive parameters.

Dependencies

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Id and Iq Calculation tab	Dependency	Parameter

Derived Parameter on Id and Iq Calculation tab	Dependency	Parameter
	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr	Motor Parameters
	Rotor leakage inductance, Llr	
Rotor magnetizing inductance, Lm		

D-axis rated current, Isd_0 - Derived
scalar
Derived d-axis rated current, in A.

Dependencies

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Id and Iq Calculation tab	Dependency	Pab
	Parameter	
D-axis rated		
current, Isd_0		
Q-axis rated current, Isq_0	Rated synchronous speed, Frate	Id and Iq Calculation
Torque at rated current, Tem	RMS, Vrate Rated slip, Srate	

Derived Parameter on Id and Iq Calculation tab	Dependency	Parameter
	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	Motor Parameters

Q-axis rated current, Isq_0 - Derived
scalar
Derived q-axis rated current, in A.

Dependencies

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Id and Iq Calculation tab	Dependency	
	Parameter	Tab
D-axis rated current, Isd_0	Rated synchronous speed, Frate	Id and Iq Calculation
Q-axis rated current, Isq_0	Rated line to line voltage RMS, Vrate	
Torque at rated current, Tem	Rated slip, Srate	

Derived Parameter on Id and Iq Calculation tab	Dependency	
	Parameter	Tab
	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	Motor Parameters

Torque at rated current, Tem - Derived
scalar
Torque at rated current, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Id and Iq Calculation tab	Dependency	Parameter

Derived Parameter on Id and Iq Calculation tab	Dependency	Parameter
	Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, Rr Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	Motor Parameters

Current Controller

Bandwidth of the current regulator, EV_current - Bandwidth scalar

Current regulator bandwidth, in Hz .
Dependencies
This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the current regulator, EV_current	D and Q axis integral gain, Ki D and Q axis proportional gain, Kp	Current Controller

Sample time for the torque control, Tst - Time scalar

Torque control sample time, in s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Sample time for the torque control, Tst	Speed time constant, Ksf	Speed Controller

Calculate Current Regulator Gains - Derive parameters
button
Click to derive parameters.
Dependencies
On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Current Controller tab	Dependency	Parameter
D and Q axis proportional gain, Kp	Bandwidth of the current regulator, EV_current	Current Controller
D and Q axis integral gain, Ki	Stator resistance, Rs Stator leakage inductance, Lls	Motor Parameters
	Rotor resistance, Rr Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	

D and Q axis proportional gain, Kp - Derived scalar

Derived proportional gain, in V/A.

Dependencies

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Current Controller tab	Dependency	Parameter
D and Q axis proportional gain, Kp	Bandwidth of the current regulator, EV_current	Current Controller
D and Q axis integral gain, Ki	Stator resistance, Rs Stator leakage inductance, Lls	Motor Parameters
	Rotor resistance, Rr Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	

D and Q axis integral gain, Ki - Derived
 scalar

Derived integral gain, in V/A*s.

Dependencies

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Current Controller tab	Dependency	
	Parameter	Tab
D and Q axis proportional gain, Kp	Bandwidth of the current regulator, EV_current	Current Controller
D and Q axis integral gain, Ki	Stator resistance, Rs Stator leakage inductance, Lls	Motor Parameters
	Rotor resistance, Rr Rotor leakage inductance, Llr Rotor magnetizing inductance, Lm	

Speed Controller

Bandwidth of the motion controller, EV_motion - Bandwidth vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to $1 / 5$ the value of the previous element. For example, if the desired cutoff frequency is 20 Hz , specify [2040.8 .

Dependencies
The parameter is enabled when the Control Type parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the motion controller, EV_motion	Proportional gain, ba	Speed Controller
Angular gain, Ksa		
Rotational gain, Kisa		

Bandwidth of the state filter, EV_sf - Bandwidth scalar

State filter bandwidth, in Hz .

Dependencies

The parameter is enabled when the Control Type parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the state filter, EV_sf	Speed time constant, Ksf	Speed Controller

Sample time for the motion control, Tsm - Time scalar

Sample time for the motion controller, in s.

Dependencies

The parameter is enabled when the Control Type parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Sample time for the motion control, Tsm	Proportional gain, ba	Speed Controller
	Angular gain, Ksa Rotational gain, Kisa	

Calculate Speed Regulator Gains - Derive parameters
button
Click to derive parameters.

Dependencies

On the Speed Controller tab, when you select Calculate Speed Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Speed Controller tab		Depends On	
		Parameter	Tab
Proportional gain, ba	$b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}$	Sample time for the motion control, Tsm Bandwidth of the motion controller, EV_motion Bandwidth of the state filter, EV_sf	Speed Controller
Angular gain, Ksa	$K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-}{T_{s m}^{2}}$	Sampletime for the torques control, Tst	Current Controller
Rotational gain, Kisa	$K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}}{T_{s m}^{3}}$	Physical inertia, ${ }^{2}{ }^{2} T_{i}{ }^{-} K_{s a} T_{s m}$ damping, static	Motor Parameters
Speed time constant, Ksf	$K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}$	Mechanical	
Inertia compensatio n, Jcomp	$J_{\text {comp }}=J_{p}$	Physical inertia, viscous damping, static	Motor Parameters
Viscous damping compensatio n, Fv	F_{v}	friction, Mechanical	
Static friction, Fs	F_{s}		

The equations use these variables.

$P \quad$ Motor pole pairs

b_{a}	Speed regulator proportional gain
$K_{s a}$	Speed regulator integral gain
$K_{i s a}$	Speed regulator double integral gain
$K_{s f}$	Speed regulator time constant
J_{p}	Motor inertia
$T_{s m}$	Motion controller sample time
$E V_{s f}$	State filter bandwidth
$E V_{\text {motion }}$	Motion controller bandwidth

Proportional gain, ba - Derived

scalar

Derived proportional gain, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Proportional gain, ba	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion Controller, EV_motion	Speed Controller
	Sample time for the motion control, Tsm	

Angular gain, Ksa - Derived

```
scalar
```

Derived angular gain, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency			
	Parameter	Tab		
	Angular gain, Ksa damping, static friction, Mechanical	Motor Parameters		
Bandwidth of the motion controller, EV_motion Sample time for the	Speed Controller			
motion control, Tsm			\quad	(
:---				

Rotational gain, Kisa - Derived

scalar

Derived rotational gain, in $\mathrm{N} \cdot \mathrm{m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Rotational gain, Kisa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
Bandwidth of the motion controller, EV_motion Sample time for the motion control, Tsm	Speed Controller	

Speed time constant, Ksf - Derived

scalar

Derived speed time constant, in $1 / \mathrm{s}$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Speed time constant, Ksf	Sample time for the torque control, Tst	Current Controller
	Bandwidth of the state filter, EV_sf	Speed Controller

Inertia compensation, Jcomp - Derived scalar

Derived inertia compensation, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	Tab
	Parameter	Motor Parameters
Inertia compensation, Jcomp	Physical inertia, viscous damping, static friction, Mechanical	

Viscous damping compensation, Fv - Derived
scalar
Dependencies
This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Viscous damping compensation, Fv	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Static friction, Fs - Derived
scalar
Derived static friction, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter Physical inertia, viscous Mamping, static friction, Mechanical	Motor Parameters

Electrical Losses

Parameterize losses by - Select type

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	-Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	-Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff - Constant scalar

Overall inverter efficiency, Eff, in \%.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints

 1-by-M matrixSpeed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

```
Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints 1-by-N matrix
```

Torque breakpoints for lookup table when calculating losses, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Corresponding losses, losses_table - Table
 M-by-N matrix

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Vector of torques (T) for tabulated efficiency, T_eff_bp Breakpoints

1-by-N matrix
Torque breakpoints for lookup table when calculating efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table - Table

M-by-N matrix
Array of efficiency as a function of M speeds and N torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

References

[1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.
[2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current
regulator." IEEE Transactions on Industry Applications, Vol. 30, Issue 4, July/ August 1994, pp. 920-926.
[3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, ePublications@Marquette, Fall 2014.
[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42-50.

See Also

Flux-Based PM Controller | Induction Motor | Interior PM Controller | Surface Mount PM Controller

Introduced in R2017a

Surface Mount PMSM

Three-phase exterior permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Powertrain Blockset / Propulsion / Electric Motors

Description

The Surface Mount PMSM block implements a three-phase exterior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Motor Construction

This figure shows the motor construction with a single pole pair on the rotor.

The rotor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with rotor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when rotor angle θ_{r} is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the rotor flux reference frame (dq frame). All quantities in the rotor reference frame are referred to the stator.

$$
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d}{d t} i_{d}=\frac{1}{L_{d}} v_{d}-\frac{R}{L_{d}} i_{d}+\frac{L_{q}}{L_{d}} P \omega_{m} i_{q} \\
& \frac{d}{d t} i_{q}=\frac{1}{L_{q}} v_{q}-\frac{R}{L_{q}} i_{q}-\frac{L_{d}}{L_{q}} P \omega_{m} i_{d}-\frac{\lambda_{p m} P \omega_{m}}{L_{q}} \\
& T_{e}=1.5 P\left[\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]
\end{aligned}
$$

The L_{q} and L_{d} inductances represent the relation between the phase inductance and the rotor position due to the saliency of the rotor magnets. For the surface mount PMSM,
$L_{d}=L_{q}$.
The equations use these variables.

L_{q}, L_{d}	q- and d-axis inductances
R	Resistance of the stator windings
i_{q}, i_{d}	q-and d-axis currents
v_{q}, v_{d}	q-and d-axis voltages
ω_{m}	Angular mechanical velocity of the rotor
ω_{e}	Angular electrical velocity of the rotor
$\lambda_{p m}$	Permanent magnet flux linkage
P	Number of pole pairs
T_{e}	Electromagnetic torque
Θ_{e}	Electrical angle

Mechanical System

The rotor angular velocity is given by:

$$
\begin{aligned}
\frac{d}{d t} \omega_{m} & =\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t} & =\omega_{m}
\end{aligned}
$$

The equations use these variables.

J	Combined inertia of rotor and load
F	Combined viscous friction of rotor and load
θ_{m}	Rotor mechanical angular position
T_{m}	Rotor shaft torque
T_{e}	Electromagnetic torque
T_{f}	Rotor shaft static friction torque
ω_{m}	Angular mechanical velocity of the rotor

Ports

Input

LdTrq - Rotor shaft torque

scalar
Rotor shaft input torque, T_{m}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select Torque for the Port Configuration parameter.

Spd - Rotor shaft speed
 scalar

Angular velocity of the rotor, ω_{m}, in rad/s.

Dependencies

To create this port, select Speed for the Port Configuration parameter.

PhaseVolt - Stator terminal voltages

vector

Stator terminal voltages, V_{a}, V_{b}, and V_{c}, in V .

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_{a}	A
IbStator	Stator phase current B	i_{b}	A
IcStator	Stator phase current C	i_{c}	A
IdSync	Direct axis current	i_{d}	A
IqSync	Quadrature axis current	i_{q}	A
VdSync	Direct axis voltage	v_{d}	V
VqSync	Quadrature axis voltage	v_{q}	V
MtrSpd	Angular mechanical velocity of the rotor	ω_{m}	$\mathrm{rad} / \mathrm{s}$
MtrPos	Rotor mechanical angular position	θ_{m}	rad
MtrTrq	Electromagnetic torque	T_{e}	$\mathrm{~N} \cdot \mathrm{~m}$

Parameters

Port Configuration - Select port configuration

Torque (default) | Speed
This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	PhaseVolt
	Info
	LdTrq
Speed	PhaseVolt
	Info
	Spd

Stator phase resistance, Rs - Resistance scalar

Stator phase resistance, R_{s}, in ohm.

Armature inductance, Ldq_ - Inductance

 vectorArmature inductance, L_{d}, L_{q}, in H.

Permanent magnet flux, lambda_pm - Flux

 scalarPermanent magnet flux linkage, $\lambda_{p m}$, in Wb .
Number of pole pairs, P - Pole pairs scalar

Motor pole pairs, P.
Initial dq current, idq0 - Current vector

Initial q- and d-axis currents, i_{q}, i_{d}, in A.
Initial mechanical position, theta_init - Angle scalar

Initial rotor angular position, $\theta_{m 0}$, in rad.

Initial mechanical speed, omega_init - Speed scalar

Initial angular velocity of the rotor, $\omega_{m 0}$, in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

Physical inertia, viscous damping, and static friction, mechanical Inertia, damping, friction
 vector

Mechanical properties of the rotor:

- Inertia, J, in $\mathrm{kgm}^{\wedge} 2$
- Viscous damping, F, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$
- Static friction, T_{f}, in $\mathrm{N} \cdot \mathrm{m}$

Dependencies

To enable this parameter, select the Torque configuration parameter.

References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

See Also

Flux-Based PMSM | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PM Controller

Introduced in R2017a

Surface Mount PM Controller

Torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor

Library: Powertrain Blockset / Propulsion / Electric Motors

Description

The Surface Mount PM Controller block implements a torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The torque control utilizes quadrature current and does not weaken the magnetic flux. You can specify either speed or torque control.

The Surface Mount PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.

ω	Rotor speed
ω^{*}	Rotor speed command
T^{*}	Torque command
i_{d}	d-axis current
$i^{*}{ }_{d}$	d-axis current command
i_{q}	q-axis current
$i^{*}{ }_{q}$	q -axis current command
v_{d},	d -axis voltage
$v^{*}{ }_{d}$	d-axis voltage command
v_{q}	q-axis voltage
$v^{*}{ }_{q}$	q-axis voltage command
v_{a}, v_{b}, v_{c}	Stator phase a, b, c voltages
$i_{a,}, i_{b}, i_{c}$	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Surface Mount PM Controller block.

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the Speed Controller tab:

- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:

$$
z+K_{s f} T_{s m}-1
$$

The filter calculates the gain using this equation.

$$
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
$$

The equations use these variables.

$E V_{s f}$	Bandwidth of the speed command filter
$T_{s m}$	Motion controller sample time
$K_{s f}$	Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the Speed Controller tab, select Calculate Speed Regulator Gains to calculate:

- Proportional gain, ba
- Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value on the Motor Parameters tab.

The gains for the state feedback are calculated using these equations.

Calculation	Equations
Discrete forms of characteristic equation	$z^{3}+\frac{\left(-3 J_{p}+T_{s} b_{a}+T_{s}^{2} K_{s a}+T_{s}^{3} K_{i s a}\right)}{J_{p}} z^{2}+\frac{\left(3 J_{p}-2 T_{s} b_{a}-T_{s}^{2} K_{s a}\right)}{J_{p}} z+J_{p}+T_{s} b_{a}$
J_{p}	
$\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)=z^{3}+\left(p_{1}+p_{2}+p_{3}\right) z^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} 3\right) z^{2}-p_{1} p_{2} p_{3}$	
Speed regulator proportional gain	$b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}$
Speed regulator integral gain	$K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}$
Speed regulator double integral gain	$K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s m}^{2}}{T_{s m}^{3}}$

The equations use these variables.

P	Motor pole pairs
b_{a}	Speed regulator proportional gain
$K_{s a}$	Speed regulator integral gain

$K_{\text {isa }}$	Speed regulator double integral gain
J_{p}	Motor inertia
$T_{s m}$	Motion controller sample time

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameters tab.

The feedforward torque command uses this equation.

$$
T_{c m d_{-} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
$$

The equation uses these variables.

J_{p}	Motor inertia
$T_{c m d f f}$	Torque command feedforward
F_{s}	Static friction torque constant
F_{v}	Viscous friction torque constant
F_{s}	Static friction torque constant
ω_{m}	Rotor speed

Torque Determination

The block uses a quadrature current to determine the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.

Calculation	Equations
Motor maximum torque	$T_{\max }=\frac{3}{2} P\left(\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right)$
Maximum q-axis phase current	$i_{q_{-} \max }=\frac{T_{c m d}}{3}$
Electrical base speed	$\begin{gathered} \frac{3}{2} P \lambda_{p m} \\ \omega_{\text {base }}=\frac{v_{\max }}{\sqrt{2}} \end{gathered}$
d-axis voltage	$\left.v_{d}=-\omega_{e} L_{q} L_{q} i_{q} i_{q_{-}}\right)^{2}+\left(\lambda_{p m}\right)^{2}$
q-axis voltage	$v_{q}=\omega_{e} \lambda_{p m}$
Maximum phase current	$i_{\text {max }}=\left\|i_{q-\max }\right\|$
Maximum voltage	$v_{\max }=\frac{v_{b u s}}{\sqrt{3}}$

Calculation	Equations
Current command	$\begin{aligned} & i_{\text {dref }}=0 \\ & i_{q_{-} t m p}=\min \left(i_{q_{-} \max }, \frac{T_{c m d}}{\frac{3}{2} P \lambda_{p m}}\right) \\ & \text { If }\left\|\omega_{e}\right\| \leq \omega_{\text {base }} \quad i_{\text {qref }}=i_{q_{-} t m p} \\ & \text { Else } \\ & \quad i_{q f w}=\operatorname{sqrt}\left(\min \left(0, \frac{1}{L_{q}}\left(\frac{v_{\max }}{\omega_{e}}\right)^{2}-\left(\lambda_{p m}\right)^{2}\right)\right) \\ & \text { If } i_{q_{-} t m p}<i_{q f w} \\ & i_{\text {qref }}=i_{q_{-} t m p} \\ & \text { Else } i_{\text {qref }}=i_{q f w} \end{aligned}$

The equations use these variables.

$i_{\max }$	Maximum phase current
i_{d}	d -axis current
i_{q}	q -axis current
$i_{\text {dref }}$	d -axis reference current
$i_{\text {qref }}$	q -axis reference current
$i_{q_{\text {_max }}}$	Maximum q-axis phase current
ω_{e}	Rotor electrical speed
$\lambda_{p m}$	Permanent magnet flux linkage
v_{d}	d -axis voltage
v_{q}	q -axis voltage
$v_{\max }$	Maximum line to neutral voltage

$v_{b u s}$	DC bus voltage
L_{d}	d-axis winding inductance
L_{q}	q-axis winding inductance
P	Motor pole pairs
$T_{\max }$	Motor maximum torque
$T_{c m d}$	Commanded motor maximum torque

Current Regulators

The block regulates the current with an anti-windup feature. Classic proportionalintegrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- d-axis and q-axis current cross-coupling
- back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of $E V_{\text {current }}$.
The block implements these equations.

Calculation	Equations
Motor voltage, in the rotor reference frame	
	$L_{d} \frac{d i_{d}}{d t}=v_{d}-R_{s} i_{d}+p \omega_{m} L_{q} i_{q}$
Current regulator gains	$L_{d} \frac{d i_{q}}{d t}=v_{q}-R_{s} i_{q}-p \omega_{m} L_{d} i_{d}-p \omega_{m} \lambda_{p m}$
	$\omega_{b}=2 \pi E V_{c u r r e n t}$ $K_{p_{-} d}=L_{d} \omega_{b}=L_{q} \omega_{b}$ $K_{i}=R_{s} \omega_{b}$

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced twophase quadrature quantities (α, β).	$\begin{aligned} & x_{\alpha}=\frac{2}{3} x_{a}-\frac{1}{3} x_{b}-\frac{1}{3} x_{c} \\ & x_{R}=-\frac{\sqrt{3}}{x} x_{h}-=\sqrt{3} x_{1} \end{aligned}$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q).	$\begin{aligned} & x_{\beta}=\frac{v}{2} x_{b}=x_{c} \\ & x_{d}=x_{\alpha} \cos \theta_{e}+x_{\beta} \sin \theta_{e} \\ & x_{q}=-x_{\alpha} \sin \theta_{e}+x_{\beta} \cos \theta_{e} \end{aligned}$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b).	$\begin{aligned} & x_{a}=x_{a} \\ & x_{b}=-\frac{1}{2} x_{\alpha}+\frac{\sqrt{3}}{2} x_{\beta} \end{aligned}$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β).	$\begin{aligned} & x_{c}=-\frac{1}{x_{\alpha}}=x_{\theta}=\frac{\sqrt{3}}{2} x_{x_{3}} \sin \theta_{e} \\ & x_{\beta}=x_{d} \sin \theta_{e}+x_{q} \cos \theta_{e} \end{aligned}$

The transforms use these variables.

ω_{m}	Rotor speed
P	Motor pole pairs
ω_{e}	Rotor electrical speed
Θ_{e}	Rotor electrical angle
x	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

Load power	$L d_{P w r}=v_{a} i_{a}+v_{b} i_{b}+v_{c} i_{c}$
Source power	$S r c_{P w r}=L d_{P w r}+P w r_{L o s s}$
DC bus current	$i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}$
Estimated rotor torque	$M t r T r q_{e s t}=1.5 P\left[\lambda i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]$
Power loss for single efficiency source to load	$P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}$
Power loss for single efficiency load to source	$P w r_{\text {Loss }}=\frac{100-E f f}{100} \cdot\left\|L d_{P w r}\right\|$
Power loss for tabulated efficiency	$P w r_{L o s s}=f\left(\omega_{m}, M t r T r q_{e s t}\right)$

The equations use these variables.
$v_{a}, v_{b}, v_{c} \quad$ Stator phase $\mathrm{a}, \mathrm{b}, \mathrm{c}$ voltages
$v_{\text {bus }} \quad$ Estimated DC bus voltage
$i_{a}, i_{b}, i_{c} \quad$ Stator phase a, b, c currents
$i_{\text {bus }} \quad$ Estimated DC bus current
Eff Overall inverter efficiency
$\omega_{m} \quad$ Rotor mechanical speed
$L_{q} \quad \mathrm{q}$-axis winding inductance
$L_{d} \quad \mathrm{~d}$-axis winding inductance
$i_{q} \quad q$-axis current

i_{d}	d-axis current
λ	Permanent magnet flux linkage
P	Motor pole pairs

Electrical Losses

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. - Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. - Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. - Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. - Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq - Rotor speed command scalar

Rotor speed command, ω^{*}, in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd - Torque command scalar

Torque command, T^{*}, in $N \cdot m$.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt - DC bus voltage

scalar
DC bus voltage $v_{\text {bus }}$, in V .
PhaseCurrA - Current scalar

Stator current phase a, i_{a}, in A.

PhaseCurrB - Current

 scalarStator current phase b, i_{b}, in A.
SpdFdbk - Rotor speed scalar

Rotor speed, ω_{m}, in rad/s.

PosFdbk - Rotor electrical angle

scalar

Rotor electrical angle, Θ_{m}, in rad.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	$\mathrm{N} \cdot \mathrm{m}$

BusCurr - Bus current

scalar
Estimated DC bus current, $i_{\text {bus }}$, in A.

PhaseVolt - Stator terminal voltages

array
Stator terminal voltages, V_{a}, V_{b}, and V_{c}, in V.

Parameters

Configuration

Control Type - Select control
Speed Control (default)|Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor Parameters

Stator resistance, Rs - Resistance

scalar
Stator phase winding resistance, R_{s}, in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Stator resistance, Rs	D and Q axis integral gain, Ki	Current Controller

DQ axis inductance, Ldq - Inductance scalar

D-axis winding inductance, $L_{d q}$, in H .

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
DQ axis inductance, Ldq	D-axis proportional gain, Kp_d Q-axis proportional gain, Kp_q \mathbf{D} and Q axis integral gain, Ki	Current Controller

Permanent magnet flux, lambda_pm - Flux scalar

Permanent magnet flux, $\lambda_{p m}$, in Wb .
Number of pole pairs, PolePairs - Poles scalar

Motor pole pairs, P.

Physical inertia, viscous damping, static friction, Mechanical Inertia, damping, friction

vector

Mechanical properties of the motor:

- Motor inertia, F_{v}, in $\mathrm{kgm}^{\wedge} 2$
- Viscous friction torque constant, F_{v}, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$
- Static friction torque constant, F_{s}, in $\mathrm{N} \cdot \mathrm{m}$

Dependencies

To enable this parameter, set the Control Type parameter to Speed Control.
For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value that is on the Motor Parameters tab.

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Physical inertia, viscous damping, static friction, Mechanical	Proportional gain, ba Angular gain, Ksa Rotational gain, Kisa Inertia compensation, Jcomp Viscous damping compensation, Fv Static friction, Fs	Speed Controller

Id and Iq Calculation

```
Maximum torque, T_max - Torque
scalar
```

Maximum torque, in $\mathrm{N} \cdot \mathrm{m}$.

Current Controller

Bandwidth of the current regulator, EV_current - Bandwidth

 scalarCurrent regulator bandwidth, in Hz .

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	Tab
	Parameter	Current Controller
Bandwidth of the EV_current regulator, EV_	D-axis proportional gain, Kp_d	Q-axis proportional gain, Kp_q D and q axis proportional gain, Ki

Sample time for the torque control, Tst - Time scalar

Torque control sample time, in s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Sample time for the torque control, Tst	Speed time constant, Ksf	Speed Controller

Calculate Current Regulator Gains - Derive parameters
 button

Click to derive parameters.

Dependencies

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Current Controller tab	Dependency	Parameter
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller
Q-axis proportional gain, Kp_q	DQ-axis inductance, Ldq	Motor Parameters
D and Q axis integral gain, Ki		

D-axis proportional gain, Kp_d - Derived scalar

Derived d-axis proportional gain, in V/A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	Tab
	Parameter	Current Controller
D-axis proportional	Bandwidth of the current gain, Kp_d	Cegulator, EV_current
	DQ-axis inductance, Ldq	Motor Parameters

Q-axis proportional gain, Kp_q - Derived
scalar
Derived q-axis proportional gain, in V/A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Q-axis proportional gain, Kp_q	Bandwidth of the current regulator, EV_current	Current Controller
	DQ-axis inductance, Ldq	Motor Parameters

```
D and Q axis integral gain, Ki - Derived scalar
```

Derived axis integral gain, in V/A*s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
D and Q axis integral gain, Ki	Bandwidth of the current regulator, EV_current	Current Controller
	Stator resistance, Rs DQ-axis inductance, Ldq	Motor Parameters

Speed Controller

Bandwidth of the motion controller, EV_motion - Bandwidth vector

Motion controller bandwidth, in Hz . Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to $1 / 5$ the value of the previous element. For example, if the desired cutoff frequency is 20 Hz , specify [2040.8 .

Dependencies

The parameter is enabled when the Control Type parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the motion controller, EV_motion	Proportional gain, ba	Speed Controller
Angular gain, Ksa		
Rotational gain, Kisa		

Bandwidth of the state filter, EV_sf - Bandwidth
scalar
State filter bandwidth, in Hz .

Dependencies

The parameter is enabled when the Control Type parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the state filter, EV_sf	Speed time constant, Ksf	Speed Controller

Sample time for the motion control, Tsm - Time scalar

Sample time for the motion controller, in s.

Dependencies

The parameter is enabled when the Control Type parameter is set to Speed Control.

Parameter	Used to Derive	Tab
	Parameter	Speed Controller
Sample time for the motion control, Tsm	Proportional gain, ba	Angular gain, Ksa
	Rotational gain, Kisa	

Calculate Speed Regulator Gains - Derive parameters
button

Click to derive parameters.

Dependencies

On the Speed Controller tab, when you select Calculate Speed Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Speed Controller tab		Depends On	
		Parameter	Tab
Proportional gain, ba	$b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}$	Sample time for the motion control, Tsm Bandwidth of the motion controller, EV_motion Bandwidth of the state filter, EV_sf	Speed Controller
Angular gain, Ksa	$K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)}{T_{s m}^{2}}$	Sampletime for the torques control, Tst	Current Controller
Rotational gain, Kisa	$K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}}{T_{s m}^{3}}$	Physical inertia, viscours $K_{s a} T_{s m}^{2}$ damping, static friction,	Motor Parameters
Speed time constant, Ksf	$K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}$	Mechanical	
Inertia compensatio n, Jcomp	$J_{\text {comp }}=J_{p}$	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Derived Parameter on Speed Controller tab	Depends On		
	Parameter	Tab	
Viscous damping Compensatio n, Fv	F_{v}		
Static friction, Fs	F_{s}		

The equations use these variables.

P	Motor pole pairs
b_{a}	Speed regulator proportional gain
$K_{s a}$	Speed regulator integral gain
$K_{i s a}$	Speed regulator double integral gain
$K_{s f}$	Speed regulator time constant
J_{p}	Motor inertia
$T_{s m}$	Motion controller sample time
$E V_{s f}$	State filter bandwidth
$E V_{\text {motion }}$	Motion controller bandwidth

Proportional gain, ba - Derived

scalar
Derived proportional gain, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Proportional gain, ba	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Parameter	Dependency	Tab
	Parameter	Speed Controller
	Bandwidth of the motion controller, EV_motion Sample time for the motion control, Tsm	

Angular gain, Ksa - Derived scalar

Derived angular gain, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	Tab
	Parameter damsical inertia, viscous Mechanical	Motor Parameters
Bandwidth of the motion controller, EV_motion	Speed Controller	
Sample time for the motion control, Tsm		

Rotational gain, Kisa - Derived
scalar
Derived rotational gain, in $\mathrm{N} \cdot \mathrm{m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)$.
Dependencies
This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Rotational gain, Kisa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion Sample time for the motion control, Tsm	Speed Controller

Speed time constant, Ksf - Derived scalar

Derived speed time constant, in 1/s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Speed time constant, Ksf	Sample time for the torque control, Tst	Current Controller
	Bandwidth of the state filter, EV_sf	Speed Controller

Inertia compensation, Jcomp - Derived
 scalar

Derived inertia compensation, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$.
Dependencies
This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Inertia compensation, Jcomp	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Viscous damping compensation, Fv - Derived
scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Viscous damping compensation, Fv	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Static friction, Fs - Derived
scalar
Derived static friction, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Static friction, Fs	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Electrical Losses

Parameterize losses by - Select type

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	-Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	-Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff - Constant
 scalar

Overall inverter efficiency, Eff, in \%.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Corresponding losses, losses_table - Table

M-by-N matrix
Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

```
Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints 1-by-M matrix
```

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

```
Vector of torques (T) for tabulated efficiency, T_eff_bp -
Breakpoints
1-by-N matrix
```

Torque breakpoints for lookup table when calculating efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table - Table M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

References

[1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.
[2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." IEEE Transactions on Industry Applications, Vol. 30, Issue 4, July/ August 1994, pp. 920-926.
[3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, ePublications@Marquette, Fall 2014.
[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42-50.

See Also

Flux-Based PM Controller | IM Controller | Interior PM Controller | Surface Mount PMSM Introduced in R2017a

SI Controller

Spark-ignition engine controller that uses the driver torque request
Library: Powertrain Blockset / Propulsion / Combustion Engine Controllers

Description

The SI Controller block implements a spark-ignition (SI) controller that uses the driver torque request to calculate the open-loop air, fuel, and spark actuator commands that are required to meet the driver demand.

You can use the SI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine, throttle, and turbocharger wastegate subsystems require the commands that are output from the SI Controller block.

The block uses the commanded torque and engine speed to determine these open-loop actuator commands:

- Throttle position percent
- Wastegate area percent
- Injector pulse-width
- Spark advance
- Intake cam phaser angle
- Exhaust cam phaser angle
- Exhaust gas recirculation (EGR) valve area percent

The SI Controller block has two subsystems:

- The Controller subsystem - Determines the commands based on the commanded torque, measured engine speed, and estimated cylinder air mass.
- The Estimator subsystem - Determines the estimated air mass flow, torque, and exhaust gas temperature from intake manifold gas pressure, intake manifold gas temperature, engine speed, and cam phaser positions.

The figure illustrates the signal flow.

The figure uses these variables.

N	Engine speed
$M A P$	Cycle average intake manifold pressure
$I A T$	Intake air temperature
$T_{\text {in, EGR }}$	Temperature at EGR valve inlet
$M A T$	Cycle average intake manifold gas absolute temperature

Intake cam phaser angle and intake cam phaser angle command,
$\varphi_{I C P}, \quad$ respectively
$\varphi_{I C P C M D}$
$\varphi_{E C P}, \quad$ respectively
$\varphi_{E C P C M D}$
EGRap, EGR valve area percent and EGR valve area percent command,
$E_{\text {GRap }}^{\text {cmd }}$ respectively
$\Delta P_{E G R} \quad$ Pressure difference at EGR valve inlet and outlet
$W A P_{\text {cmd }} \quad$ Turbocharger wastegate area percent command
SA Spark advance
Fuel injector pulse-width
$P w_{i n j}$
$T P P_{\text {cmd }} \quad$ Throttle position percent command
The Model-Based Calibration Toolbox was used to develop the tables that are available with the Powertrain Blockset.

Controller

The block determines the commanded engine load (that is, normalized cylinder air mass) from a lookup table that is a function of commanded torque and measured engine speed.

$$
L_{c m d}=f_{L c m d}\left(T_{c m d}, N\right)
$$

To achieve the commanded load, the controller sets the throttle position percent and turbocharger wastegate area percent using feed forward lookup tables. The lookup tables are functions of the commanded load and measured engine speed.

$$
\begin{aligned}
& T A P_{c m d}=f_{\text {TAPcmd }}\left(L_{c m d}, N\right) \\
& T P P_{c m d}=f_{T P P c m d}\left(T A P_{c m d}\right) \\
& W A P_{c m d}=f_{\text {WAPcmd }}\left(L_{c m d}, N\right)
\end{aligned}
$$

To determine the cam phaser angle commands, the block uses lookup tables that are functions of estimated engine load and measured engine speed.

$$
\begin{aligned}
& \varphi_{I C P C M D}=f_{I C P C M D}\left(L_{e s t}, N\right) \\
& \varphi_{E C P C M D}=f_{E C P C M D}\left(L_{e s t}, N\right)
\end{aligned}
$$

The block calculates the desired engine load using this equation.

$$
L_{e s t}=\frac{C p s R_{a i r} T_{s t d} \dot{m}_{a i r, e s t}}{P_{s t d} V_{d} N}
$$

The equations use these variables.

$L_{e s t}$	Estimated engine load
$L_{c m d}$	Commanded engine load
N	Engine speed
$T_{c m d}$	Commanded engine torque
$T A P_{c m d}$	Throttle area percent command
$T P P_{c m d}$	Throttle position percent command
$W A P_{c m d}$	Turbocharger wastegate area percent command
$C p s$	Crankshaft revolutions per power stroke
$P_{s t d}$	Standard pressure
$T_{s t d}$	Standard temperature
$R_{\text {air }}$	Ideal gas constant for air and burned gas mixture
V_{d}	Displaced volume
$\dot{m}_{\text {air,est }}$	Estimated engine air mass flow

The controller subsystem uses these lookup tables for the air calculations.

The throttle area percent command lookup table, $f_{\text {TAPcmd }}$, is a function of commanded load and engine speed

$$
T A P_{c m d}=f_{\text {TAPcmd }}\left(L_{c m d}, N\right)
$$

where:

- $T A P_{c m d}$ is throttle area percentage command, in percent.
- $L_{c m d}=L$ is commanded engine load, dimensionless.
- N is engine speed, in rpm.

- To account for the non-linearity of the throttle position to throttle area, the throttle position percent lookup table linearizes the open-loop air mass flow control.

The throttle position percent command lookup table, $f_{T P P \text { cmd }}$, is a function of the throttle area percentage command

$$
T P P_{c m d}=f_{T P P c m d}\left(T A P_{c m d}\right)
$$

where:

- $T P P_{c m d}$ is throttle position percentage command, in percent.
- $T A P_{c m d}$ is throttle area percentage command, in percent.

The wastegate area percent command lookup table, $f_{\text {WAPcmd }}$, is a function of the commanded engine load and engine speed

$$
W A P_{c m d}=f_{\text {WAPcmd }}\left(L_{c m d}, N\right)
$$

where:

- $W A P_{c m d}$ is wastegate area percentage command, in percent.
- $L_{c m d}=L$ is commanded engine load, dimensionless.
- N is engine speed, in rpm.

The commanded engine load lookup table, $f_{L c m d}$, is a function of the commanded torque and engine speed

$$
L_{c m d}=f_{L c m d}\left(T_{c m d}, N\right)
$$

where:

- $L_{c m d}=L$ is commanded engine load, dimensionless.
- $T_{c m d}$ is commanded torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

The intake cam phaser angle command lookup table, $f_{I C P C M D}$, is a function of the engine load and engine speed

$$
\varphi_{I C P C M D}=f_{I C P C M D}\left(L_{e s t}, N\right)
$$

where:

- $\varphi_{I C P C M D}$ is commanded intake cam phaser angle, in degrees crank advance.
- $L_{e s t}=L$ is estimated engine load, dimensionless.
- N is engine speed, in rpm.

The exhaust cam phaser angle command lookup table, $f_{E C P C M D}$, is a function of the engine load and engine speed

$$
\varphi_{E C P C M D}=f_{E C P C M D}\left(L_{e s t}, N\right)
$$

where:
$\varphi_{E C P C M D}$ is commanded exhaust cam phaser angle, in degrees crank retard.

- $L_{e s t}=L$ is estimated engine load, dimensionless.
- N is engine speed, in rpm.

EGR is typically expressed as a percent of total intake port flow.

$$
E G R_{p c t}=100 \frac{\dot{m}_{E G R}}{\dot{m}_{E G R}+\dot{m}_{\text {air }}}
$$

To calculate the EGR area percent command, the block uses equations and a lookup table.

Equations	$\dot{m}_{E G R s t d, c m d}=\dot{m}_{E G R, c m d} \frac{P_{s t d}}{P_{i n, E G R}} \sqrt{\frac{T_{i n, E G R}}{T_{s t d}}}$
$\dot{m}_{E G R s t d, \max }=f_{E G R s t d, \max }\left(\frac{P_{\text {out }, E G R}}{P_{i n, E G R}}\right)$	
$\dot{m}_{E G R, c m d}=E G R_{p c t, c m d} \dot{m}_{i n t k, e s t}$	

Lookup table	The EGR area percent command, $E_{\text {GRap }}^{\text {cmd }}$, lookup table is a function of the normalized mass flow and pressure ratio $E G R a p_{c m d}=f_{E G R a p, c m d}\left(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, m a x}}, \frac{P_{o u t, E G R}}{P_{\text {in }, E G R}}\right)$ where: - $E G R a p_{\text {cmd }}$ is commanded EGR area percent, dimensionless. - $\dot{m}_{E G R s t d, c m d}$ $\dot{m}_{\text {EGRstd,max }}$ is the normalized mass flow, dimensionless. - $\frac{P_{\text {out }, E G R}}{P_{\text {in }, E G R}}$ is the pressure ratio, dimensionless.

The equations and table use these variables.
EGRap, EGR valve area percent and EGR valve area percent command, respectively EGRap $_{\text {cmd }}$
$E G R_{p c t, c m d} \quad$ EGR percent command
$\dot{m}_{E G R s t d, c m d}$ Commanded standard mass flow

$\dot{m}_{\text {EGRstd,max }}$	Maximum standard mass flow
$\dot{m}_{E G R, c m d}$	Commanded mass flow
$\dot{m}_{\text {inth,est }}$	Estimated intake port mass flow
$T_{\text {std }}, P_{\text {std }}$	Standard temperature and pressure
$T_{\text {in,EGR }}$	Temperature at EGR valve inlet
$P_{\text {out }, E G R}$	Pressure at EGR valve inlet and outlet, respectively
$P_{\text {in,EGR }}$	

The air-fuel ratio (AFR) impacts three-way-catalyst (TWC) conversion efficiency, torque production, and combustion temperature. The engine controller manages AFR by commanding injector pulse-width from a desired relative AFR. The relative AFR, $\lambda_{\text {cmd }}$, is the ratio between the commanded AFR and the stoichiometric AFR of the fuel.

$$
\begin{aligned}
& \lambda_{c m d}=\frac{A F R_{c m d}}{A F R_{\text {stoich }}} \\
& A F R_{c m d}=\frac{\dot{m}_{\text {air }, \text { est }}}{\dot{m}_{\text {fuel,cmd }}}
\end{aligned}
$$

The commanded lambda, $\lambda_{\text {cmd }}$, lookup table is a function of estimated engine load and measured engine speed

$$
\lambda_{c m d}=f_{\lambda c m d}\left(L_{e s t}, N\right)
$$

where:

- $\lambda_{\text {cmd }}$ is commanded relative AFR, dimensionless.
- $L_{e s t}=L$ is estimated engine load, dimensionless.
- N is engine speed, in rpm.

The block calculates the estimated fuel mass flow rate using the commanded lambda,
$\lambda_{c m d}$, stoichiometric AFR, and estimated air mass flow rate.

$$
\dot{m}_{\text {fuel,cmd }}=\frac{\dot{m}_{\text {air }, \text { est }}}{A F R_{c m d}}=\frac{\dot{m}_{\text {air }, \text { est }}}{\lambda_{\text {cmd }} A F R_{\text {stoich }}}
$$

The block assumes that the battery voltage and fuel pressure are at nominal settings where pulse-width correction is not necessary. The commanded fuel injector pulse-width is proportional to the fuel mass per injection. The fuel mass per injection is calculated from the commanded fuel mass flow rate, engine speed, and the number of cylinders.

$$
P w_{i n j}=\left\{\begin{array}{cc}
\frac{\dot{m}_{f u e l, c m d} C p s\left(\frac{60 s}{m i n}\right)\left(\frac{1000 m g}{g}\right)\left(\frac{1000 g}{k g}\right)}{N S_{i n j} N_{c y l}} & \text { when } T r q_{c m d}>0 \\
0 & \text { when } T r q_{c m d} \leq 0
\end{array}\right.
$$

The SI Controller block accounts for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the startup engine cranking speed, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the engine coolant temperature at startup. The delta lambda exponentially decays to zero based on a time constant that is a function of the engine coolant temperature.

The equations use these variables.

$\lambda_{c m d}$	Lambda command, relative AFR
$L_{\text {est }}$	Estimated engine load, based on normalized cylinder air mass
N	Engine speed
$T r q_{c m d}$	Commanded engine torque
$A F R_{\text {stoich }}$	Stoichiometric fuel AFR
$A F R_{c m d}$	Commanded AFR
$\dot{m}_{\text {air,est }}$	Estimated engine air mass flow
$\dot{m}_{\text {fuel,cmd }}$	Commanded fuel mass flow
$N_{c y l}$	Number of engine cylinders
$S_{i n j}$	Fuel injector slope
$P w_{i n j}$	Fuel injector pulse-width
$f_{\lambda c m d}$	Relative AFR lookup table

Spark advance is the crank angle before top dead center (BTDC) of the power stroke when the spark is delivered. The spark advance has an impact on engine efficiency, torque, exhaust temperature, knock, and emissions.

The spark advance lookup table is a function of estimated load and engine speed.

$$
S A=f_{S A}\left(L_{\text {est }}, N\right)
$$

where:

- $S A$ is spark advance, in crank advance degrees.
- $L_{\text {est }}=L$ is estimated engine load, dimensionless.
- N is engine speed, in rpm.

The equations use these variables.

$L_{\text {est }}$	Estimated engine load, based on normalized cylinder air mass
N	Engine speed
$f_{S A}$	Lookup table for spark advance
N	Spark advance

When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.

If	Idle Speed Controller
$T r q_{\text {cmd,input }}<\operatorname{Tr} q_{\text {idlecmd,enable }}$	Enabled
$\operatorname{Tr} q_{\text {idlecmd,enable }} \leq \operatorname{Tr} q_{\text {cmd,input }}$	Not enabled

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:

$$
C_{i d l e}(z)=K_{p, i d l e}+K_{i, i d l e} \frac{t_{s}}{z-1}
$$

The idle speed commanded torque must be less than the maximum commanded torque:
$0 \leq T r q_{\text {idlecomd }} \leq T r q_{i d l e c m d, m a x}$

Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ($\operatorname{Tr} q_{\text {cmd, input }}<\operatorname{Tr} q_{i d l e c m d, e n a b l e}$), the commanded engine torque is given by:
$\operatorname{Tr} q_{\text {cmd }}=\max \left(\operatorname{Tr} q_{\text {cmd, input }}, \operatorname{Tr} q_{\text {idlecmd }}\right)$.
The equations use these variables.

$\operatorname{Tr} q_{c m d}$	Commanded engine torque
$\operatorname{Tr} q_{\text {cmd,input }}$	Input commanded engine torque
$\operatorname{Tr} q_{i \text { idlecmd,enable }}$	Threshold for enabling idle speed controller
$\operatorname{Tr} q_{\text {idlecmd }}$	Idle speed controller commanded torque
$\operatorname{Tr} q_{i d l e c m d, m a x}$	Maximum commanded torque
$N_{\text {idle }}$	Base idle speed
$K_{p, \text { idle }}$	Idle speed controller proportional gain
$K_{i, \text { idle }}$	Idle speed controller integral gain

Estimator

The estimator subsystem determines the estimated air mass flow, torque, EGR mass flow, and exhaust temperature based on sensor feedback and calibration parameters.

$\dot{m}_{\text {air,est }}$	Estimated engine air mass flow
$T r q_{\text {est }}$	Estimated engine torque
$T_{\text {exh,est }}$	Estimated engine exhaust temperature
$\dot{m}_{\text {EGR,est }}$	Estimated low-pressure EGR mass flow

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description		
"SI Engine Speed-Density Air			
Mass Flow Model"			Uses the speed-density equation to calculate the
:---			
engine air mass flow, relating the engine air mass			
flow to the intake manifold pressure and engine			
speed. Consider using this air mass flow model in			
engines with fixed valvetrain designs.			

To determine the estimated air mass flow, the block uses the intake air mass fraction. The EGR mass fraction at the intake port lags the mass fraction near the EGR valve outlet. To model the lag, the block uses a first order system with a time constant.

$$
y_{\text {intk,EGR,est }}=\frac{\dot{m}_{E G R, e s t}}{\dot{m}_{\text {intk,est }}} \frac{t_{s} z}{\tau_{E G R} z+t_{s}-\tau_{E G R}}
$$

The remainder of the gas is air.
$y_{\text {intk,air,est }}=1-y_{\text {intk,EGR,est }}$

The equations use these variables.

$y_{\text {intk,EGR,est }}$	Estimated intake manifold EGR mass fraction
$y_{\text {intk,airest }}$	Estimated intake manifold air mass fraction
$\dot{m}_{\text {EGR,est }}$	Estimated low-pressure EGR mass flow
$\dot{m}_{\text {intk,est }}$	Estimated intake port mass flow
$\tau_{\text {EGR }}$	EGR time constant

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

The controller estimates low-pressure mass flow, EGR valve inlet pressure, and EGR valve outlet pressure using an algorithm developed by F. Liu and J. Pfeiffer. The estimator requires measured EGR valve differential pressure, EGR valve area percent, intake air temperature, and EGR valve inlet temperature.

To estimate the EGR valve commands, the block uses:

- Equations

$$
\begin{aligned}
& \dot{m}_{a i r, s t d}=\dot{m}_{a i r, e s t} \frac{P_{s t d}}{P_{a m b}} \sqrt{\frac{I A T}{T_{s t d}}} \\
& P_{i n, E G R}=P_{o u t, E G R}+\Delta P_{E G R} \\
& \dot{m}_{E G R, e s t}=\dot{m}_{E G R, s t d} \frac{P_{i n, E G R}}{P_{s t d}} \sqrt{\frac{T_{s t d}}{T_{i n, E G R}}}
\end{aligned}
$$

- Tables
- The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio

$$
\dot{m}_{E G R, s t d}=f_{E G R, s t d}\left(E G R a p, \frac{P_{o u t, E G R}}{P_{i n, E G R}}\right)
$$

where:

- $\dot{m}_{E G R, s t d}$ is EGR valve standard mass flow, dimensionless.
- EGRap is EGR valve flow area percent, in percent.
- $\underline{P_{\text {out }, E G R}}$
$\overline{P_{i n, E G R}}$ is the pressure ratio, dimensionless.

- The pressure ratio is a function of the standard mass flow
$\frac{P_{o u t, E G R}}{P_{a m b}}=f_{\text {intksys,pr}}\left(\dot{m}_{a i r, s t d}\right)$
where:
- $\dot{m}_{\text {air,std }}$ is standard mass flow, in g/s.
- $\frac{P_{\text {out }, E G R}}{P_{\text {amb }}}$
is pressure ratio, dimensionless.

The equations use these variables.

EGRap	EGR valve area percent command
IAT	Intake air temperature
$\dot{m}_{\text {air,std }}$,	Standard air and EGR valve mass flow, respectively
$\dot{m}_{E G R, s t d}$	

	Estimated air and EGR valve mass flow,
$\dot{m}_{\text {air,est }}, \dot{m}_{E G R, e s t}$	
$T_{\text {std }}, P_{\text {std }}$	Standard temperature and pressure
$T_{\text {amb }}, P_{\text {amb }}$	Ambient temperature and pressure

$\Delta P_{E G R}$	Pressure difference at EGR valve inlet and outlet
$T_{\text {in }, E G R}, T_{\text {out,EGR }}$	Temperature at EGR valve inlet and outlet, respectively
$P_{\text {in, }, E G R}, P_{\text {out,EGR }}$	Pressure at EGR valve inlet and outlet, respectively

The exhaust temperature lookup table, $f_{\text {Texh }}$, is a function of engine load and engine speed

$$
T_{e x h}=f_{T e x h}(L, N)
$$

where:

- $T_{e x h}$ is engine exhaust temperature, in K.
- L is normalized cylinder air mass or engine load, dimensionless.
- N is engine speed, in rpm.

Ports

Input

TrqCmd - Commanded engine torque
 scalar

Commanded engine torque, $\operatorname{Tr} q_{c m d, \text { input }}$, in $\mathrm{N} \cdot \mathrm{m}$.

EngSpd - Measured engine speed scalar

Measured engine speed, N, in rpm.
AmbPrs - Measured absolute ambient pressure scalar

Measured ambient pressure, $P_{A m b}$, in Pa.

Map - Measured intake manifold absolute pressure

 scalarMeasured intake manifold absolute pressure $M A P$, in Pa.

Mat - Measured intake manifold absolute temperature scalar

Measured intake manifold absolute temperature, MAT , in K.

IntkCamPhase - Intake cam phaser angle scalar

Intake cam phaser angle, $\varphi_{I C P}$, in degCrkAdv, or degrees crank advance.

ExhCamPhase - Exhaust cam phaser angle

 scalarExhaust cam phaser angle, $\varphi_{E C P}$, in degCrkRet, or degrees crank retard.

Iat - Intake air temperature

scalar

Intake air temperature, IAT, in K .

Ect - Engine cooling temperature scalar

Engine cooling temperature, $T_{\text {coolant }}$, in K.

EgrVlvInTemp - EGR valve inlet temperature scalar

EGR valve inlet temperature, $T_{i n, E G R}$, in K .

EgrVlvAreaPct - EGR valve area percent

scalar

EGR valve area percent, EGRap, in \%.

EgrVlvDeltaPrs - EGR valve delta pressure scalar

EGR valve delta pressure, $\Delta P_{\text {EGR }}$, in Pa .

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
TrqCmd	Engine torque	Trq $q_{c m d}$	$\mathrm{~N} \cdot \mathrm{~m}$
LdCmd	Commanded load	$L_{c m d}$	$\mathrm{~N} / \mathrm{A}$
ThrPosCmd	Throttle area percent command	$T A P_{c m d}$	$\%$
WgAreaPctCmd	Wastegate area percent command	$W A P_{c m d}$	$\%$
InjPw	Fuel injector pulse-width	$P w_{i n j}$	ms
SpkAdv	Spark advance	$S A$	degBTDC
IntkCamPhaseCmd	Intake cam phaser angle command	$\varphi_{\text {ICPCMD }}$	degCrkAdv
ExhCamPhaseCmd	Exhaust cam phaser angle command	$\varphi_{E C P C M D}$	degCrkRet

Signal	Description	Variable	Units
EgrVlvAreaPctCmd	Exhaust cam phaser angle command	EGRap ${ }_{\text {cmd }}$	\%
FuelMassFlwCmd	EGR valve area percent command	$\dot{m}_{\text {fuel,cmd }}$	kg/s
Afrcmd	Commanded air-fuel ratio	$A F R_{\text {cmd }}$	N/A
EstEngTrq	Estimated engine torque	Trq est	$\mathrm{N} \cdot \mathrm{m}$
EstNrmlzdAirCharg	Estimated normalized cylinder air mass	N/A	N/A
EstIntkPortFlw	Estimated air mass flow rate	$\dot{m}_{\text {air,est }}$	kg/s
EstExhManGasTemp	Estimated exhaust manifold gas temperature	$T_{\text {exh,est }}$	K

ThrPosPctCmd - Throttle area percent command
 scalar

Throttle area percent command, $T A P_{c m d}$.

WgAreaPctCmd - Wastegate area percent command scalar

Wastegate area percent command, $W A P_{\text {cmd }}$.

InjPw - Fuel injector pulse-width
 scalar

Fuel injector pulse-width, $P w_{i n j}$, in ms.

SpkAdv - Spark advance scalar

Spark advance, $S A$, in degrees crank angle before top dead center (degBTDC).

IntkCamPhaseCmd - Intake cam phaser angle command scalar

Intake cam phaser angle command, $\varphi_{I C P C M D}$.

ExhCamPhaseCmd - Exhaust cam phaser angle command scalar

Exhaust cam phaser angle command, $\varphi_{E C P C M D}$.
EgrVlvAreaPctCmd - EGR valve area percent command scalar

EGR valve area percent command, E^{\prime} Rap $_{\text {cmd }}$, in \%.

Parameters

Configuration

Air mass flow estimation model - Select air mass flow estimation model Dual Variable Cam Phasing (default)|Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
"SI Engine Speed-Density Air	Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass Mass Flow Model" flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs.

Air Mass Flow Model	Description
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dualindependent cam phaser model uses: - Empirical calibration parameters developed from engine mapping measurements - Desktop calibration parameters derived from engine computer-aided design (CAD) data In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers: - Elimination of MAF sensors in dual cam-phased valvetrain applications - Reasonable accuracy with changes in altitude - Semiphysical modeling approach - Bounded behavior - Suitable execution time for electronic control unit (ECU) implementation - Systematic development of a relatively small number of calibration parameters

Dependencies

The table summarizes the parameter dependencies.

Air Mass Flow Estimation Model	Enables Parameters on Estimation > Air Tab
Dual Variable Cam Phasing	Cylinder volume at intake valve close table, f_vivc Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt Cylinder trapped mass correction factor, f_tm_corr Normalized density breakpoints, f_tm_corr_nd_bpt Engine speed breakpoints, f_tm_corr_n_bpt Air mass flow, f_mdot_air Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt Trapped mass flow breakpoints, f_mdot_trpd_bpt Air mass flow correction factor, f_mdot_air_corr Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt
Simple SpeedDensity	Speed-density volumetric efficiency, f_nv Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt Speed-density engine speed breakpoints, f_nv_n_bpt

Torque estimation model - Select torque estimation model
 Torque Structure (default)|Simple Torque Lookup

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

Dependencies

The table summarizes the parameter dependencies.

Torque Estimation Model	Enables Parameters on Estimation > Torque Tab
Torque Structure	Inner torque table, f_tq_inr
	Friction torque table, f_tq_fric
	Engine temperature modifier on friction torque, f_fric_temp_mod Engine temperature modifier breakpoints, f_fric_temp_bpt Pumping torque table, f_tq_pump Optimal spark table, f_sa_opt Inner torque load breakpoints, f_tq_inr_l_bpt Inner torque speed breakpoints, f_tq_inr_n_bpt Spark efficiency table, f_m_sa Spark retard from optimal, f_del_sa_bpt Lambda efficiency, f_m_lam Lambda breakpoints, f_m_lam_bpt

Torque Estimation Model	Enables Parameters on Estimation > Torque Tab
Simple Torque Lookup	Torque table, f_tq_nl
	Torque table load breakpoints, f_tq_nl_l_bpt
	Torque table speed breakpoints, f_tq_nl_n_bpt

Controls

Air

Engine commanded load table, f_lcmd - Lookup table

 arrayThe commanded engine load lookup table, $f_{L c m d}$, is a function of the commanded torque and engine speed

$$
L_{c m d}=f_{L c m d}\left(T_{c m d}, N\right)
$$

where:

- $L_{c m d}=L$ is commanded engine load, dimensionless.
- $T_{c m d}$ is commanded torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Torque command breakpoints, f_lcmd_tq_bpt - Breakpoints array

Torque command breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.

```
Speed breakpoints, f_lcmd_n_bpt - Breakpoints
array
```

Speed breakpoints, in rpm.

Throttle area percent, f_tap - Lookup table, \% array

The throttle area percent command lookup table, $f_{\text {TAPcmd }}$, is a function of commanded load and engine speed

$$
T A P_{c m d}=f_{T A P c m d}\left(L_{c m d}, N\right)
$$

where:

- $T A P_{c m d}$ is throttle area percentage command, in percent.
- $L_{c m d}=L$ is commanded engine load, dimensionless.
- N is engine speed, in rpm.

Throttle area percent load breakpoints, f_tap_ld_bpt - Breakpoints array

Throttle area percent load breakpoints, dimensionless.

Throttle area percent speed breakpoints, f_tap_n_bpt - Breakpoints array

Throttle area percent speed breakpoints, in rpm.

Throttle area percent to position percent table, f_tpp - Lookup table array

The throttle position percent command lookup table, $f_{\text {TPPcmd }}$, is a function of the throttle area percentage command

$$
T P P_{c m d}=f_{T P P c m d}\left(T A P_{c m d}\right)
$$

where:

- $T P P_{c m d}$ is throttle position percentage command, in percent.
- $T A P_{\text {cmd }}$ is throttle area percentage command, in percent.

Throttle area percent to position percent area breakpoints, f_tpp_tap_bpt - Breakpoints
array
Throttle area percent to position percent area breakpoints, dimensionless.
Wastegate area percent, f_wap - Lookup table, \%
array

The wastegate area percent command lookup table, $f_{\text {WAPcmd }}$, is a function of the commanded engine load and engine speed

$$
W A P_{c m d}=f_{\text {WAPcmd }}\left(L_{c m d}, N\right)
$$

where:

- $W A P_{\text {cmd }}$ is wastegate area percentage command, in percent.
- $L_{c m d}=L$ is commanded engine load, dimensionless.
- N is engine speed, in rpm.


```
Load breakpoints, f_wap_ld_bpt - Breakpoints
array
```

Load breakpoints, dimensionless.

```
Speed breakpoints, f_wap_n_bpt - Breakpoints, rpm
array
```

Speed breakpoints, in rpm.

Intake cam phaser angle, f_icp - Lookup table array

The intake cam phaser angle command lookup table, $f_{\text {ICPCMD }}$, is a function of the engine load and engine speed

$$
\varphi_{I C P C M D}=f_{I C P C M D}\left(L_{e s t}, N\right)
$$

where:
$\varphi_{I C P C M D}$ is commanded intake cam phaser angle, in degrees crank advance.

- $L_{e s t}=L$ is estimated engine load, dimensionless.
- N is engine speed, in rpm.

Exhaust cam phaser angle, f_ecp - Lookup table

array

The exhaust cam phaser angle command lookup table, $f_{E C P C M D}$, is a function of the engine load and engine speed

$$
\varphi_{E C P C M D}=f_{E C P C M D}\left(L_{e s t}, N\right)
$$

where:
$\varphi_{E C P C M D}$ is commanded exhaust cam phaser angle, in degrees crank retard.

- $L_{\text {est }}=L$ is estimated engine load, dimensionless.
- N is engine speed, in rpm.

Load breakpoints, f_cp_ld_bpt - Breakpoints

array
Load breakpoints, dimensionless.

Speed breakpoints, f_cp_n_bpt - Breakpoints
 array

Speed breakpoints, in rpm.

Commanded EGR percent, f_egrpct_cmd - Lookup table array

The EGR percent command, $E G R_{\text {pct,cmd }}$, lookup table is a function of estimated engine load and engine speed

$$
E G R_{p c t, c m d}=f_{E G R p c t, c m d}\left(L_{e s t}, N\right)
$$

where:

- $E G R_{p c t, c m d}$ is commanded EGR percent, dimensionless.
- $L_{\text {est }}=L$ is estimated engine load, dimensionless.
- N is engine speed, in rpm.

Load breakpoints, f_egrpct_ld_bpt - Breakpoints
vector
Engine load breakpoints, L, dimensionless.

Speed breakpoints, f_egrpct_n_bpt - Breakpoints

 vectorEngine speed breakpoints, N, in rpm.

EGR valve area percent, f_egr_areapct_cmd - Lookup table array

The EGR area percent command, $E G R a p_{c m d}$, lookup table is a function of the normalized mass flow and pressure ratio

$$
E G R a p_{c m d}=f_{E G R a p, c m d}\left(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, m a x}}, \frac{P_{o u t, E G R}}{P_{\text {in }, E G R}}\right)
$$

where:

- EGRap ${ }_{c m d}$ is commanded EGR area percent, dimensionless.
- $\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, m a x}}$
$\dot{m}_{E G R s t d, m a x}$ is the normalized mass flow, dimensionless.
- $\frac{P_{\text {out }, E G R}}{P_{\text {in }} \text {. }}$
$P_{i n, E G R}$ is the pressure ratio, dimensionless.

Open EGR valve standard flow, f_egr_max_stdflow - Breakpoints vector

Maximum standard EGR valve mass flow breakpoints, $\dot{m}_{\text {EGRstd, max }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Normalized EGR valve standard flow breakpoints, f_egr_areapct_nrmlzdflow_bpt - Breakpoints
 vector

Normalized mass flow breakpoints, $\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, m a x}}$, dimensionless.

EGR valve pressure ratio breakpoints, f_egr_areapct_pr_bpt Breakpoints

vector
Pressure ratio breakpoints, $\frac{P_{\text {out }, E G R}}{P_{\text {in,EGR }}}$, dimensionless.
Fuel

Injector slope, Sinj - Slope

scalar

Fuel injector slope, $S_{i n j}$, in $\mathrm{mg} / \mathrm{ms}$.

Stoichiometric air-fuel ratio, afr_stoich - Ratio scalar

Stoichiometric air-fuel ratio, $A F R_{\text {stoich }}$.

Relative air-fuel ratio lambda, f_lamcmd - Air-fuel-ratio (AFR) lookup table

array

The commanded lambda, $\lambda_{\text {cmd }}$, lookup table is a function of estimated engine load and measured engine speed

$$
\lambda_{c m d}=f_{\lambda c m d}\left(L_{e s t}, N\right)
$$

where:

- $\lambda_{\text {cmd }}$ is commanded relative AFR, dimensionless.
- $L_{\text {est }}=L$ is estimated engine load, dimensionless.
- N is engine speed, in rpm.

Load breakpoints, f_lamcmd_ld_bpt - Breakpoints vector

Load breakpoints, dimensionless.

Speed breakpoints, f_lamcmd_n_bpt - Breakpoints vector

Speed breakpoints, in rpm.

Engine cranking speed, CrankSpeed - Engine threshold to enrich optimal lambda with delta lambda
 scalar

Engine cranking speed threshold, CrankSpeed, to enrich the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda, in rpm.

The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the Engine cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.

Engine startup lambda enrichment delta vs coolant temperature, f_startup_lambda_delta - Lookup table
vector
Engine startup lambda enrichment delta as a function of coolant temperature, dimensionless.

The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the Engine cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.

Engine startup lambda enrichment delta time constant vs coolant temperature, f_startup_lambda_delta_timecnst - Lambda time constant vector

Engine startup lambda enrichment delta time constant versus coolant temperature, in s.

The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the Engine cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.

Engine startup coolant temperature breakpoints, f_startup_ect_bpt Breakpoints

vector
Engine startup coolant temperature breakpoints, in C.
The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the Engine cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.

Spark

Spark advance table, f_sa - Lookup table array

The spark advance lookup table is a function of estimated load and engine speed.

$$
S A=f_{S A}\left(L_{e s t}, N\right)
$$

where:

- $S A$ is spark advance, in crank advance degrees.
- $L_{\text {est }}=L$ is estimated engine load, dimensionless.
- N is engine speed, in rpm.

Load breakpoints, f_sa_ld_bpt - Breakpoints array

Load breakpoints, dimensionless.
Speed breakpoints, f_sa_n_bpt - Breakpoints
array
Speed breakpoints, in rpm.
Idle Speed
Target idle speed, N_idle - Speed

scalar

Target idle speed, $N_{\text {idle }}$, in rpm.
Enable torque command limit, Trq_idlecmd_enable - Torque scalar

Torque to enable the idle speed controller, $\operatorname{Tr}_{\text {idlecmd,enable }}$, in $\mathrm{N} \cdot \mathrm{m}$.
Maximum torque command, Trq_idlecmd_max - Torque scalar

Maximum idle controller commanded torque, $\operatorname{Tr}_{\text {idlecm }^{\prime} \text { max }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Proportional gain, Kp_idle - PI Controller scalar

Proportional gain for idle speed control, $K_{p, i d l e}$, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rpm}$.

Integral gain, Ki_idle - PI Controller scalar

Integral gain for idle speed control, $K_{i, d l e}$, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rpm} \cdot \mathrm{s})$.

Estimation

Air

Number of cylinders, NCyl - Engine cylinders scalar

Number of engine cylinders, $N_{c y l}$.
Crank revolutions per power stroke, Cps - Revolutions per stroke scalar

Crankshaft revolutions per power stroke, $C p s$, in rev/stroke.

Total displaced volume, Vd - Volume scalar

Displaced volume, V_{d}, in $\mathrm{m}^{\wedge} 3$.
Ideal gas constant air, Rair - Constant scalar

Ideal gas constant, $R_{\text {air }}$, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.
Air standard pressure, Pstd - Pressure scalar

Standard air pressure, $P_{s t d}$, in Pa.
Air standard temperature, Tstd - Temperature scalar

Standard air temperature, $T_{s t d}$, in K.

Speed-density volumetric efficiency, f_nv - Lookup table array

The engine volumetric efficiency lookup table, $f_{\eta_{v}}$, is a function of intake manifold absolute pressure and engine speed

$$
\eta_{v}=f_{\eta_{v}}(M A P, N)
$$

where:
η_{v} is engine volumetric efficiency, dimensionless.

- MAP is intake manifold absolute pressure, in KPa.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Simple Speed-Density.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt Breakpoints

array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Simple Speed-Density.

Speed-density engine speed breakpoints, f_nv_n_bpt - Breakpoints array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Simple Speed-Density.

Cylinder volume at intake valve close table, f_vivc - 2-D lookup table array

The cylinder volume at intake valve close table (IVC), $f_{V i v c}$ is a function of the intake cam phaser angle

$$
V_{I V C}=f_{V i v c}\left(\varphi_{I C P}\right)
$$

where:

$$
V_{I V C} \text { is cylinder volume at IVC, in L. }
$$

$\varphi_{I C P}$ is intake cam phaser angle, in crank advance degrees.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Engine speed breakpoints, f_tm_corr_n_bpt - Breakpoints array

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt Breakpoints
array
Cylinder volume at intake valve close table breakpoints.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Cylinder trapped mass correction factor, f_tm_corr - Lookup table array

The trapped mass correction factor table, $f_{T M c o r r}$, is a function of the normalized density and engine speed

$$
T M_{c o r r}=f_{T M c o r r}\left(\rho_{\text {norm }}, N\right)
$$

where:

- $T M_{\text {corr }}$, is trapped mass correction multiplier, dimensionless.
$\rho_{\text {norm }}$ is normalized density, dimensionless.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Normalized density breakpoints, f_tm_corr_nd_bpt - Breakpoints array

Normalized density breakpoints.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Intake mass flow, f_mdot_intk - Lookup table array

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow

$$
\dot{m}_{\text {intkideal }}=f_{\text {intkideal }}\left(\varphi_{E C P}, T M_{\text {flow }}\right)
$$

where:

$$
\dot{m}_{\text {intkideal }} \text { is engine intake port mass flow at arbitrary cam phaser angles, in g/s. }
$$

-

$\varphi_{E C P}$ is exhaust cam phaser angle, in degrees crank retard.
$T M_{\text {flow }}$ is flow rate equivalent to corrected trapped mass at the current engine speed, in g / s.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt - Breakpoints array

Exhaust cam phaser breakpoints for air mass flow lookup table.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

```
Trapped mass flow breakpoints, f_mdot_trpd_bpt - Breakpoints
array
```

Trapped mass flow breakpoints for air mass flow lookup table.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Air mass flow correction factor, f_mdot_air_corr - Lookup table array

The intake air mass flow correction lookup table, $f_{\text {aircorr }}$, is a function of ideal load and engine speed

$$
\dot{m}_{\text {air }}=\dot{m}_{\text {intkideal }} f_{\text {aircorr }}\left(L_{\text {ideal }}, N\right)
$$

where:

- $L_{i d e a l}$ is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.
- $\dot{m}_{\text {air }}$ is engine intake air mass flow final correction at steady-state cam phaser angles, in g / s.
-

$\dot{m}_{\text {intkideal }}$ is engine intake port mass flow at arbitrary cam phaser angles, in g/s.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

```
Engine load breakpoints for air mass flow correction,
f_mdot_air_corr_ld_bpt - Breakpoints
array
```

Engine load breakpoints for air mass flow final correction.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt - Breakpoints

```
vector
```

Engine speed breakpoints for air mass flow final correction.

Dependencies

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

EGR flow time constant, tau_egr - Constant scalar

EGR flow time constant, $\tau_{E G R}$, in s.
Intake system pressure ratio table, f_intksys_stdflow_pr - Table array

The pressure ratio is a function of the standard mass flow

$$
\frac{P_{o u t, E G R}}{P_{a m b}}=f_{i n t k s y s, p r}\left(\dot{m}_{a i r, s t d}\right)
$$

where:

- $\dot{m}_{\text {air,std }}$ is standard mass flow, in g / s.
- $\frac{P_{\text {out }, E G R}}{P_{\text {amb }}}$ is pressure ratio, dimensionless.

Standard mass flow rate breakpoints for intake pressure ratio, f_intksys_stdflow_bpt - Breakpoints
vector

Standard mass flow, $\dot{m}_{\text {air,std }}$, in g/s.

EGR valve standard mass flow rate, f_egr_stdflow - Table array

The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio

$$
\dot{m}_{E G R, s t d}=f_{E G R, s t d}\left(E G R a p, \frac{P_{o u t, E G R}}{P_{\text {in, }, E G R}}\right)
$$

where:

- $\dot{m}_{E G R, s t d}$ is EGR valve standard mass flow, dimensionless.
- EGRap is EGR valve flow area percent, in percent.
- $\frac{P_{\text {out }, E G R}}{P_{\text {in }, E G R}}$
is the pressure ratio, dimensionless.

EGR valve standard flow pressure ratio breakpoints, f_egr_stdflow_pr_bpt - Breakpoints
 vector

EGR valve standard flow area percent breakpoints, f_egr_stdflow_egrap_bpt - Breakpoints
 vector

EGR valve flow area percent, EGRap, in percent.

Torque

Torque table, f_tq_nl - Lookup table [L x N] array

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, $T_{b r a k e}=f_{T n L}(L, N)$, where:

- $T_{\text {brake }}$ is engine brake torque after accounting for spark advance, AFR, and friction effects, in $\mathrm{N} \cdot \mathrm{m}$.
- L is engine load, as a normalized cylinder air mass, dimensionless.
- N is engine speed, in rpm.

The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (L-by-N) contains the non-firing data in the first table row (1-by-N). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

Dependencies

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

Torque table load breakpoints, f_tq_nl_l_bpt - Breakpoints

[1 x L] vector
Engine load breakpoints, L, dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

Torque table speed breakpoints, f_tq_nl_n_bpt - Breakpoints
[1 x N] vector
Engine speed breakpoints, N, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

```
Inner torque table, f_tq_inr - Lookup table
array
```

The inner torque lookup table, $f_{\text {Tqinr }}$, is a function of engine speed and engine load, $T q_{i n r}=f_{T q i n r}(L, N)$, where:
$T q_{i n r}$ is inner torque based on gross indicated mean effective pressure, in $\mathrm{N} \cdot \mathrm{m}$.

- L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.

Dependencies
To enable this parameter, for the Torque model parameter, select Torque Structure.

Friction torque table, f_tq_fric - Lookup table

array

The friction torque lookup table, $f_{\text {Tfric }}$, is a function of engine speed and engine load,
$T_{\text {fric }}=f_{T \text { fric }}(L, N)$, where:
$T_{\text {fric }}$ is friction torque offset to inner torque, in $\mathrm{N} \cdot \mathrm{m}$.

- L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Engine temperature modifier on friction torque, f_fric_temp_mod Lookup table

vector
Engine temperature modifier on friction torque, $f_{\text {fric,temp }}$ dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Engine temperature modifier breakpoints, f_fric_temp_bpt Breakpoints

vector
Engine temperature modifier breakpoints, in K.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Pumping torque table, f_tq_pump - Lookup table array

The pumping torque lookup table, $f_{\text {Tpump }}$, is a function of engine speed and injected fuel mass, $T_{\text {pump }}=\mathrm{f}_{\text {Tpump }}(\mathrm{L}, \mathrm{N})$, where:

- $T_{\text {pump }}$ is pumping torque, in $\mathrm{N} \cdot \mathrm{m}$.
- L is engine load, as a normalized cylinder air mass, dimensionless.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Optimal spark table, f_sa_opt - Lookup table

array

The optimal spark lookup table, $f_{S A o p t}$, is a function of engine speed and engine load, $S A_{\text {opt }}=f_{\text {SAopt }}(L, N)$, where:

- $S A_{\text {opt }}$ is optimal spark advance timing for maximum inner torque at stoichiometric airfuel ratio (AFR), in deg.
- L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Inner torque load breakpoints, f_tq_inr_l_bpt - Breakpoints array

Inner torque load breakpoints, dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Inner torque speed breakpoints, f_tq_inr_n_bpt - Breakpoints array

Inner torque speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Spark efficiency table, f_m_sa - Lookup table array

The spark efficiency lookup table, $f_{M s a}$, is a function of the spark retard from optimal

$$
\begin{aligned}
& M_{s a}=f_{M s a}(\Delta S A) \\
& \Delta S A=S A_{\text {opt }}-S A
\end{aligned}
$$

where:
$M_{s a}$ is the spark retard efficiency multiplier, dimensionless.

- $\Delta S A$ is the spark retard timing distance from optimal spark advance, in deg.

Dependencies
To enable this parameter, for the Torque model parameter, select Torque Structure.

Spark retard from optimal, f_del_sa_bpt - Breakpoints scalar

Spark retard from optimal inner torque timing breakpoints, in deg.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.
Lambda efficiency, f_m_lam - Lookup table array

The lambda efficiency lookup table, $f_{M \lambda}$, is a function of lambda, $M_{\lambda}=f_{M \lambda}(\lambda)$, where:

- M_{λ} is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- λ is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.
Lambda breakpoints, f_m_lam_bpt - Breakpoints
array
Lambda effect on inner torque lambda breakpoints, dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Exhaust

Exhaust temperature table, f_t_exh - Lookup table

array

The exhaust temperature lookup table, $f_{\text {Texh }}$, is a function of engine load and engine speed

$$
T_{e x h}=f_{\text {Texh }}(L, N)
$$

where:

- $T_{\text {exh }}$ is engine exhaust temperature, in K .
- L is normalized cylinder air mass or engine load, dimensionless.
- N is engine speed, in rpm.

Load breakpoints, f_t_exh_l_bpt - Breakpoints array

Engine load breakpoints used for exhaust temperature lookup table.

```
Speed breakpoints, f_t_exh_n_bpt - Breakpoints
array
```

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

References

[1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems - BOSCH ME7. SAE Technical Paper 980801, 1998.
[2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
[3] Leone, T. Christenson, E., Stein, R., Comparison of Variable Camshaft Timing Strategies at Part Load. SAE Technical Paper 960584, 1996, doi:10.4271/960584.
[4] Liu, F. and Pfeiffer, J., Estimation Algorithms for Low Pressure Cooled EGR in SparkIgnition Engines. SAE Int. J. Engines 8(4):2015, doi:10.4271/2015-01-1620.

See Also

Mapped SI Engine | SI Core Engine

Topics

"Engine Calibration Maps"

Introduced in R2017a

SI Core Engine

Spark-ignition engine from intake to exhaust port
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Core Engine

Description

The SI Core Engine block implements a spark-ignition (SI) engine from intake to exhaust port. You can use the block in larger vehicle models, hardware-in-the-loop (HIL) engine control design, or vehicle-level fuel economy and performance simulations.

The SI Core Engine block calculates:

- Brake torque
- Fuel flow
- Port gas mass flow, including exhaust gas recirculation (EGR)
- Air-fuel ratio (AFR)
- Exhaust temperature and exhaust mass flow rate
- Engine-out (EO) exhaust emissions
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$
- Particulate matter (PM)

Air Mass Flow

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
"SI Engine Speed-Density Air Mass Flow Model"	Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs.
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dualindependent cam phaser model uses: - Empirical calibration parameters developed from engine mapping measurements - Desktop calibration parameters derived from engine computer-aided design (CAD) data In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers: - Elimination of MAF sensors in dual cam-phased valvetrain applications - Reasonable accuracy with changes in altitude - Semiphysical modeling approach - Bounded behavior - Suitable execution time for electronic control unit (ECU) implementation - Systematic development of a relatively small number of calibration parameters

Brake Torque

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure Model"	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

Fuel Flow

To calculate the fuel flow, the SI Core Engine block uses fuel injector characteristics and fuel injector pulse-width.

$$
\dot{m}_{\text {fuel }}=\frac{N S_{i n j} P w_{i n j} N_{c y l}}{C p s\left(\frac{60 s}{\min }\right)\left(\frac{1000 m g}{g}\right)}
$$

The equation uses these variables.
Engine fuel mass flow, g/s
$\dot{m}_{f u e l}$
$\omega \quad$ Engine rotational speed, rad/s
Cps Crankshaft revolutions per power stroke, rev/stroke
Fuel injector slope, mg/ms
$S_{i n j}$
Fuel injector pulse-width, ms
$P w_{i n j}$
Number of engine cylinders
$N_{c y l}$
$N \quad$ Engine speed, rpm

Air-Fuel Ratio

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.

$$
A F R=\frac{\dot{m}_{\text {air }}}{\dot{m}_{\text {fuel }}}
$$

The CI Core Engine uses this equation to calculate the relative AFR.

$$
\lambda=\frac{A F R}{A F R_{s}}
$$

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.

$$
E G R_{p c t}=100 \frac{\dot{\mathrm{~m}}_{\text {intk }, b}}{\dot{\mathrm{~m}}_{\text {intk }}}=100 y_{\text {int }, b}
$$

The equations use these variables.

$A F R$	Air-fuel ratio
$A F R_{s}$	Stoichiometric air-fuel ratio
$\dot{m}_{\text {intk }}$	Engine air mass flow
$\dot{m}_{\text {fuel }}$	Fuel mass flow
λ	Relative AFR
$y_{\text {intk,b }}$	Intake burned mass fraction
$E G R_{\text {pct }}$	EGR percent
$\dot{m}_{\text {intk,b }}$	Recirculated burned gas mass flow rate

Exhaust

The block calculates the:

- Exhaust gas temperature
- Exhaust gas-specific enthalpy
- Exhaust gas mass flow rate
- Engine-out (EO) exhaust emissions:
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$
- Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.

$$
h_{e x h}=C p_{e x h} T_{e x h}
$$

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.

$$
\dot{m}_{\text {exh }}=\dot{m}_{\text {intake }}+\dot{m}_{\text {fuel }}
$$

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.

$$
\begin{aligned}
& y_{e x h, i}=f_{i_{i} f r a c}\left(T_{b r a k e}, N\right) \\
& \dot{m}_{e x h, i}=\dot{m}_{\text {exh }} y_{\text {exh }, i}
\end{aligned}
$$

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.

$$
y_{\text {exh,air }}=\max \left[y_{\text {in,air }}-\frac{\dot{m}_{\text {fuel }}+y_{\text {in,fuel }} \dot{m}_{\text {intake }}}{\dot{m}_{\text {fuel }}+\dot{m}_{\text {intake }}} A F R_{s}\right]
$$

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.

$$
y_{e x h, b}=\max \left[\left(1-y_{\text {exh,air }}-y_{\text {exh,HC }}\right), 0\right]
$$

The equations use these variables.

$T_{\text {exh }}$	Engine exhaust temperature
$h_{\text {exh }}$	Exhaust manifold inlet-specific enthalpy
$C p_{\text {exh }}$	Exhaust gas specific heat
$\dot{m}_{\text {inth }}$	Intake port air mass flow rate
$\dot{m}_{\text {fuel }}$	Fuel mass flow rate
$\dot{m}_{\text {exh }}$	Exhaust mass flow rate
$y_{\text {in,fuel }}$	Intake fuel mass fraction
$y_{\text {exh,i }}$	Exhaust mass fraction for $\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}$, air, burned gas, and PM
$\dot{m}_{\text {exh,i }}$	Exhaust mass flow rate for $\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}$, air, burned gas, and PM
$T_{\text {brake }}$	Engine brake torque
N	Engine speed
$y_{\text {exh,air }}$	Exhaust air mass fraction
$y_{\text {exh,b }}$	Exhaust air burned mass fraction

Ports

Input

InjPw - Fuel injector pulse-width
 scalar

Fuel injector pulse-width, $P w_{i n j}$, in ms.

SpkAdv - Spark advance scalar

Spark advance, $S A$, in degrees crank angle before top dead center (degBTDC).

Dependencies

To create this port, for the Torque model parameter, select Torque Structure.

ICP - Intake cam phase angle command

 scalarIntake cam phase angle command, $\varphi_{I C P C M D}$, in degCrkAdv, or degrees crank advance.

Dependencies

To create this port, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

ECP - Exhaust cam phase angle command

scalar

Exhaust cam phase angle command, $\varphi_{E C P C M D}$, in degCrkRet, or degrees crank retard.

Dependencies

To create this port, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

AmbPrs - Ambient pressure
scalar

Ambient pressure, $P_{A m b}$, in Pa.
Dependencies
To create this port, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

EngSpd - Engine speed

scalar
Engine speed, N, in rpm.

Ect - Engine cooling temperature scalar

Engine cooling temperature, $T_{\text {coolant }}$, in K.

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Intk - Intake port pressure, temperature, enthalpy, mass fractions two-way connector port

Bus containing the upstream:

- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Intake port mass fractions, dimensionless. EGR mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Exh - Exhaust port pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing the exhaust:

- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Variable	Units
IntkGasMass Flw	Engine intake air mass flow.	$\dot{m}_{\text {air }}$	kg / s
IntkAirMass Flw	Engine intake port mass flow.	$\dot{m}_{\text {intk }}$	kg / s
NrmlzdAirCh rg	Engine load (that is, normalized cylinder air mass) corrected for final steady-state cam phase angles	L	N / A

Signal	Description	Variable	Units
Afr	Air-fuel ratio at engine exhaust port	$A F R$	$\mathrm{~N} / \mathrm{A}$
FuelMassFlw	Fuel flow into engine	$\dot{m}_{\text {fuel }}$	

Signal	Description	Variable	Units
EoC02	EO carbon dioxide emission mass flow rate	$y_{\text {exh,CO2 }}$	kg / s
EoPm	EO particulate matter emission mass flow rate	$y_{\text {exh,PM }}$	kg / s

EngTrq - Engine brake torque scalar

Engine brake torque, $T_{b r a k e}$, in $\mathrm{N} \cdot \mathrm{m}$.

Intk - Intake port mass flow rate, heat flow rate, temperature, mass fraction

two-way connector port
Bus containing:

- MassFlwRate - Intake port mass flow rate, in kg/s
- HeatFlwRate - Intake port heat flow rate, in J/s
- Temp - Intake port temperature, in K
- MassFrac - Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Exh - Exhaust port mass flow rate, heat flow rate, temperature, mass fraction two-way connector port

Bus containing:

- MassFlwRate - Exhaust port mass flow rate, in kg/s
- HeatFlwRate - Exhaust heat flow rate, in J/s
- Temp - Exhaust temperature, in K
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Parameters

Block Options

Air mass flow model - Select air mass flow model
 Dual-Independent Variable Cam Phasing (default)|Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description		
"SI Engine Speed-Density Air			
Mass Flow Model"			Uses the speed-density equation to calculate the
:---			
engine air mass flow, relating the engine air mass			
flow to the intake manifold pressure and engine			
speed. Consider using this air mass flow model in			
engines with fixed valvetrain designs.			

Dependencies

The table summarizes the parameter dependencies.

Air Mass Flow Model	Enables Parameters
Dual- Independent Variable Cam Phasing	Cylinder volume at intake valve close table, f_vivc Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt Cylinder trapped mass correction factor, f_tm_corr Normalized density breakpoints, f_tm_corr_nd_bpt Engine speed breakpoints, f_tm_corr_n_bpt Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt Trapped mass flow breakpoints, f_mdot_trpd_bpt Air mass flow correction factor, f_mdot_air_corr Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt
Speed-density volumetric efficiency, f_nv Speed-density intake manifold pressure breakpoints, fensite Speed	
Speed-density engine speed breakpoints, f_nv_n_bpt	

Torque model - Select torque model
 Torque Structure (default)|Simple Torque Lookup

To calculate the brake torque, configure the SI engine to use either of these torque models.

$|$| Brake Torque Model | Description |
| :--- | :--- |
| "SI Engine Torque Structure
 Model" | For the structured brake torque calculation, the SI
 engine uses tables for the inner torque, friction
 torque, optimal spark, spark efficiency, and lambda
 efficiency. |
| "SI Engine Simple Torque Model" | For the simple brake torque calculation, the SI
 engine block uses a torque lookup table map that is
 a function of engine speed and load. |

Dependencies

The table summarizes the parameter dependencies.

Torque Model	Enables Parameters
Torque Structure	Inner torque table, f_tq_inr
	Friction torque table, f_tq_fric
	Engine temperature modifier on friction torque, f_fric_temp_mod Engine temperature modifier breakpoints, fric_temp_bpt Pumping torque table, f_tq_pump Optimal spark table, f_sa_opt Inner torque load breakpoints, f_tq_inr_l_bpt Spark efficiency table, f_m_sa Lambetard from optimal, f_del_sa_bpt Lambda breakpoints, f_m_lam_bpt

Torque Model	Enables Parameters
Simple Torque	Torque table, f_tq_nl
Lookup	Torque table load breakpoints, f_tq_nl_l_bpt
	Torque table speed breakpoints, f_tq_nl_n_bpt

Air

Number of cylinders, NCyl - Engine cylinders scalar

Number of engine cylinders, $N_{c y l}$.
Crank revolutions per power stroke, Cps - Revolutions per stroke scalar

Crankshaft revolutions per power stroke, $C p s$, in rev/stroke.
Total displaced volume, Vd - Volume
scalar

Displaced volume, V_{d}, in $\mathrm{m}^{\wedge} 3$.
Ideal gas constant air, Rair - Constant scalar

Ideal gas constant, $R_{\text {air }}$, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.
Air standard pressure, Pstd - Pressure scalar

Standard air pressure, $P_{s t d}$, in Pa.
Air standard temperature, Tstd - Temperature scalar

Standard air temperature, $T_{s t d}$, in K.

Speed-density volumetric efficiency, f_nv - Lookup table array

The engine volumetric efficiency lookup table, $f_{\eta_{v}}$, is a function of intake manifold absolute pressure and engine speed

$$
\eta_{v}=f_{\eta_{v}}(M A P, N)
$$

where:
η_{v} is engine volumetric efficiency, dimensionless.

- MAP is intake manifold absolute pressure, in KPa.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt Breakpoints

array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.

Speed-density engine speed breakpoints, f_nv_n_bpt - Breakpoints array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.

Cylinder volume at intake valve close table, f_vivc - 2-D lookup table array

The cylinder volume at intake valve close table (IVC), $f_{V i v c}$ is a function of the intake cam phaser angle

$$
V_{I V C}=f_{V i v c}\left(\varphi_{I C P}\right)
$$

where:
$V_{I V C}$ is cylinder volume at IVC, in L.
$\varphi_{I C P}$ is intake cam phaser angle, in crank advance degrees.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt Breakpoints
array
Cylinder volume intake cam phase breakpoints, in L.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Cylinder trapped mass correction factor, f_tm_corr - Lookup table array

The trapped mass correction factor table, $f_{T M c o r r}$, is a function of the normalized density and engine speed

$$
T M_{c o r r}=f_{T M c o r r}\left(\rho_{\text {norm }}, N\right)
$$

where:
$T M_{\text {corr }}$, is trapped mass correction multiplier, dimensionless.
$\rho_{\text {norm }}$ is normalized density, dimensionless.

- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select DualIndependent Variable Cam Phasing.

```
Normalized density breakpoints, f_tm_corr_nd_bpt - Breakpoints
array
```

Normalized density breakpoints, dimensionless.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Engine speed breakpoints, f_tm_corr_n_bpt - Breakpoints array

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

```
Air mass flow, f_mdot_air - Lookup table
array
```

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow

$$
\dot{m}_{\text {intkideal }}=f_{\text {intkideal }}\left(\varphi_{E C P}, T M_{\text {flow }}\right)
$$

where:

$$
\dot{m}_{\text {intkideal }} \text { is engine intake port mass flow at arbitrary cam phaser angles, in } \mathrm{g} / \mathrm{s} .
$$

-

$\varphi_{E C P}$ is exhaust cam phaser angle, in degrees crank retard.
$T M_{\text {flow }}$ is flow rate equivalent to corrected trapped mass at the current engine speed, in g / s.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt - Breakpoints array

Exhaust cam phaser breakpoints for air mass flow lookup table, in degrees crank retard.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

```
Trapped mass flow breakpoints, f_mdot_trpd_bpt - Breakpoints
array
```

Trapped mass flow breakpoints for air mass flow lookup table, in g/s.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Air mass flow correction factor, f_mdot_air_corr - Lookup table array

The intake air mass flow correction lookup table, $f_{\text {aircorr }}$, is a function of ideal load and engine speed

$$
\dot{m}_{\text {air }}=\dot{m}_{\text {intkideal }} f_{\text {aircorr }}\left(L_{\text {ideal }}, N\right)
$$

where:

- $L_{i d e a l}$ is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.
- $\dot{m}_{\text {air }}$ is engine intake air mass flow final correction at steady-state cam phaser angles, in g / s.
-

$\dot{m}_{\text {intkideal }}$ is engine intake port mass flow at arbitrary cam phaser angles, in g / s.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt - Breakpoints array

Engine load breakpoints for air mass flow final correction, dimensionless.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

```
Engine speed breakpoints for air mass flow correction,
f_mdot_air_n_bpt - Breakpoints
array
```

Engine speed breakpoints for air mass flow final correction, in rpm.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Torque

Torque table, f_tq_nl - Lookup table [L x N] array

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, $T_{b r a k e}=f_{T n L}(L, N)$, where:
$T_{\text {brake }}$ is engine brake torque after accounting for spark advance, AFR, and friction effects, in N•m.

- L is engine load, as a normalized cylinder air mass, dimensionless.
- N is engine speed, in rpm.

The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (L-by-N) contains the non-firing data in the first table row (1-by-N). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

Dependencies

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

Torque table load breakpoints, f_tq_nl_l_bpt - Breakpoints

[1 x L] vector

Engine load breakpoints, L, dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

Torque table speed breakpoints, f_tq_nl_n_bpt - Breakpoints [1 x N] vector

Engine speed breakpoints, N, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

Inner torque table, f_tq_inr - Lookup table array

The inner torque lookup table, $f_{\text {Tqinr }}$, is a function of engine speed and engine load, $T q_{i n r}=f_{T q i n r}(L, N)$, where:

- $T q_{i n r}$ is inner torque based on gross indicated mean effective pressure, in $\mathrm{N} \cdot \mathrm{m}$.
- L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.

Dependencies
To enable this parameter, for the Torque model parameter, select Torque Structure.

Friction torque table, f_tq_fric - Lookup table

array

The friction torque lookup table, $f_{\text {Tfric }}$, is a function of engine speed and engine load,
$T_{\text {fric }}=f_{T \text { fric }}(L, N)$, where:
$T_{\text {fric }}$ is friction torque offset to inner torque, in $\mathrm{N} \cdot \mathrm{m}$.

- L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Engine temperature modifier on friction torque, f_fric_temp_mod Lookup table

vector
Engine temperature modifier on friction torque, $f_{\text {fric,temp }}$ dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Engine temperature modifier breakpoints, f_fric_temp_bpt Breakpoints

vector
Engine temperature modifier breakpoints, in K.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Pumping torque table, f_tq_pump - Lookup table array

The pumping torque lookup table, $f_{\text {Tpump }}$, is a function of engine speed and injected fuel mass, $T_{\text {pump }}=\mathrm{f}_{\text {Tpump }}(\mathrm{L}, \mathrm{N})$, where:

- $T_{\text {pump }}$ is pumping torque, in $\mathrm{N} \cdot \mathrm{m}$.
- L is engine load, as a normalized cylinder air mass, dimensionless.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Optimal spark table, f_sa_opt - Lookup table

array

The optimal spark lookup table, $f_{S A o p t}$, is a function of engine speed and engine load, $S A_{\text {opt }}=f_{\text {SAopt }}(L, N)$, where:

- $S A_{\text {opt }}$ is optimal spark advance timing for maximum inner torque at stoichiometric airfuel ratio (AFR), in deg.
- L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Inner torque load breakpoints, f_tq_inr_l_bpt - Breakpoints
 array

Inner torque load breakpoints, dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Inner torque speed breakpoints, f_tq_inr_n_bpt - Breakpoints array

Inner torque speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Spark efficiency table, f_m_sa - Lookup table array

The spark efficiency lookup table, $f_{M s a}$, is a function of the spark retard from optimal

$$
\begin{aligned}
& M_{s a}=f_{M s a}(\Delta S A) \\
& \Delta S A=S A_{\text {opt }}-S A
\end{aligned}
$$

where:

- $M_{s a}$ is the spark retard efficiency multiplier, dimensionless.
- $\Delta S A$ is the spark retard timing distance from optimal spark advance, in deg.

Dependencies
To enable this parameter, for the Torque model parameter, select Torque Structure.

Spark retard from optimal, f_del_sa_bpt - Breakpoints scalar

Spark retard from optimal inner torque timing breakpoints, in deg.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.
Lambda efficiency, f_m_lam - Lookup table array

The lambda efficiency lookup table, $f_{M \lambda}$, is a function of lambda, $M_{\lambda}=f_{M \lambda}(\lambda)$, where:

- M_{λ} is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- λ is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.
Lambda breakpoints, f_m_lam_bpt - Breakpoints
array
Lambda effect on inner torque lambda breakpoints, dimensionless.

Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

Exhaust

Exhaust temperature table, f_t_exh - Lookup table

array

The exhaust temperature lookup table, $f_{T e x h}$, is a function of engine load and engine speed

$$
T_{e x h}=f_{T e x h}(L, N)
$$

where:

- $T_{\text {exh }}$ is engine exhaust temperature, in K .
- L is normalized cylinder air mass or engine load, dimensionless.
- N is engine speed, in rpm.

Load breakpoints, f_t_exh_l_bpt - Breakpoints array

Engine load breakpoints used for exhaust temperature lookup table, dimensionless.

Speed breakpoints, f_t_exh_n_bpt - Breakpoints array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

Exhaust gas specific heat at constant pressure, cp_exh - Specific heat

 scalarExhaust gas-specific heat, $C p_{\text {exh }}$, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

CO2 mass fraction table, f_CO2_frac - Carbon dioxide (CO_{2}) emission lookup table

array
The SI Core Engine CO_{2} emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:

- CO2 Mass Fraction is the CO_{2} emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select CO2.

CO mass fraction table, f_CO_frac - Carbon monoxide (CO) emission lookup table

array
The SI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:

- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select CO.

HC mass fraction table, f_HC_frac - Hydrocarbon (HC) emission lookup table

array
The SI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction $=f$ (Speed, Torque), where:

- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select HC.

NOx mass fraction table, f_NOx_frac - Nitric oxide and nitrogen dioxide (NOx) emission lookup table

array
The SI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction = f(Speed, Torque), where:

- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select NOx.

PM mass fraction table, f_PM_frac - Particulate matter (PM) emission lookup table
 array

The SI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:

- $\quad P M$ is the $P M$ emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select PM.

Engine speed breakpoints, f_exhfrac_n_bpt - Breakpoints vector

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

Dependencies

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.
Engine torque breakpoints, f_exhfrac_trq_bpt - Breakpoints vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.

Fuel

```
Injector slope, Sinj - Slope
scalar
```

Fuel injector slope, $S_{i n j}$, $\mathrm{mg} / \mathrm{ms}$.

```
Stoichiometric air-fuel ratio, afr_stoich - Air-fuel ratio
scalar
```

Air-fuel ratio, $A F R$.

References

[1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems - BOSCH ME7. SAE Technical Paper 980801, 1998.
[2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

See Also

Mapped SI Engine | SI Controller

Topics

"SI Core Engine Air Mass Flow and Torque Production"

"Engine Calibration Maps"

Introduced in R2017a

Turbine

Turbine for boosted engines
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Boost

Description

The Turbine block uses the conservation of mass and energy to calculate mass and heat flow rates for turbines with either fixed or variable geometry. You can configure the block with a wastegate valve to bypass the turbine. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. You can specify the lookup tables to calculate the mass flow rate and turbine efficiency. Typically, turbine manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to outlet control volume.

The Turbine block implements equations to model the performance, wastegate flow, and combined flow.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description	
Import turbine data	Import this turbine data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).	
	Turbine type	Data
	Fixed geometry	- Pressure ratio, dimensionless - Speed, rad/s - Efficiency, dimensionless - Corrected mass flow rate, kg / s
	Variable geometry	- Pressure ratio, dimensionless - Speed, rad/s - Rack position, dimensionless - Efficiency, dimensionless - Corrected mass flow rate, kg / s Include data for several test points at each rack position operating point.
	Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.	

Task	Description		
Generate response models	Model-Based Calibration Toolbox fits the imported data and generates response models.		
	Turbine type Fixed geometry	Description	
		Data	Response Model
		Corrected mass flow rate	Square root turbine flow model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
		Efficiency	Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
	Variable geometry	Model-Based Calibration Toolbox uses a point-bypoint test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.	
		Data	Response Model
		Corrected mass flow rate	Square root turbine flow model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
		Efficiency	Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
	To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).		

Task	Description
Generate calibration	Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables.
	Turbine type
	Description Fixed geometry
	Model-Based Calibration Toolbox uses the response models for the corrected mass flow rate and efficiency tables.
Variable	Model-Based Calibration Toolbox fills the geometry earrected mass flow rate and efficiency tables for Toolbox then combines the rack position- dependent tables into 3D lookup tables for corrected mass flow rate and efficiency.
	To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).

Task	Description	
Update block parameters	Update these corrected mass flow rate and efficiency parameters with the calibration.	
	Turbine type	Parameters
	Fixed geometry	- Corrected mass flow rate table, mdot_corrfx_tbl - Efficiency table, eta_turbfx_tbl - Corrected speed breakpoints, w_corrfx_bpts1 - Pressure ratio breakpoints, Pr_fx_bpts2
	Variable geometry	- Corrected mass flow rate table, mdot_corrvr_tbl - Efficiency table, eta_turbvr_tbl - Corrected speed breakpoints, w_corrvr_bpts2 - Pressure ratio breakpoints, Pr_vr_bpts2 - Rack breakpoints, L_rack_bpts3

Thermodynamics

The block uses these equations to model the thermodynamics.

Calculation	Equations
Forward mass flow	$\dot{m}_{\text {turb }}>0$
	$p_{01}=p_{\text {inlet }}$
	$p_{02}=p_{\text {outlet }}$
	$T_{01}=T_{\text {inlet }}$
	$h_{01}=h_{\text {inlet }}$
First law of thermodynamics	$\dot{W}_{\text {turb }}=\dot{m}_{t u r b} c_{p}\left(T_{01}-T_{02}\right)$
Isentropic efficiency	$\eta_{t u r b}=\frac{h_{01}-h_{02}}{h_{01}-h_{02 \mathrm{~s}}}=\frac{T_{01}-T_{02}}{T_{01}-T_{02 \mathrm{~s}}}$
Isentropic outlet temperature, assuming ideal gas, and constant specific heats	$T_{02 s}=T_{01}\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}$
Specific heat ratio	$\tau_{\text {turb }}=\frac{\dot{W}_{\text {turb }}}{\omega}$
Outlet temperature	$T_{02}=T_{01}+\eta_{t u r b} T_{01}\left\{1-\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}\right.$
Drive shaft torque	$q_{\text {in,turb }}=\dot{m}_{\text {turb }} c_{p} T_{01}$
Heat flows	$\dot{m}_{t u r b} c_{p} T_{02}$

The equations use these variables.
$p_{\text {inlet }}, p_{01}$
Inlet control volume total pressure
$T_{\text {inlet }}, T_{01}$ Inlet control volume total temperature
$h_{\text {inlet }}, h_{01}$ Inlet control volume total specific enthalpy
$p_{\text {outlet }}, p_{02}$ Outlet control volume total pressure
$T_{\text {outlet }} \quad$ Outlet control volume total temperature
$h_{\text {outlet }} \quad$ Outlet control volume total specific enthalpy
$\dot{W} \quad$ Drive shaft power
Temperature exiting the turbine
T_{02}
h_{02}
Outlet total specific enthalpy
$\dot{m}_{t u r b}$
Turbine mass flow rate
Turbine inlet heat flow rate
$q_{i n, t u r b}$
Turbine outlet heat flow rate
$q_{\text {out }, \text { turb }}$
Turbine isentropic efficiency
$\eta_{t u r b}$
$T_{02 s}$
Isentropic outlet total temperature
$h_{02 s}$
$R \quad$ Ideal gas constant
Specific heat at constant pressure
c_{p}
$\gamma \quad$ Specific heat ratio
$\tau_{t u r b}$
Drive shaft torque

$$
\dot{W}_{t u r b} \quad \text { Drive shaft power }
$$

Performance Lookup Tables

The block implements lookup tables based on these equations.

Calculation	Equation	
Corrected mass flow rate	$\dot{m}_{\text {corr }}=\dot{m}_{\text {turb }} \frac{\sqrt{T_{01} / T_{\text {ref }}}}{p_{01} / p_{\text {ref }}}$	
Corrected speed	$\omega_{\text {corr }}=\frac{\omega}{\sqrt{T_{01} / T_{r e f}}}$	
Pressure expansion ratio	$p_{r}=\frac{p_{01}}{n}$	
Efficiency lookup table	Fixed ${ }^{p_{02}}$ geometry (3-D table)	$\eta_{t u r b f x, t b l}=f\left(\omega_{c o r r}, p_{r}\right)$
	Variable geometry (3-D table)	$\eta_{t u r b u r, t b l}=f\left(\omega_{c o r r}, p_{r}, L_{r a c k}\right)$
Corrected mass flow lookup table	Fixed geometry (3-D table)	$\dot{m}_{\text {corrfx }, t b l}=f\left(\omega_{\text {corr }}, p_{r}\right)$
	Variable geometry (3-D table)	$\dot{m}_{\text {corrur }, \text { tbl }}=f\left(\omega_{\text {corr }}, p_{r}, L_{\text {rack }}\right)$

The equations use these variables.
Inlet control volume total pressure
p_{01}
Pressure expansion ratio
p_{r}
Outlet control volume total pressure
p_{02}
Lookup table reference pressure
$P_{r e f}$

T_{01}	Inlet control volume total temperature
$T_{r e f}$	Lookup table reference temperature
$\dot{m}_{t u r b}$	Turbine mass flow rate
ω	Drive shaft speed
$\omega_{c o r r}$	Corrected drive shaft speed
$L_{r a c k}$	Variable geometry turbine rack position
$\eta_{t u r b f x, t b l}$	Efficiency 3-D lookup table for fixed geometry
$\dot{m}_{c o r r f x, t b l}$	Corrected mass flow rate 3-D lookup table for fixed geometry
$\eta_{t u r b u r, t b l}$	Efficiency 3-D lookup table for variable geometry
$\dot{m}_{c o r r u r, t b l}$	Corrected mass flow rate 3-D lookup table for variable geometry

Wastegate

To calculate the wastegate heat and mass flow rates, the Turbine block uses a Flow Restriction block. The Flow Restriction block uses the wastegate flow area.

$$
A_{w g}=A_{\text {wgpctcmd }} \frac{A_{\text {wgopen }}}{100}
$$

The equation uses these variables.
Wastegate valve area percent command

$A_{\text {wgpctcmd }}$

Wastegate valve area
$A_{w g}$
Wastegate valve area when fully open
$A_{\text {wgopen }}$

Combined Flow

To represent flow through the wastegate valve and turbine, the block uses these equations.

$q_{w g}$	Wastegate valve heat flow rate
T_{02}	Temperature exiting the turbine
$T_{\text {outflw }}$	Total temperature exiting the block
$T_{\text {outflw,wg }}$	Temperature exiting the wastegate valve
$\dot{m}_{\text {thresh }}$	Mass flow rate threshold to prevent dividing by zero
c_{p}	Specific heat at constant pressure

Ports

Input

Ds - Drive shaft speed

two-way connector port
ShaftSpd - Signal containing the drive shaft angular speed, ω, in rad/s.
A - Inlet pressure, temperature, enthalpy, mass fractions two-way connector port

Bus containing the inlet control volume:

InPrs - Pressure, $p_{\text {inlet }}$, in Pa
InTemp - Temperature, $T_{\text {inlet }}$, in K
InEnth - Specific enthalpy, $h_{\text {inlet }}$, in J/kg
B - Outlet pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing the outlet control volume:

- OutPrs - Pressure, $p_{\text {outlet }}$, in Pa
- OutTemp - Temperature, $T_{\text {outlet }}$, in K
- OutEnth - Specific enthalpy, $h_{\text {outlet }}$, in J/kg

RackPos - Rack position

scalar

Variable geometry turbine rack position, $L_{\text {rack }}$.

Dependencies

To create this port, select Variable geometry for the Turbine type parameter.

WgAreaPct - Wastegate area percent

scalar

Wastegate valve area percent, $A_{\text {wgpctcmd }}$.

Dependencies

To create this port, select Include wastegate.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
TurbOutletTemp	Temperature exiting the turbine	T_{02}	K
DriveshftPwr	Drive shaft power	$\dot{W}_{\text {turb }}$	W
DriveshftTrq	Drive shaft torque	$\tau_{\text {turb }}$	$\mathrm{N} \cdot \mathrm{m}$

Signal	Description	Variable	Units
TurbMassFlw	Turbine mass flow rate	$\dot{m}_{\text {turb }}$	kg / s
PrsRatio	Pressure ratio	p_{r}	$\mathrm{~N} / \mathrm{A}$
DriveshftCorrSpd	Corrected drive shaft speed	$\omega_{\text {corr }}$	$\mathrm{rad} / \mathrm{s}$
TurbEff	Turbine isentropic efficiency	$\eta_{\text {turb }}$	N / A
CorrMassFlw	Corrected mass flow rate	$\dot{m}_{\text {corr }}$	kg / s
WgArea	Wastegate valve area	$A_{w g}$	$\mathrm{~m}{ }^{\wedge} 2$
WgMassFlw	Mass flow rate through the wastegate valve	$\dot{m}_{w g}$	$\mathrm{~kg} / \mathrm{s}$
WgOutletTemp	Temperature exiting the wastegate valve	$T_{\text {outflw,wg }}$	K

Ds - Drive shaft torque

two-way connector port
$\operatorname{Trq}-$ Signal containing the drive shaft torque, $\tau_{\text {turb }}$, in $\mathrm{N} \cdot \mathrm{m}$.

A - Inlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate - Total mass flow rate through wastegate valve and turbine, $-\dot{m}_{t o t a l}$, in kg / s

HeatFlwRate - Total inlet heat flow rate, $-q_{\text {inlet }}$, in J/s
Temp - Total inlet temperature, $T_{\text {inlet }}$, in K

- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port
Bus containing:

MassFlwRate - Turbine mass flow rate through wastegate valve and turbine, $\dot{m}_{t u r b}$, in kg / s

- HeatFlwRate - Total outlet heat flow rate, $q_{\text {outlet }}$, in J/s
-

Temp - Total outlet temperature, $T_{\text {outflw }}$, in K

- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

Parameters

Block Options

Turbine type - Select turbine type

Fixed geometry (default)|Variable geometry
Turbine type.

Dependencies

The table summarizes the parameter and port dependencies.

Value	Enables Parameters	Creates Ports
Fixed geometry	Corrected mass flow rate table, mdot_corrfx_tbl	None
	Efficiency table, eta_turbfx_tbl	
	Corrected speed breakpoints, w_corrfx_bpts1 Pressure ratio breakpoints, Pr_fx_bpts2	

Value	Enables Parameters	Creates Ports
Variable geometry	Corrected mass flow rate table, mdot_corrvr_tbl	RP
	Efficiency table, eta_turbvr_tbl	
	Corrected speed breakpoints, w_corrvr_bpts2	
	Pressure ratio breakpoints, Pr_vr_bpts2	
	Rack breakpoints, L_rack_bpts3	

Include wastegate - Select

on (default) | off | off

Dependencies

Selecting the Include wastegate parameter enables:

- Wastegate flow area, A_wgopen
- Pressure ratio linearize limit, Plim_wg

Performance Tables

Calibrate Performance Maps - Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description	
Import turbine data	Import this turbine data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).	
	Turbine type	Data
	Fixed geometry	- Pressure ratio, dimensionless - Speed, rad/s - Efficiency, dimensionless - Corrected mass flow rate, kg / s
	Variable geometry	- Pressure ratio, dimensionless - Speed, rad/s - Rack position, dimensionless - Efficiency, dimensionless - Corrected mass flow rate, kg / s Include data for several test points at each rack position operating point.
	Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.	

Task	Description		
Generate response models	Model-Based Calibration Toolbox fits the imported data and generates response models.		
	Turbine type	Description	
	Fixed geometry	Data	Response Model
		Corrected mass flow rate	Square root turbine flow model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
		Efficiency	Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
	Variable geometry	Model-Based Calibration Toolbox uses a point-bypoint test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.	
		Data	Response Model
		Corrected mass flow rate	Square root turbine flow model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
		Efficiency	Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines ${ }^{2}$
	To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).		

Task	Description	
Generate calibration	Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables.	
	Turbine type	Description
	Fixed geometry	Model-Based Calibration Toolbox uses the response models for the corrected mass flow rate and efficiency tables.
	Variable geometry	Model-Based Calibration Toolbox fills the corrected mass flow rate and efficiency tables for each rack position. Model-Based Calibration Toolbox then combines the rack position- dependent tables into 3D lookup tables for corrected mass flow rate and efficiency.
	To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).	

Task	Description	
Update block parameters	Update these corrected mass flow rate and efficiency parameters with the calibration.	
	Turbine type	Parameters
	Fixed geometry	- Corrected mass flow rate table, mdot_corrfx_tbl - Efficiency table, eta_turbfx_tbl - Corrected speed breakpoints, w_corrfx_bpts1 - Pressure ratio breakpoints, $\mathrm{Pr}_{-} f \mathrm{fx}_{-}$bpts2
	Variable geometry	- Corrected mass flow rate table, mdot_corrvr_tbl - Efficiency table, eta_turbvr_tbl - Corrected speed breakpoints, w_corrvr_bpts2 - Pressure ratio breakpoints, Pr_vr_bpts2 - Rack breakpoints, L_rack_bpts3

Corrected mass flow rate table, mdot_corrfx_tbl - Lookup table
array

Corrected mass flow rate lookup table for fixed geometry, $\dot{m}_{c o r r f x, t b l}$, as a function of corrected driveshaft speed, $\omega_{\text {corr, }}$, and pressure ratio, p_{r}, in kg / s.

Dependencies

To enable this parameter, select Fixed geometry for the Turbine type parameter.

Efficiency table, eta_turbfx_tb - Lookup table

array

Efficiency lookup table for fixed geometry, $\eta_{t u r b f x, t b l}$, as a function of corrected driveshaft speed, $\omega_{\text {corr }}$, and pressure ratio, p_{r}, dimensionless.

Dependencies

To enable this parameter, select Fixed geometry for the Turbine type parameter.
Corrected speed breakpoints, w_corrfx_bpts1 - Fixed geometry array

Corrected drive shaft speed breakpoints for fixed geometry, $\omega_{\text {corrfx,bpts1 }}$, in rad/s.

Dependencies

To enable this parameter, select Fixed geometry for the Turbine type parameter.
Pressure ratio breakpoints, Pr_fx_bpts2 - Fixed geometry array

Pressure ratio breakpoints for fixed geometry, $p_{r f x, b p t s 2}$.

Dependencies

To enable this parameter, select Fixed geometry for the Turbine type parameter.
Corrected mass flow rate table, mdot_corrvr_tbl - Lookup table array

Corrected mass flow rate lookup table for variable geometry, $\dot{m}_{c o r r v r, t b l}$, as a function of corrected driveshaft speed, $\omega_{\text {corr }}$, and pressure ratio, p_{r}, in kg / s.

Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.
Efficiency table, eta_turbvr_tbl - Lookup table array

Efficiency lookup table for variable geometry, $\eta_{t u r b v r, t b l}$, as a function of corrected driveshaft speed, $\omega_{\text {corr, }}$, and pressure ratio, p_{r}, dimensionless.

Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

Corrected speed breakpoints, w_corrvr_bpts2 - Variable geometry array

Corrected drive shaft speed breakpoints for variable geometry, $\omega_{\text {corrur,bpts1 }}$, in rad/s.

Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

Pressure ratio breakpoints, Pr_vr_bpts2 - Variable geometry array

Pressure ratio breakpoints for variable geometry.

Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

```
Rack breakpoints, L_rack_bpts3 - Variable geometry
array
```

Rack position breakpoints for variable geometry, $L_{\text {rack,bpts } 3}$.

Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

Reference temperature, T_ref - Temperature scalar

Performance map reference temperature, $T_{\text {ref }}$, in K.
Reference pressure, P_ref - Pressure scalar

Performance map reference pressure, $P_{r e f}$, in Pa.

Wastegate

Wastegate flow area, A_wgopen - Area
scalar

Area of fully opened wastegate valve, $A_{\text {wgopen }}$, in m^2.

Dependencies

To enable Wastegate flow area, A_wgopen, select the Include wastegate parameter.
Pressure ratio linearize limit, Plim_wg - Area, m^2
scalar
Dependencies

Flow restriction linearization limit, $p_{l i m, w g}$.
To enable Pressure ratio linearize limit, Plim_wg, select the Include wastegate parameter.

Properties

Ideal gas constant, R-Constant
scalar

Ideal gas constant R, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

```
Specific heat at constant pressure, cp - Specific heat
scalar
```

Specific heat at constant pressure, c_{p}, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
[2] Eriksson, Lars and Lars Nielsen. Modeling and Control of Engines and Drivelines. Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2014.

See Also

Two-Way Connection | Boost Drive Shaft | Compressor

Topics

"Model-Based Calibration Toolbox"

Introduced in R2017a

Mapped Core Engine

Steady-state core engine model using lookup tables
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Core Engine

Description

The Mapped Core Engine block implements a steady-state core engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design.
- Vehicle-level fuel economy and performance simulations.

The block enables you to specify lookup tables for these engine characteristics. The lookup tables are functions of engine load, L, and engine speed N.

- Power
- Air
- Fuel
- Temperature
- Efficiency
- Emissions
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$
- Particulate matter (PM) emissions

To bound the Mapped Core Engine block output, the block does not extrapolate the lookup table data.

Ports

Input

$<T r q C m d>-$ Engine load
TrqCmd (default)
Engine load, L. Examples of engine load include:

- Commanded torque
- Commanded indicated mean effective pressure (IMEP) in the engine cylinder
- Normalized cylinder air mass
- Injected fuel mass

Dependencies

To specify an engine load port name, on the Configuration tab, enter a name in the Load input port name parameter field.

```
<EngSpd> - Engine speed
EngSpd (default)
```

Engine speed, N.

Dependencies

To specify an engine load port name, on the Configuration tab, enter a name in the Speed input port name parameter field.

Output

<EngTrq> - Power

EngTrq (default)

Engine power, $T_{b r a k e}$.

Dependencies

- To create this port, on the Configuration tab, select Power.
- To specify the port name, on the Power tab, enter a name in the Power output port name parameter field.
<IntkAirMassFlw> - Air mass flow
IntkAirMassFlw (default)

Engine air mass flow, $\dot{m}_{\text {intk }}$.

Dependencies

- To create this port, on the Configuration tab, select Air.
- To specify the port name, on the Air tab, enter a name in the Air output port name parameter field.

<FuelMassFlw> - Fuel flow

FuelMassFlw (default)

Engine fuel flow, $\dot{m}_{f u e l}$.

Dependencies

- To create this port, on the Configuration tab, select Fuel.
- To specify the port name, on the Fuel tab, enter a name in the Fuel output port name parameter field.

<ExhManGasTemp> - Exhaust temperature

ExhManGasTemp (default)

Engine exhaust temperature, $T_{e x h}$.

Dependencies

- To create this port, on the Configuration tab, select Temperature.
- To specify the port name, on the Temperature tab, enter a name in the Temperature output port name parameter field.

<Bsfc>- Efficiency

Bsfc (default)

Brake-specific fuel consumption (BSFC), Eff.

Dependencies

- To create this port, on the Configuration tab, select Efficiency.
- To specify the port name, on the Efficiency tab, enter a name in the Efficiency output port name parameter field.

<EoHC> - Hydrocarbon emissions

EoHC (default)
Hydrocarbon emissions, $H C$.

Dependencies

- To create this port, on the Configuration tab, select HC.
- To specify the port name, on the HC tab, enter a name in the HC output port name parameter field.

<EoCO> - Carbon monoxide emissions

EoCO (default)
Carbon monoxide emissions, CO.

Dependencies

- To create this port, on the Configuration tab, select CO.
- To specify the port name, on the $\mathbf{C O}$ tab, enter a name in the $\mathbf{C O}$ output port name parameter field.

<EONOx> - Nitric oxide and nitrogen dioxide emissions
 EoNOx (default)

Nitric oxide and nitrogen dioxide emissions, NOx.

Dependencies

- To create this port, on the Configuration tab, select NOx.
- To specify the port name, on the NOx tab, enter a name in the NOx output port name parameter field.

<EoCO2> - Carbon dioxide emissions

EoC02 (default)

Carbon dioxide emissions, CO2.

Dependencies

- To create this port, on the Configuration tab, select CO2.
- To specify the port name, on the $\mathbf{C O 2}$ tab, enter a name in the CO2 output port name parameter field.

<EoPm> - Particulate matter emissions

EoPm (default)

Particulate matter emissions, $P M$.

Dependencies

- To create this port, on the Configuration tab, select PM.
- To specify the port name, on the $\mathbf{P M}$ tab, enter a name in the PM output port name parameter field.

Parameters

Configuration

Engine Type - Type of engine image

Compression-ignition (CI) (default)|Spark-ignition (SI)
Type of mapped internal combustion engine image to use in the block.

Load input port name - Name
 TrqCmd (default)

Engine load input port name.
Breakpoints for load input - Breakpoints
vector
Breakpoints for engine load input.
Speed input port name - Name
EngSpd (default)
Speed input port name.

Breakpoints for speed input - Breakpoints

vector

Breakpoints for engine speed input.

Output - Create output ports

power on (default)
Create the output ports.

Dependencies

The table summarizes the output ports that are created for each Output parameter selection.

Output Selection	Creates Port	Creates Tab
Power	EngTrq	Power
Air	IntkAirMassFlw	Air
Fuel	FuelMassFlw	Fuel
Temperature	ExhManGasTemp	Temperature
Efficiency	Bsfc	Efficiency
HC	EoHC	HC
CO	EoCO	CO
NOx	EoNOx	NOx
CO2	EoCO2	CO2
PM	EoPm	PM

Power

Power output port name - Power

BrkTrq (default)

Power output port name.

Dependencies

To create this parameter, on the Configuration tab, select Power.

Power table - Power

array

Power table.

Dependencies

To create this parameter, on the Configuration tab, select Power.

Air

Air output port name - Air
AirFlw (default)
Air mass flow output port name.

Dependencies

To create this parameter, on the Configuration tab, select Air.

```
Air table - Air
array
```

Air mass flow table.

Dependencies

To create this parameter, on the Configuration tab, select Air.

Fuel

```
Fuel output port name - Fuel
FuelFlw (default)
```

Fuel output port name.

Dependencies

To create this parameter, on the Configuration tab, select Fuel.

```
Fuel table - Fuel
```

array
Fuel table.
Dependencies
To create this parameter, on the Configuration tab, select Fuel.

Temperature

Temperature output port name - Temperature Texh (default)

Temperature output port name.

Dependencies

To create this parameter, on the Configuration tab, select Temperature.

Temperature table - Temperature
 array

Temperature table.

Dependencies

To create this parameter, on the Configuration tab, select Temperature.

Efficiency

Efficiency output port name - Efficiency
BSFC (default)
Efficiency output port name.

Dependencies

To create this parameter, on the Configuration tab, select Efficiency.
Efficiency table - Efficiency
array
Efficiency table.
Dependencies
To create this parameter, on the Configuration tab, select Efficiency.
HC
HC output port name - Hydrocarbon
EO HC (default)
Hydrocarbon output port name.

Dependencies

To create this parameter, on the Configuration tab, select HC.

HC table - Hydrocarbon

array
Hydrocarbon table.

Dependencies

To create this parameter, on the Configuration tab, select HC.
CO

```
CO output port name - Carbon dioxide
EO CO (default)
```

Carbon monoxide output port name.

Dependencies

To create this parameter, on the Configuration tab, select CO.

CO table - Carbon dioxide

array
Carbon dioxide table.

Dependencies

To create this parameter, on the Configuration tab, select CO.

NOx

NOx output port name - Nitric oxide $\mathbf{N O}$ and nitrogen dioxide $\mathbf{N O}_{\mathbf{2}}$ EO NOx (default)

NOx output port name. NOx is nitric oxide NO and nitrogen dioxide NO_{2}.

Dependencies

To create this parameter, on the Configuration tab, select NOx.
NOx table - Nitric oxide $\mathbf{N O}$ and nitrogen dioxide $\mathbf{N O}_{\mathbf{2}}$
array

NOx emissions table. NOx is nitric oxide NO and nitrogen dioxide NO_{2}.

Dependencies

To create this parameter, on the Configuration tab, select NOx.

CO2

C02 output port name - Carbon dioxide EO CO2 (default)

Carbon dioxide output port name.

Dependencies

To create this parameter, on the Configuration tab, select CO2 .

CO2 table - Carbon dioxide

array
Carbon dioxide table.

Dependencies

To create this parameter, on the Configuration tab, select CO2.

PM

PM output port name - Particulate matter

EO PM (default)
Particulate matter output port name.

Dependencies

To create this parameter, on the Configuration tab, select PM.

PM table - Particulate matter

array
Particulate matter table.

Dependencies

To create this parameter, on the Configuration tab, select PM.

See Also
CI Core Engine | SI Core Engine
Introduced in R2017a

Mapped CI Engine

Compression-ignition engine model using lookup tables
Library: Powertrain Blockset / Propulsion / Combustion Engines
Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped CI Engine block implements a mapped compression-ignition (CI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of either injected fuel mass, F, or engine torque, T, and engine speed, N.

Input Command Setting	Lookup Tables
Fuel mass	$f(F, N)$
Torque	$f(T, N)$

The block enables you to specify lookup tables for these engine characteristics:

- Power
- Air
- Fuel
- Temperature
- Efficiency
- Hydrocarbon (HC) emissions
- Carbon monoxide (CO) emissions
- Nitric oxide and nitrogen dioxide (NOx) emissions
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions
- Particulate matter (PM) emissions

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data.

To bound the Mapped CI Engine block output, the block does not extrapolate the lookup table data.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import firing data	Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).		
	Input command	Required Data	Optional Data
	Fuel mass	- Engine speed, rpm - Commanded fuel mass per injection, mg - Engine torque, N•m	- Air mass flow rate, kg/s - Brake specific fuel consumption, g/(kW•h) - CO2 mass flow rate,
	Torque	- Engine speed, rpm - Engine torque, N•m	kg/s - CO mass flow rate, kg / s - Exhaust temperature, K - Fuel mass flow rate, kg/s - HC mass flow rate, kg/s - NOx mass flow rate, kg/s - Particulate matter mass flow rate, kg / s
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.		

Task	Description
Import non-firing data	Import this non-firing data from a file. - Engine speed, rpm - Engine torque, N•m Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).	

Task	Description	
Update block parameters	Update these parameters with the calibration.	
	Input command	Parameters
	Fuel mass	- Breakpoints for commanded fuel mass input, f_tbrake_f_bpt
	Torque	- Breakpoints for commanded torque input, f_tbrake_t_bpt
	- Breakpoints for engine speed input, f_tbrake_n_bpt - Brake torque map, f_tbrake - Air mass flow map, f_air - Fuel flow map, f_fuel - Exhaust temperature map, f_texh - BSFC map, f_eff - EO HC map, f_hc - EO CO map, f_co - EO NOx map, f_nox - EO CO2 map, f_co2 - EO PM map, f_pm	

Cylinder Air Mass

The block calculates the normalized cylinder air mass using these equations.

$$
\begin{aligned}
& M_{N o m}=\frac{P_{s t d} V_{d}}{N_{c y l} R_{a i r} T_{s t d}} \\
& L=\frac{\left(\frac{60 s}{m i n}\right) C p s \cdot \dot{m}_{a i r}}{\left(\frac{1000 g}{K g}\right) N_{c y l} \cdot N \cdot M_{N o m}}
\end{aligned}
$$

The equations use these variables.

L	Normalized cylinder air mass
$M_{\text {Nom }}$	Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps	Crankshaft revolutions per power stroke, rev/stroke
$P_{s t d}$	Standard pressure
$T_{s t d}$	Standard temperature
$R_{\text {air }}$	Ideal gas constant for air and burned gas mixture
V_{d}	Displaced volume
$N_{c y l}$	Number of engine cylinders
N	Engine speed
$\dot{m}_{\text {intk }}$	Engine air mass flow, in g/s

Turbocharger Lag

To model turbocharger lag, select Include turbocharger lag effect. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified Input command setting.

Calculation	Input command Parameter Setting	
	Fuel mass	Torque
Dynamic torque	$\frac{d F_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(F_{c m d}-F_{\max }\right)$	$\frac{d T_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(T_{c m d}-T_{\max }\right)$
Fuel mass per injection or torque with turbocharger lag	$F= \begin{cases}F_{c m d} & \text { when } F_{c m d} \\ F_{\text {max }} & \text { when } F_{c m d} \geq\end{cases}$	$T_{\text {target }}= \begin{cases}T_{c m d} & \text { when } T_{c m d}< \\ T_{\text {max }} & \text { when } T_{c m d} \geq\end{cases}$

The equations use these variables.

$T_{\text {brake }}$	Brake torque
F	Fuel mass per injection
$F_{\text {cmd }}, F_{\text {max }}$	Commanded and maximum fuel mass per injection, respectively
$T_{\text {target, }}, T_{c m d}, T_{\text {max }}$	Target, commanded, and maximum torque, respectively
$\tau_{\text {bst }}$	Boost time constant
$\tau_{\text {bst,rising }}, \tau_{\text {bst,falling }}$	Boost rising and falling time constant, respectively
$\tau_{\text {eng }}$	Final time constant
$\tau_{\text {nat }}$	Time constant below the boost torque speed line
$f_{\text {bst }}(N)$	Boost torque/speed line
N	Engine speed

Ports

Input

FuelMassCmd - Injected fuel mass command

scalar

Injected fuel mass command, F, in mg/inj.

Dependencies

To create this port, for Input command, select Fuel mass.

TrqCmd - Torque command

scalar
Torque command, T, in $N \cdot \mathrm{~m}$.

Dependencies

To create this port, for Input command, select Torque.

EngSpd - Engine speed
 scalar

Engine speed, N, in rpm.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Units
IntkGasMassFlw	Engine air mass flow output	kg / s
NrmlzdAirChrg	Normalized engine cylinder air mass	N / A
Afr	Air-fuel ratio (AFR)	N / A
FuelMassFlw	Engine fuel flow output	kg / s
ExhManGasTemp	Engine exhaust gas temperature	K
EngTrq	Engine torque output	$\mathrm{N} \cdot \mathrm{m}$
EngSpd	Engine speed	rpm

Signal	Description	Units
CrkAng	Engine crankshaft absolute angle	degrees crank angle
(360)Cps	\int_{0}where $C p s$ is crankshaft revolutions per power stroke.	180
Bsfc	Engine brake-specific fuel consumption (BSFC)	$\mathrm{g} / \mathrm{kWh}$
EoHC	Engine out hydrocarbon emission mass flow	kg / s
EoC0	Engine out carbon monoxide emission mass flow rate	kg / s
EoN0x	Engine out nitric oxide and nitrogen dioxide emissions mass flow	kg / s
EoC02	Engine out carbon dioxide emission mass flow	kg / s
EoPM	Engine out particulate matter emission mass flow	kg / s

EngTrq - Power

scalar

Engine power, $T_{\text {brake }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Parameters

Block Options

Input command - Table functions

Fuel mass (default) | Torque
The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of either injected fuel mass, F, or engine torque, T, and engine speed, N.

Input Command Setting	Lookup Tables
Fuel mass	$f(F, N)$
Torque	$f(T, N)$

Dependencies

- Selecting Fuel mass enables Breakpoints for commanded fuel mass input, f_tbrake_f_bpt.
- Selecting Torque enables Breakpoints for commanded torque input, f_tbrake_t_bpt.

Include turbocharger lag effect - Increase time constant

 off (default)To model turbocharger lag, select Include turbocharger lag effect. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified Input command setting.

Calculation	Input command Parameter Setting	
	Fuel mass	Torque
Dynamic torque	$\frac{d F_{\max }}{d t}=\frac{1}{\tau_{\text {eng }}}\left(F_{c m d}-F_{\max }\right)$	$\frac{d T_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(T_{c m d}-T_{\max }\right)$
Fuel mass per injection or torque with turbocharger lag	$F= \begin{cases}F_{c m d} & \text { when } F_{c m d} \\ F_{\text {max }} & \text { when } F_{c m d} \geq\end{cases}$	$T_{\text {target }}= \begin{cases}T_{c m d} & \text { when } T_{c m d}< \\ T_{\text {max }} & \text { when } T_{c m d} \geq\end{cases}$
Fuel mass per injection or torquewithout turbocharger lag	$F=F_{c m d}=F_{\text {max }}$	$T_{\text {target }}=T_{c m d}=T_{\max }$

The equations use these variables.

$T_{\text {brake }}$	Brake torque
F	Fuel mass per injection
$F_{\text {cmd }}, F_{\text {max }}$	Commanded and maximum fuel mass per injection, respectively
$T_{\text {target }}, T_{c m d}, T_{\max }$	Target, commanded, and maximum torque, respectively
$\tau_{\text {bst }}$	Boost time constant
$\tau_{\text {bst, }, \text { ising }}, \tau_{\text {bst,falling }}$	Boost rising and falling time constant, respectively
$\tau_{\text {eng }}$	Final time constant
$\tau_{\text {nat }}$	Time constant below the boost torque speed line
$f_{\text {bst }}(N)$	Boost torque/speed line
N	Engine speed

Dependencies

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_nat
- Rising maximum fuel mass boost time constant, tau_bst_rising
- Falling maximum fuel mass boost time constant, tau_bst_falling

Configuration

Calibrate Maps - Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import firing data	Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).		
	Input command	Required Data	Optional Data
	Fuel mass	- Engine speed, rpm - Commanded fuel mass per injection, mg - Engine torque, $N \cdot m$	- Air mass flow rate, kg/s - Brake specific fuel consumption, $\mathrm{g} /(\mathrm{kW} \cdot \mathrm{h})$ - CO2 mass flow rate,
	Torque	- Engine speed, rpm - Engine torque, $\mathrm{N} \cdot \mathrm{m}$	kg/s - CO mass flow rate, kg/s - Exhaust temperature, K - Fuel mass flow rate, kg/s - HC mass flow rate, kg/s - NOx mass flow rate, kg/s - Particulate matter mass flow rate, kg/s
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.		

Task	Description
Import non-firing data	Import this non-firing data from a file. - Engine speed, rpm - Engine torque, N•m Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).	

Task	Description	
Update block parameters	Update these parameters with the calibration.	
	Input command	Parameters
	Fuel mass	- Breakpoints for commanded fuel mass input, f_tbrake_f_bpt
	Torque	- Breakpoints for commanded torque input, f_tbrake_t_bpt
	- Breakpoints for engine speed input, f_tbrake_n_bpt - Brake torque map, f_tbrake - Air mass flow map, f_air - Fuel flow map, f_fuel - Exhaust temperature map, f_texh - BSFC map, f_eff - EO HC map, f_hc - EO CO map, f_co - EO NOx map, f_nox - EO CO2 map, f_co2 - EO PM map, f_pm	

[^3]Breakpoints, in mg/inj.

Dependencies

Setting Input command to Fuel mass enables this parameter.
Breakpoints for commanded torque input, f_tbrake_t_bpt - Breakpoints vector

Breakpoints, in $N \cdot \mathrm{~m}$.

Dependencies

Setting Input command to Torque enables this parameter.
Breakpoints for engine speed input, f_tbrake_n_bpt - Breakpoints vector

Breakpoints, in rpm.

Number of cylinders, NCyl - Number scalar

Number of cylinders.
Crank revolutions per power stroke, Cps - Crank revolutions scalar

Crank revolutions per power stroke.

Total displaced volume, Vd - Volume

 scalarVolume displaced by engine, in $\mathrm{m} \wedge 3$.

Ideal gas constant air, Rair - Constant scalar

Ideal gas constant of air and residual gas entering the engine intake port, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.
Air standard pressure, Pstd - Pressure scalar

Standard air pressure, in Pa.
Air standard temperature, Tstd - Temperature scalar

Standard air temperature, in K.
Boost torque line, f_tbrake_bst - Boost lag vector

Boost torque line, $f_{b s t}(N)$, in $N \cdot m$.

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Time constant below boost line - Time constant below scalar

Time constant below boost line, $\tau_{\text {nat }}$, in s .

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Rising maximum fuel mass boost time constant, tau_bst_rising - Rising time constant scalar

Rising maximum fuel mass boost time constant, $\tau_{b s t, r i s i n g}$, in s .

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Falling maximum fuel mass boost time constant, tau_bst_falling Falling time constant
 scalar

Falling maximum fuel mass boost time constant, $\tau_{\text {bst,falling, }}$ in s .

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Power

Brake torque map, f_tbrake - Torque table array

Dependencies

Input Command Setting	Description
Fuel mass	The engine brake torque lookup table is a function of commanded fuel mass and engine speed, $T_{\text {brake }}=f(F, N)$, where: $T_{\text {brake }}$ is engine torque, in $\mathrm{N} \cdot \mathrm{m}$. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine brake torque lookup table is a function of target torque and engine speed, $T_{\text {brake }}=f\left(T_{\text {target }}, N\right)$, where: $T_{\text {brake }}$ is engine torque, in $\mathrm{N} \cdot \mathrm{m}$. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Plot brake torque map - Plot table

button
Click to plot table.

Air
Air mass flow map, f_air - Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	The air mass flow lookup table is a function of commanded fuel mass and engine speed, $\dot{m}_{\text {intk }}=f\left(F_{\max }, N\right)$, where: - $\dot{m}_{\text {intk }}$ is engine air mass flow, in kg / s. - $F_{\max }$ is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The air mass flow lookup table is a function of maximum torque and engine speed, $\dot{m}_{\text {intk }}=f\left(T_{\max }, N\right)$, where: $\dot{m}_{\text {intk }}$ is engine air mass flow, in kg / s. - $T_{\max }$ is maximum torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Plot air mass map - Plot table

button

Click to plot table.

Fuel

Fuel flow map, f_fuel - Lookup table

array
Dependencies

Input Command Setting	Description
Fuel mass	The engine fuel flow lookup table is a function of commanded fuel mass and engine speed, MassFlow $=f(F, N)$, where: - MassFlow is engine fuel mass flow, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine fuel flow lookup table is a function of target torque and engine speed, MassFlow $=f\left(T_{\text {target }}, N\right)$, where: - MassFlow is engine fuel mass flow, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Plot fuel flow map - Plot table

button

Click to plot table.

Temperature

Exhaust temperature map, f_texh - Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	The engine exhaust temperature table is a function of commanded fuel mass and engine speed, $T_{\text {exh }}=f(F, N)$, where: - $T_{\text {exh }}$ is exhaust temperature, in K. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine exhaust temperature table is a function of target torque and engine speed, $T_{\text {exh }}=f\left(T_{\text {target }}, N\right)$, where: - $T_{\text {exh }}$ is exhaust temperature, in K. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Plot exhaust temperature map - Plot table
 button

Click to plot table.

Efficiency

BSFC map, f_eff - Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, $B S F C=f(F$, N), where: - BSFC is BSFC, in $\mathrm{g} / \mathrm{kWh}$. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, $B S F C=f\left(T_{\text {target }}, N\right)$, where: - BSFC is BSFC, in $\mathrm{g} / \mathrm{kWh}$. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Plot BSFC map - Plot table

button

Click to plot table.
HC
EO HC map, f_hc - Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, $E O H C=f(F, N)$, where: - EO HC is engine-out hydrocarbon emissions, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. Engine Speed (RPM) Commanded Fuel (mg/inj)
Torque	The engine-out hydrocarbon emissions are a function of target torque and engine speed, $E O H C=f\left(T_{\text {target }}, N\right)$, where: - $E O H C$ is engine-out hydrocarbon emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Plot EO HC map - Plot table

button

Click to plot table.
CO
EO CO map, f_co - Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, $E O C O=f(F, N)$, where: - EO CO is engine-out carbon monoxide emissions, in kg/s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.

Input Command Setting	Description
Torque	The engine-out carbon monoxide emissions are a function of target torque and engine speed, EO CO =f $\left(T_{\text {target }}, N\right)$, where: - EO CO is engine-out carbon monoxide emissions, in kg/s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - $\quad N$ is engine speed, in rpm.

Plot EO CO map - Plot table

button

Click to plot table.

NOx

EO NOx map, f_nox - Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass and engine speed, EO NOx= $f(F, N)$, where: - EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque and engine speed, $E O N O x=f\left(T_{\text {target }}\right.$, N), where: - EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Plot EO NOx map - Plot table

button

Click to plot table.

$\mathrm{CO2}$

EO CO2 map, f_co2 - Lookup table array

Dependencies

Input Command Setting	Description
Fuel mass	The engine-out carbon dioxide emissions are a function of commanded fuel mass and engine speed, $E O C O 2=f(F, N)$, where: - EO CO2 is engine-out carbon dioxide emissions, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine-out carbon dioxide emissions are a function of target torque and engine speed, EO CO2 $=f\left(T_{\text {target }}, N\right)$, where: - EO CO2 is engine-out carbon dioxide emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - $\quad N$ is engine speed, in rpm.

Plot C02 map - Plot table

button

Click to plot table.

PM

EO PM map, f_pm - Lookup table
array
Dependencies

Input Command Setting	Description
Fuel mass	The engine-out PM emissions are a function of commanded fuel mass and engine speed, where: - EO PM is engine-out PM emissions, in kg/s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine-out PM emissions are a function of target torque and engine speed, EO PM $=f\left(T_{\text {target }}, N\right)$, where: - EO PM is engine-out PM emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Plot EO PM map - Plot table

button
Click to plot table.

See Also

CI Core Engine

Topics

"Generate Mapped CI Engine from a Spreadsheet"
"Model-Based Calibration Toolbox"

Introduced in R2017a

Mapped SI Engine

Spark-ignition engine model using lookup tables
Library:
Powertrain Blockset / Propulsion / Combustion Engines
Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped SI Engine block implements a mapped spark-ignition (SI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, $T_{\text {cmd }}$, brake torque, $T_{\text {brake }}$, and engine speed, N.

- Power - $f\left(T_{\text {cmd }}, N\right)$
- Air $-f\left(T_{\text {braker }} N\right)$
- Fuel $-f\left(T_{\text {brake }}, N\right)$
- Temperature $-f\left(T_{\text {brake }}, N\right)$
- Efficiency - $f\left(T_{\text {brake }}, N\right)$
- Hydrocarbon (HC) emissions $-f\left(T_{\text {brake }}, N\right)$
- Carbon monoxide (CO) emissions - $f\left(T_{\text {brake }}, N\right)$
- Nitric oxide and nitrogen dioxide (NOx) emissions $-f\left(T_{\text {brake }}, N\right)$
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions $-f\left(T_{\text {brake }} N\right)$
- Particulate matter (PM) emissions $-f\left(T_{\text {brake }}, N\right)$

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data.

To bound the Mapped SI Engine block output, the block does not extrapolate the lookup table data.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description	
Import firing data	Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).	
	Required Data	Optional Data
	- Engine speed, rpm - Engine torque, $\mathrm{N} \cdot \mathrm{m}$	- Air mass flow rate, kg/s - Brake specific fuel consumption, g/ (kW•h) - CO2 mass flow rate, kg / s - CO mass flow rate, kg / s - Exhaust temperature, K - Fuel mass flow rate, kg/s - HC mass flow rate, kg / s - NOx mass flow rate, kg/s - Particulate matter mass flow rate, kg / s
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.	

Task	Description
Import non-firing data	Import this non-firing data from a file. - Engine speed, rpm - Engine torque, N•m Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).	

Task	Description
Update block parameters	Update these parameters with the calibration. - Breakpoints for commanded torque input, f_tbrake_t_bpt - Breakpoints for engine speed input, f_tbrake_n_bpt - Brake torque map, f_tbrake - Air mass flow map, f_air - Fuel flow map, f_fuel - Exhaust temperature map, f_texh - BSFC map, f_eff - EO HC map, f_hc - EO CO map, f_co - EO NOx map, f_nox - EO CO2 map, f_co2 - EO PM map, f_pm

Cylinder Air Mass

The block calculates the normalized cylinder air mass using these equations.

$$
\begin{aligned}
& M_{N o m}=\frac{P_{s t d} V_{d}}{N_{c y l} R_{a i r} T_{s t d}} \\
& L=\frac{\left(\frac{60 s}{m i n}\right) C p s \cdot \dot{m}_{a i r}}{\left(\frac{1000 g}{K g}\right) N_{c y l} \cdot N \cdot M_{N o m}}
\end{aligned}
$$

The equations use these variables.
$L \quad$ Normalized cylinder air mass
$M_{\text {Nom }} \quad$ Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg

Cps	Crankshaft revolutions per power stroke, rev/stroke
$P_{s t d}$	Standard pressure
$T_{s t d}$	Standard temperature
$R_{\text {air }}$	Ideal gas constant for air and burned gas mixture
V_{d}	Displaced volume
$N_{c y l}$	Number of engine cylinders
N	Engine speed
$\dot{m}_{\text {inth }}$	Engine air mass flow, in g / s

Turbocharger Lag

To model turbocharger lag, select Include turbocharger lag effect. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

Dynamic torque	$\frac{d T_{\text {brake }}}{d t}=\frac{1}{\tau_{\text {eng }}}\left(T_{\text {stdy }}-T_{\text {brake }}\right)$
Boost time constant	$\tau_{\text {bst }}=\left\{\begin{array}{ll\|}\tau_{\text {bst, ising }} & \text { when } T_{\text {stdy }}>T_{\text {brake }} \\ \tau_{\text {bst,falling }} & \text { when } T_{\text {stdy }} \leq T_{\text {brake }}\end{array}\right.$
Final time constant	$\tau_{\text {eng }}= \begin{cases}\tau_{\text {thr }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\ \tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}$

The equations use these variables.

$T_{\text {brake }}$	Brake torque
$T_{\text {stdy }}$	Steady-state target torque

$\tau_{\text {bst }}$	Boost time constant
$\tau_{\text {bst,rising, }}$	Boost rising and falling time constant, respectively
$\tau_{\text {bst,falling }}$	
$\tau_{\text {eng }}$	Final time constant
$\tau_{\text {thr }}$	Time constant during throttle control
$f_{\text {bst }}(N)$	Boost torque speed line
N	Engine speed

Ports

Input

TrqCmd - Commanded torque

scalar
Torque, $T_{\text {cmd }}$, in $\mathrm{N} \cdot \mathrm{m}$.

EngSpd - Engine speed

scalar
Engine speed, N, in rpm.

Output

Info - Bus signal
 bus

Bus signal containing these block calculations.

Signal	Description	Units
IntkGassMassFlw	Engine air mass flow output	kg / s
NrmlzdAirChrg	Normalized engine cylinder air mass	N / A
Afr	Air-fuel ratio (AFR)	N / A
FuelMassFlw	Engine fuel flow output	kg / s

Signal	Description	Units
ExhManGasTemp	Engine exhaust gas temperature	K
EngTrq	Engine torque output	$\mathrm{N} \cdot \mathrm{m}$
EngSpd	Engine speed	rpm
CrkAng	Engine crankshaft absolute angle \int_{0} (360)Cps where $C p s$ is crankshaft revolutions per power stroke.	degrees crank angle
Bsfc	Engine brake-specific fuel consumption (BSFC)	$\mathrm{g} / \mathrm{kWh}$
EoHC	Engine out hydrocarbon emission mass flow	kg / s
EoCO	Engine out carbon monoxide emission mass flow rate	kg / s
EoNOx	Engine out nitric oxide and nitrogen dioxide emissions mass flow	kg / s
EoCO2	Engine out carbon dioxide emission mass flow	kg / s
EoPM	Engine out particulate matter emission mass flow	kg / s

EngTrq - Engine brake torque

scalar

Engine brake torque, $T_{\text {brake }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Parameters

Block Options

Include turbocharger lag effect - Increase time constant off (default)

To model turbocharger lag, select Include turbocharger lag effect. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

Dynamic torque	$\frac{d T_{\text {brake }}}{d t}=\frac{1}{\tau_{\text {eng }}}\left(T_{\text {stdy }}-T_{\text {brake }}\right)$
Boost time constant	$\tau_{\text {bst }}=\left\{\begin{array}{ll\|}\tau_{\text {bst,rising }} & \text { when } T_{\text {stdy }}>T_{\text {brake }} \\ \tau_{\text {bst,falling }} & \text { when } T_{\text {stdy }} \leq T_{\text {brake }}\end{array}\right.$
Final time constant	$\tau_{\text {eng }}= \begin{cases}\tau_{\text {thr }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\ \tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}$

The equations use these variables.

$T_{\text {brake }}$	Brake torque
$T_{\text {stdy }}$	Steady-state target torque
$\tau_{\text {bst }}$	Boost time constant
$\tau_{\text {bst,rising, }}$	Boost rising and falling time constant, respectively
$\tau_{\text {bst,falling }}$	
$\tau_{\text {eng }}$	Final time constant
$\tau_{\text {thr }}$	Time constant during throttle control
$f_{\text {bst }}(N)$	Boost torque speed line
N	Engine speed

Dependencies

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_thr
- Rising torque boost time constant, tau_bst_rising
- Falling torque boost time constant, tau_bst_falling

Configuration

Calibrate Maps - Calibrate tables with measured data
selection
If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description	
Import firing data	Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).	
	Required Data	Optional Data
	- Engine speed, rpm - Engine torque, $N \cdot m$	- Air mass flow rate, kg/s - Brake specific fuel consumption, g/ (kW•h) - CO 2 mass flow rate, kg / s - CO mass flow rate, kg / s - Exhaust temperature, K - Fuel mass flow rate, kg / s - HC mass flow rate, kg / s - NOx mass flow rate, kg / s - Particulate matter mass flow rate, kg/s
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.	

Task	Description
Import non-firing data	Import this non-firing data from a file. - Engine speed, rpm Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables. To assess or adjust the calibration, select Edit in Application. The
Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).	

Task	Description
Update block parameters	Update these parameters with the calibration. - Breakpoints for commanded torque input, f_tbrake_t_bpt - Breakpoints for engine speed input, f_tbrake_n_bpt - Brake torque map, f_tbrake - Air mass flow map, f_air - Fuel flow map, f_fuel - Exhaust temperature map, f_texh - BSFC map, f_eff - EO HC map, f_hc - EO CO map, f_co - EO NOx map, f_nox - EO CO2 map, f_co2 - EO PM map, f_pm

Breakpoints for commanded torque, f_tbrake_t_bpt - Breakpoints vector

Breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.
Breakpoints for engine speed input, f_tbrake_n_bpt - Breakpoints vector

Breakpoints, in rpm.

Number of cylinders, NCyl - Number

scalar
Number of cylinders.
Crank revolutions per power stroke, Cps - Crank revolutions scalar

Crank revolutions per power stroke.
Total displaced volume, Vd - Volume
scalar

Volume displaced by engine, in $\mathrm{m}^{\wedge} 3$.

Ideal gas constant air, Rair - Constant scalar

Ideal gas constant of air and residual gas entering the engine intake port, in $\mathrm{J} /(\mathrm{kg} * \mathrm{~K})$.

Air standard pressure, Pstd - Pressure scalar

Standard air pressure, in Pa.
Air standard temperature, Tstd - Temperature scalar

Standard air temperature, in K.

```
Boost torque line, f_tbrake_bst - Boost lag
vector
```

Boost torque line, $f_{b s t}(N)$, in $N \cdot \mathrm{~m}$.

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Time constant below boost line - Time constant below scalar

Time constant below boost line, $\tau_{\text {thr }}$, in s .

Dependencies

To enable this parameter, select Include turbocharger lag effect.

```
Rising torque boost time constant, tau_bst_rising - Rising time constant

Rising torque boost time constant, \(\tau_{b s t, r i s i n g}\), in \(s\).

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.

\section*{Falling torque boost time constant, tau_bst_falling - Falling time constant}
scalar
Falling torque boost time constant, \(\tau_{\text {bst,falling }}\), in s .

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.

\section*{Power}

Brake torque map, f_tbrake - Torque table array

The engine torque lookup table is a function of commanded engine torque and engine speed, \(T=f\left(T_{\text {cmd }}, N\right)\), where:
- \(T\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


Plot brake torque map - Plot table button

Click to plot table.

\section*{Air}

\section*{Air mass flow map, f_air - Lookup table array}

The engine air mass flow lookup table is a function of commanded engine torque and engine speed, \(\dot{m}_{\text {intk }}=f\left(T_{\text {cmd }}, N\right)\), where:
\(\dot{m}_{\text {inth }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Plot air mass map - Plot table}

\section*{button}

Click to plot table.

\section*{Fuel}

\section*{Fuel flow map, f_fuel - Lookup table}

\section*{array}

The engine fuel mass flow lookup table is a function of commanded engine torque and engine speed, MassFlow \(=f\left(T_{\text {cmd }}, N\right)\), where:
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Plot fuel flow map - Plot table}

\section*{button}

Click to plot table.

\section*{Temperature}

Exhaust temperature map, f_texh - Lookup table array

The engine exhaust temperature lookup table is a function of commanded engine torque and engine speed, \(T_{\text {exh }}=f\left(T_{\text {cmd }}, N\right)\), where:
- \(T_{\text {exh }}\) is exhaust temperature, in K.
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Plot exhaust temperature map - Plot table} button

Click to plot table.

\section*{Efficiency}

\section*{BSFC map, f_eff - Lookup table}
array
The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque and engine speed, \(B S F C=f\left(T_{\text {cmd }}, N\right)\), where:
- BSFC is BSFC, in \(\mathrm{g} / \mathrm{kWh}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Plot BSFC map - Plot table \\ button}

Click to plot table.

\section*{HC}

\section*{EO HC map, f_hc - Lookup table} array

The engine-out hydrocarbon emissions are a function of commanded engine torque and engine speed, \(E O H C=f\left(T_{\text {cmd }}, N\right)\), where:
- EO HC is engine-out hydrocarbon emissions, in kg/s.
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Plot EO HC map - Plot table}

\section*{button}

Click to plot table.
CO
EO CO map, f_co - Lookup table array

The engine-out carbon monoxide emissions are a function of commanded engine torque and engine speed, \(E O C O=f\left(T_{\text {cmd }}, N\right)\), where:
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Plot EO CO map - Plot table}

\section*{button}

Click to plot table.

\section*{NOX}

\section*{EO NOx map, f_nox - Lookup table} array

The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque and engine speed, \(E O\) NOx \(=f\left(T_{\text {cmd }}, N\right)\), where:
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Plot EO NOx map - Plot table}

\section*{button}

Click to plot table.

\section*{CO2}

\section*{EO CO2 map, f_co2 - Lookup table} array

The engine-out carbon dioxide emissions are a function of commanded engine torque and engine speed, EO CO2 \(=f\left(T_{\text {cmd }}, N\right)\), where:
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Plot CO2 map - Plot table \\ button}

Click to plot table.

\section*{PM}

\section*{EO PM map, f_pm - Lookup table} array

The engine-out particulate matter emissions are a function of commanded engine torque and engine speed, where:
- EO PM is engine-out PM emissions, in kg/s.
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

\section*{Plot EO PM map - Plot table}
button
Click to plot table.

\section*{See Also}

SI Core Engine

\section*{Topics}
"Generate Mapped SI Engine from a Spreadsheet"
"Model-Based Calibration Toolbox"

Introduced in R2017a

\section*{Scenario Creation Blocks Alphabetical List}

\section*{Drive Cycle Source}

Standard or specified longitudinal drive cycle
Library: \(\begin{array}{ll}\text { Powertrain Blockset / Vehicle Scenario Builder } \\ \text { Vehicle Dynamics Blockset / Vehicle Scenarios / Drive } \\ \text { Cycle and Maneuvers }\end{array}\)

\section*{Description}

The Drive Cycle Source block generates a standard or user-specified longitudinal drive cycle. The block output is the specified vehicle longitudinal speed, which you can use to:
- Predict the engine torque and fuel consumption that a vehicle requires to achieve desired speed and acceleration for a given gear shift reference.
- Produce realistic velocity and shift references for closed loop acceleration and braking commands for vehicle control and plant models.
- Study, tune, and optimize vehicle control, system performance, and system robustness over multiple drive cycles.

For the drive cycles, you can use:
- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To install additional drive cycles from a support package, see "Install Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration start time, and final reference speed.

To achieve the goals listed in the table, use the specified Drive Cycle Source block parameter options.
\begin{tabular}{|l|l|}
\hline Goal & Action \\
\hline \begin{tabular}{l} 
Repeat the drive cycle if the \\
simulation run time exceeds the \\
drive cycle length.
\end{tabular} & Select Repeat cyclically. \\
\hline \begin{tabular}{l} 
Output the acceleration, as \\
calculated by Savitzky-Golay \\
differentiation.
\end{tabular} & Select Output acceleration. \\
\hline \begin{tabular}{l} 
Specify a sample period for \\
discrete applications.
\end{tabular} & \begin{tabular}{l} 
Specify a Output sample period (0 for continuous), \\
dt parameter.
\end{tabular} \\
\hline \begin{tabular}{l} 
Update the simulation run time \\
so that it equals the length of \\
the drive cycle.
\end{tabular} & \begin{tabular}{l} 
Click Update simulation time. If a model \\
configuration reference exists, the block does not \\
enable this option.
\end{tabular} \\
\hline \begin{tabular}{l} 
Plot the drive cycle in a \\
MATLAB®
\end{tabular} \\
\hline \begin{tabular}{l} 
Specigure.
\end{tabular} & Click Plot drive cycle. \\
workspace variable.
\end{tabular}
\begin{tabular}{|l|l|}
\hline Goal & Action \\
\hline Output drive cycle gear. & \begin{tabular}{l} 
Specify a drive cycle that contains a gear shift \\
schedule. You can use:
\end{tabular} \\
& \begin{tabular}{l} 
- A support package to install standard drive cycles \\
that include the gear shift schedules, for example \\
JC08 and CUEDC.
\end{tabular} \\
& \begin{tabular}{l} 
- Workspace variables. \\
- .mat, .xls, .xlsx, or .txt files. \\
Click Output gear shift data.
\end{tabular} \\
\hline \begin{tabular}{ll} 
Install additional drive cycles \\
from a support package.
\end{tabular} & \begin{tabular}{l} 
Click Install additional drive cycles. The block \\
enables the parameter if you can install additional drive \\
cycles from a support package.
\end{tabular} \\
\hline
\end{tabular}

\section*{Ports}

\section*{Output}

\section*{Speed - Vehicle reference speed \\ scalar}

Vehicle reference speed, in units that you specify. To specify the units, use the Output velocity units parameter.

\section*{Acceleration - Vehicle reference acceleration}
scalar
To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

\section*{Dependencies}

To create the output acceleration port, select Output acceleration. Selecting Output acceleration enables the Output acceleration units parameter.

\section*{Gear - Vehicle gear}
scalar

\section*{Dependencies}

To create this port:
1 Specify a drive cycle that contains a gear shift schedule. You can use:
- A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.

2 Select Output gear shift data.

\section*{Parameters}

\section*{Drive Cycle}

\section*{Drive cycle source - Select the drive cycle source}

FTP75 (default)|Wide Open Throttle (WOT) |Workspace variable
|.mat, .xls, .xlsx or .txt file
- FTP75 - Load the FTP75 drive cycle from a .mat file into a 1-D Lookup Table block. The FTP75 represents a city drive cycle that you can use to determine tailpipe emissions and fuel economy of passenger cars. To install additional drive cycles from a support package, see "Install Drive Cycle Data".
- Wide Open Throttle (WOT) - Use WOT parameters to specify a drive cycle for performance testing.
- Workspace variable - Specify time, speed, and, optionally, gear data as a structure, 2-D array, or time series object.
- .mat, .xls, .xlsx or .txt file - Specify a file that contains time, speed and, optionally, gear data in column format.

Once you have installed additional cycles, you can use set_param to set the drive cycle. For example, to use drive cycle US06:
```

set_param([gcs '/Drive Cycle Source'],'cycleVar','US06')

```

Dependencies
The table summarizes the parameter dependencies.
\begin{tabular}{|c|c|}
\hline Drive Cycle Source & Enables Parameter \\
\hline \multirow[t]{7}{*}{Wide Open Throttle (WOT)} & Start time, t_wot1 \\
\hline & Initial reference speed, xdot_woto \\
\hline & Nominal reference speed, xdot_wot1 \\
\hline & Time to start deceleration, wot2 \\
\hline & Final reference speed, xdot_wot2 \\
\hline & WOT simulation time, t_wotend \\
\hline & Source velocity units \\
\hline \multirow[t]{3}{*}{Workspace variable} & From workspace \\
\hline & Source velocity units \\
\hline & Output gear shift data, if drive cycle includes gear shift schedule \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text {.mat, .xls, .xlsx or .txt } \\
& \text { file }
\end{aligned}
\]} & Drive cycle source file \\
\hline & Source velocity units \\
\hline & Output gear shift data, if drive cycle includes gear shift schedule \\
\hline
\end{tabular}

\section*{From workspace - Workspace \\ variable}

Monotonically increasing time, velocity, and, optionally, gear data, specified by a structure, 2-D array, or time series object. Enter units for velocity in the Source velocity units parameter field.

A valid point must exist for each corresponding time value. You cannot specify inf, empty, or NaN.







\section*{Dependencies}

To enable this parameter, select Workspace variable from Drive cycle source.
Drive cycle source file - File name
.mat, .xls, .xlsx or .txt
File containing monotonically increasing time, velocity, and, optionally, gear in column or comma-separated format. The block ignores units in the file. Enter units for velocity in the Source velocity units parameter field.




If you provide the gear schedule using \(\mathbf{P}, \mathbf{R}, \mathbf{N}, \mathbf{D}, \mathbf{L}, \mathbf{O D}\), the block maps the gears to integers.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline P & 80 \\
\hline R & -1 \\
\hline N & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline L & 1 \\
\hline D & 2 \\
\hline OD & Next integer after highest specified gear. \\
\hline
\end{tabular}

For example, the block converts the gear schedule P P N L D 345654567 OD 7 to 808001234565456787.

\section*{Dependencies}

To enable this parameter, select .mat, .xls, .xlsx or .txt file from Drive cycle source.

\section*{Repeat cyclically - Repeat drive cycle} off (default)

Repeat the drive cycle if the simulation run time exceeds the length of the drive cycle.

\section*{Output acceleration - Output the acceleration}

\section*{off (default)}

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

\section*{Dependencies}

To create the output acceleration port, select Output acceleration. Selecting Output acceleration enables the Output acceleration units parameter.

\section*{Output gear shift data - Output the gear}

\section*{off (default)}

\section*{Dependencies}
- Specify a drive cycle that contains a gear shift schedule. You can use:
- A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Clicking this parameter creates input port Gear.

\section*{WOT}

\section*{Start time, t_wot1 - Drive cycle start time \\ scalar}

Drive cycle start time, in s. For example, this plot shows a drive cycle with a start time of 10 s.


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

\section*{Initial reference speed, xdot_woto - Speed scalar}

Initial reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with an initial reference speed of 4 \(\mathrm{m} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

Nominal reference speed, xdot_wot1 - Speed
scalar
Nominal reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with a nominal reference speed of \(30 \mathrm{~m} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

Time to start deceleration, wot2 - Time
scalar
Time to start vehicle deceleration, in s. For example, this plot shows a drive cycle with vehicle deceleration starting at 25 s .


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

Final reference speed, xdot_wot2 - Speed
scalar
Final reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with a final reference speed of 2 \(\mathrm{m} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

WOT simulation time, t_wotend - Time

\section*{scalar}

Drive cycle WOT simulation time, in s. For example, this plot shows a drive cycle with a simulation time of 50 s .


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

\section*{Units and Sample Period}

\section*{Source velocity units - Specify velocity units}

\section*{m/s (default)}

Input velocity units.

\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT), Workspace variable, or .mat, .xls, .xlsx or .txt file.

Output velocity units - Specify velocity units
m/s (default)
Output velocity units.

\section*{Output acceleration units - Specify acceleration units m/s^2 (default)}

Specify the output acceleration units.

\section*{Dependencies}

To enable this parameter, select Output acceleration.

\section*{Output sample period (0) for continuous - Sample rate scalar}

Sample rate. Set to 0 for continuous sample period. For a discrete period, specify a nonzero rate.

\section*{See Also}

Longitudinal Driver

\section*{Topics}
"Time Series Objects" (MATLAB)
Introduced in R2017a

\section*{Longitudinal Driver}

Longitudinal speed-tracking controller
Library: \begin{tabular}{ll} 
Powertrain Blockset / Vehicle Scenario Builder \\
& Vehicle Dynamics Blockset / Vehicle Scenarios / \\
& Driver
\end{tabular}


\section*{Description}

The Longitudinal Driver block implements a longitudinal speed-tracking controller. Based on reference and feedback velocities, the block generates normalized acceleration and braking commands that can vary from 0 through 1 . You can use the block to model the dynamic response of a driver or to generate the commands necessary to track a longitudinal drive cycle.

\section*{Configurations}

Use the Control type, cntrlType parameter to specify one of these control options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline PI & \begin{tabular}{l} 
Proportional-integral (PI) control with tracking windup and feed- \\
forward gains.
\end{tabular} \\
\hline Scheduled PI & \begin{tabular}{l} 
PI control with tracking windup and feed-forward gains that are a \\
function of vehicle velocity.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Predictive & \begin{tabular}{l} 
Optimal single-point preview (look ahead) control model developed \\
by C. C. MacAdam \\
\\
control behavior during path-following and obstacle avoidance \\
maneuvers. Drivers preview (look ahead) to follow a predefined \\
path. To implement the MacAdam model, the block:
\end{tabular} \\
& \begin{tabular}{l} 
Represents the dynamics as a linear single track (bicycle) \\
vehicle
\end{tabular} \\
& \begin{tabular}{l} 
Minimizes the previewed error signal at a single point \(T^{*}\) \\
seconds ahead in time
\end{tabular} \\
& \begin{tabular}{l} 
Accounts for the driver lag deriving from perceptual and \\
neuromuscular mechanisms
\end{tabular} \\
\hline
\end{tabular}

Use the Shift type, shftType parameter to specify one of these shift options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline None & No transmission. Block outputs a constant gear of 1. \\
Use this setting to minimize the number of parameters you need to \\
generate acceleration and braking commands to track forward \\
vehicle motion. This setting does not allow reverse vehicle motion.
\end{tabular}\(|\)
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Scheduled & \begin{tabular}{l} 
Block uses a Stateflow chart to model reverse, neutral, park, and \\
N-speed gear shift scheduling. \\
Use this setting to generate acceleration and braking commands to \\
track forward and reverse vehicle motion using reverse, neutral, \\
park, and N-speed gear shift scheduling. Depending on the vehicle \\
state and vehicle velocity feedback, the block uses these \\
parameters to determine the: \\
- Initial gear \\
- \(\quad\) Upshift and downshift accelerator pedal positions \\
- \(\quad\) Upshift and downshift velocity \\
- Timing for shifting and engaging forward and reverse from \\
neutral
\end{tabular} \\
\hline \begin{tabular}{l} 
For neutral gears, the block uses braking commands to control the \\
vehicle speed. For reverse gears, the block uses an acceleration \\
command to generate torque and a brake command to reduce \\
vehicle speed.
\end{tabular} \\
\hline \begin{tabular}{l} 
Block uses the input gear, vehicle state, and velocity feedback to \\
generate acceleration and braking commands to track forward and \\
reverse vehicle motion.
\end{tabular} \\
\begin{tabular}{l} 
For neutral gears, the block uses braking commands to control the \\
vehicle speed. For reverse gears, the block uses an acceleration \\
command to generate torque and a brake command to reduce \\
vehicle speed.
\end{tabular} \\
\hline
\end{tabular}

\section*{Controller: PI Speed-Tracking}

If you set the control type to PI or Scheduled PI, the block implements proportionalintegral (PI) control with tracking windup and feed-forward gains. For the Scheduled PI configuration, the block uses feed forward gains that are a function of vehicle velocity.

To calculate the speed control output, the block uses these equations.
\begin{tabular}{|l|l|}
\hline Setting & Equation \\
\hline PI & \(y=\frac{K_{f f}}{v_{\text {nom }}} v_{r e f}+\frac{K_{p} e_{r e f}}{v_{\text {nom }}}+\left(\frac{K_{i}}{v_{n o m}}+K_{a w} e_{o u t}\right) \int e_{r e f} d t+K_{g} \theta\) \\
\hline Scheduled PI & \(y=\frac{K_{f f}(v)}{v_{n o m}} v_{r e f}+\frac{K_{p}(v) e_{r e f}}{v_{n o m}}+\left(\frac{K_{i}}{v_{n o m}}(v)+K_{a w} e_{o u t}\right) \int e_{r e f} d t+K_{g}(v) \theta\) \\
\hline
\end{tabular}
where:
\[
\begin{aligned}
& e_{\text {ref }}=v_{\text {ref }}-v \\
& e_{\text {out }}=y_{\text {sat }}-y
\end{aligned}
\]
\(y_{s a t}=\left\{\begin{array}{cc}-1 & y<-1 \\ y & -1 \leq y \leq 1 \\ 1 & 1<y\end{array}\right.\)

The velocity error low-pass filter uses this transfer function.
\[
H(s)=\frac{1}{\tau_{e r r} s+1} \text { for } \tau_{e r r}>0
\]

To calculate the acceleration and braking commands, the block uses these equations.
\[
\begin{aligned}
& y_{\text {acc }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}<0 \\
y_{\text {sat }} & 0 \leq y_{\text {sat }} \leq 1 \\
1 & 1<y_{\text {sat }}
\end{array}\right. \\
& y_{\text {dec }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}>0 \\
-y_{\text {sat }} & -1 \leq y_{\text {sat }} \leq 0 \\
1 & y_{\text {sat }}<-1
\end{array}\right.
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll}
\(v_{\text {nom }}\) & Nominal vehicle speed \\
\(K_{p}\) & Proportional gain \\
\(K_{i}\) & Integral gain \\
\(K_{a w}\) & Anti-windup gain \\
\(K_{f f}\) & Velocity feed-forward gain \\
\(K_{g}\) & Grade feed-forward gain \\
\(\theta\) & Grade angle \\
\(\tau_{e r r}\) & Error filter time constant \\
\(y\) & Nominal control output magnitude \\
\(y_{s a t}\) & Saturated control output magnitude \\
\(e_{r e f}\) & Velocity error \\
\(e_{\text {out }}\) & Difference between saturated and nominal control outputs \\
\(y_{a c c}\) & Acceleration signal \\
\(y_{d e c}\) & Braking signal \\
\(v\) & Velocity feedback signal \\
\(v_{r e f}\) & Reference velocity signal
\end{tabular}

\section*{Controller: Predictive Speed-Tracking}

If you set the Control type, cntrlType parameter to Predictive, the block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam \({ }^{1,}\)
\({ }^{2,3}\). The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:
- Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T* seconds ahead in time
- Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

For longitudinal motion, the block implements these linear dynamics.
\[
\begin{aligned}
& x_{1}=v \\
& \dot{x}=x_{2}=\frac{K_{p t}}{m}-g \sin (\theta)+F_{r} x_{1}
\end{aligned}
\]

In matrix notation:
\[
\dot{x}=\boldsymbol{F} \boldsymbol{x}+\boldsymbol{g} \bar{u}
\]
where:
\[
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\]
\[
F=\left[\begin{array}{cc}
0 & 1 \\
\frac{F_{r}}{m} & 0
\end{array}\right]
\]
\[
\boldsymbol{g}=\left[\begin{array}{c}
0 \\
\frac{K_{p t}}{m}
\end{array}\right]
\]
\[
\bar{u}=u-\frac{m^{2}}{K_{p t}} g \sin (\gamma)
\]

The block uses this equation for the rolling resistance.
\[
F_{r}=-\left[\tanh \left(x_{1}\right)\left(\frac{a_{r}}{x_{1}}+c_{r} x_{1}\right)+b_{r}\right]
\]

The single-point model assumes a minimum previewed error signal at a single point \(T^{*}\) seconds ahead in time. \(a^{*}\) is the driver ability to predict the future vehicle response based on the current steering control input. \(b^{*}\) is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.
\[
\begin{aligned}
& a^{*}=\left(T^{*}\right) \boldsymbol{m}^{T}\left[\boldsymbol{I}+\sum_{n=1}^{\infty} \frac{\boldsymbol{F}^{n}\left(T^{*}\right)^{n}}{(n+1)!}\right] \boldsymbol{g} \boldsymbol{e} \\
& \boldsymbol{b}^{*}=\boldsymbol{m}^{T}\left[\boldsymbol{I}+\sum_{n=1}^{\infty} \frac{\boldsymbol{F}^{n}\left(T^{*}\right)^{n}}{n!}\right]
\end{aligned}
\]
where:
\[
\boldsymbol{m}^{T}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
\]

The equations use these variables.
\begin{tabular}{ll}
\(a, b\) & Forward and rearward tire location, respectively \\
\(m\) & Vehicle mass \\
\(I\) & Vehicle rotational inertia \\
\(a^{*}, \boldsymbol{b}^{*}\) & Driver prediction scalar and vector gain, respectively \\
\(\boldsymbol{x}\) & Predicted vehicle state vector \\
\(v\) & Longitudinal velocity \\
\(\boldsymbol{F}\) & System matrix \\
\(K_{p t}\) & Tractive force and brake limit \\
\(\boldsymbol{g}\) & Control coefficient vector \\
\(g\) & Gravitational constant \\
\(T^{*}\) & Preview time window \\
\(f\left(t+T^{*}\right)\) & Previewed path input T* seconds ahead \\
\(U\) & Forward vehicle velocity \\
\(\boldsymbol{m}^{\boldsymbol{T}}\) & Constant observer vector; provides vehicle lateral position \\
\(F_{r}\) & Rolling resistance \\
\(a_{r}\) & Static rolling and driveline resistance \\
\(b_{r}\) & Linear rolling and driveline resistance
\end{tabular}
\(c_{r} \quad\) Aerodynamic rolling and driveline resistance

The single-point model implemented by the block finds the steering command that minimizes a local performance index, \(J\), over the current preview interval, \((t, t+T)\).
\[
J=\frac{1}{T} \int_{t}^{t+T}[f(\eta)-y(\eta)]^{2} d \eta
\]

To minimize \(J\) with respect to the steering command, this condition must be met.
\[
\frac{d J}{d u}=0
\]

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error \(T^{*}\) seconds ahead \({ }^{1,2,3}\).
\[
u^{o}(t)=u(t)+\frac{e\left(t+T^{*}\right)}{a^{*}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(f\left(t+T^{*}\right)\) & Previewed path input \(T^{*}\) sec ahead \\
\(y\left(t+T^{*}\right)\) & Previewed plant output \(T^{*}\) sec ahead \\
\(e\left(t+T^{*}\right)\) & Previewed error signal \(T^{*}\) sec ahead \\
\(u(t), u^{o}(t)\) & Steer angle and optimal steer angle, respectively \\
\(J\) & Performance index
\end{tabular}

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.
\[
H(s)=e^{-s \tau}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\tau\) & Driver transport delay \\
\(y\left(t+T^{*}\right)\) & Previewed plant output \(T^{*}\) sec ahead \\
\(e\left(t+T^{*}\right)\) & Previewed error signal \(T^{*}\) sec ahead \\
\(u(t), u^{o}(t)\) & Steer angle and optimal steer angle, respectively \\
\(J\) & Performance index
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{VelRef - Reference vehicle velocity}
scalar
Reference velocity, \(v_{\text {ref }}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{VelFdbk - Longitudinal vehicle velocity scalar}

Longitudinal vehicle velocity, \(U\), in vehicle-fixed frame, in m/s.

\section*{Grade - Road grade angle}
scalar
Road grade angle, \(\theta\), in deg.
ExtGear - Gear
scalar
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Dependencies}

To create this port, set Shift type, shftType to External.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Variable & Description \\
\hline Accel & \(y_{a c c}\) & \begin{tabular}{l} 
Commanded vehicle acceleration, \\
normalized from 0 through 1
\end{tabular} \\
\hline Decel & \(y_{\text {dec }}\) & \begin{tabular}{l} 
Commanded vehicle deceleration, \\
normalized from 0 through 1
\end{tabular} \\
\hline Gear & & Integer value of commanded gear \\
\hline Clutch & \(e_{\text {ref }}\) & Clutch command \\
\hline Err & \begin{tabular}{l}
\(t\) \\
ErrSqrSum
\end{tabular} & \begin{tabular}{l} 
Difference in reference vehicle \\
speed and vehicle speed
\end{tabular} \\
\hline ErrMax & \begin{tabular}{l}
0 \\
\(\max \left(e_{r e f}(t)\right)\)
\end{tabular} & Integrated square of error \\
\hline ErrMin & \(\min \left(e_{r e f}(t)\right)\) & Maximum error during simulation \\
\hline
\end{tabular}

\section*{AccelCmd - Commanded vehicle acceleration}

\section*{scalar}

Commanded vehicle acceleration, \(y_{a c c}\), normalized from 0 through 1.

\section*{DecelCmd - Commanded vehicle deceleration}
scalar
Commanded vehicle deceleration, \(y_{\text {dec }}\), normalized from 0 through 1.

\section*{Gear - Commanded vehicle gear}
scalar
Integer value of commanded vehicle gear.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Dependencies}

To create this port, select Output gear signal.

\section*{Parameters}

Control type, cntrlType - Longitudinal control
PI (default)|Scheduled PI|Predictive
Type of longitudinal control.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline PI & \begin{tabular}{l} 
Proportional-integral (PI) control with tracking windup and feed- \\
forward gains.
\end{tabular} \\
\hline Scheduled PI & \begin{tabular}{l} 
PI control with tracking windup and feed-forward gains that are a \\
function of vehicle velocity.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Predictive & \begin{tabular}{l} 
Optimal single-point preview (look ahead) control model developed \\
by C. C. MacAdam \\
control \({ }^{2}\). The model represents driver steering \\
control behavior during path-following and obstacle avoidance \\
maneuvers. Drivers preview (look ahead) to follow a predefined \\
path. To implement the MacAdam model, the block:
\end{tabular} \\
& - Represents the dynamics as a linear single track (bicycle) \\
vehicle \\
& \begin{tabular}{l} 
Minimizes the previewed error signal at a single point \(T^{*}\) \\
seconds ahead in time
\end{tabular} \\
& \begin{tabular}{l} 
Accounts for the driver lag deriving from perceptual and \\
neuromuscular mechanisms
\end{tabular} \\
\hline
\end{tabular}

\section*{Shift type, shftType - Shift type}

None (default)|Reverse, Neutral, Drive|Scheduled |External
Shift type.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline None & No transmission. Block outputs a constant gear of 1. \\
& \begin{tabular}{l} 
Use this setting to minimize the number of parameters you need to \\
generate acceleration and braking commands to track forward \\
vehicle motion. This setting does not allow reverse vehicle motion.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|}\hline \text { Setting } & \text { Block Implementation } \\ \hline \text { Reverse, } \\ \text { Neutral, Drive } & \begin{array}{l}\text { Block uses a Stateflow chart to model reverse, neutral, and drive } \\ \text { gear shift scheduling. } \\ \text { Use this setting to generate acceleration and braking commands to } \\ \text { track forward and reverse vehicle motion using simple reverse, } \\ \text { neutral, and drive gear shift scheduling. Depending on the vehicle } \\ \text { state and vehicle velocity feedback, the block uses the initial gear } \\ \text { and time required to shift to shift the vehicle up into drive or down } \\ \text { into reverse or neutral. } \\ \text { For neutral gears, the block uses braking commands to control the } \\ \text { vehicle speed. For reverse gears, the block uses an acceleration } \\ \text { command to generate torque and a brake command to reduce } \\ \text { vehicle speed. }\end{array} \\ \hline \text { Scheduled } & \begin{array}{l}\text { Block uses a Stateflow chart to model reverse, neutral, park, and } \\ \text { N-speed gear shift scheduling. } \\ \text { Use this setting to generate acceleration and braking commands to } \\ \text { track forward and reverse vehicle motion using reverse, neutral, } \\ \text { park, and N-speed gear shift scheduling. Depending on the vehicle } \\ \text { state and vehicle velocity feedback, the block uses these } \\ \text { parameters to determine the: } \\ \text { - Initial gear } \\ \text { - Upshift and downshift accelerator pedal positions } \\ -\quad \text { Upshift and downshift velocity }\end{array} \\ \text { - Timing for shifting and engaging forward and reverse from } \\ \text { neutral } \\ \text { For neutral gears, the block uses braking commands to control the } \\ \text { vehicle speed. For reverse gears, the block uses an acceleration } \\ \text { command to generate torque and a brake command to reduce } \\ \text { vehicle speed. }\end{array}\right\}\)
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline External & \begin{tabular}{l} 
Block uses the input gear, vehicle state, and velocity feedback to \\
generate acceleration and braking commands to track forward and \\
reverse vehicle motion.
\end{tabular} \\
\begin{tabular}{l} 
For neutral gears, the block uses braking commands to control the \\
vehicle speed. For reverse gears, the block uses an acceleration \\
command to generate torque and a brake command to reduce \\
vehicle speed.
\end{tabular} \\
\hline
\end{tabular}

\section*{Reference and feedback units, velUnits - Velocity units \(\mathrm{m} / \mathrm{s}\) (default)}

Vehicle velocity reference and feedback units.

\section*{Dependencies}

If you set Control type, cntrlType control type to Scheduled or Scheduled PI, the block uses the Reference and feedback units, velUnits for the Nominal speed, vnom parameter dimension.

If you set Shift Type, shftType to Scheduled, the block uses the Longitudinal velocity units, velUnits for these parameter dimensions:
- Upshift velocity data table, upShftTbl
- Downshift velocity data table, dwnShftTbl

\section*{Control}

\section*{Longitudinal Nominal Gains}

Proportional gain, Kp-Gain
scalar
Proportional gain, \(K_{p}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI.
```

Integral gain, Ki - Gain
scalar

```

Proportional gain, \(K_{i}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI.
Velocity feed-forward, Kff - Gain scalar

Velocity feed-forward gain, \(K_{f f}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI.
Grade feed-forward, Kg - Gain scalar

Grade feed-forward gain, \(K_{g}\), in \(1 / \mathrm{deg}\).

\section*{Dependencies}

To create this parameter, set Control type to PI.

\section*{Velocity gain breakpoints, VehVelVec - Breakpoints array}

Velocity gain breakpoints, VehVelVec, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.
```

Velocity feed-forward gain values, KffVec - Gain

``` array

Velocity feed-forward gain values, KffVec, as a function of vehicle velocity, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.

\section*{Proportional gain values, KpVec - Gain} array

Proportional gain values, \(K p V e c\), as a function of vehicle velocity, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.

\section*{Integral gain values, KiVec - Gain}
array
Integral gain values, KiVec, as a function of vehicle velocity, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.
Grade feed-forward values, KgVec - Grade gain array

Grade feed-forward values, KgVec , as a function of vehicle velocity, in \(1 / \mathrm{deg}\).

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.
Nominal speed, vnom - Nominal vehicle speed scalar

Nominal vehicle speed, \(v_{\text {nom, }}\), in units specified by the Reference and feedback units, velUnits parameter. The block uses the nominal speed to normalize the controller gains.

\section*{Dependencies}

To create this parameter, set Control type to PI or Scheduled PI.
Anti-windup, Kaw - Gain
scalar
Anti-windup gain, \(K_{a w}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI or Scheduled PI.
Error filter time constant, tauerr - Filter scalar

Error filter time constant, \(\tau_{\text {err }}\), in s . To disable the filter, enter 0.

\section*{Dependencies}

To create this parameter, set Control type to PI or Scheduled PI.

\section*{Predictive}

\section*{Vehicle mass, m - Mass}
scalar
Vehicle mass, \(m\), in kg.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Effective vehicle total tractive force, Kp - Tractive force scalar

Effective vehicle total tractive force, \(K_{p}\), in N .

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Driver response time, tau - Tau
scalar
Driver response time, \(\tau\), in s.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Preview distance, L - Distance
scalar
Driver preview distance, \(L\), in m.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling resistance coefficient, aR - Resistance
scalar

Static rolling and driveline resistance coefficient, \(a_{R}\), in N. Block uses the parameter to estimate the constant acceleration or braking effort.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling and driveline resistance coefficient, bR - Resistance scalar

Rolling and driveline resistance coefficient, \(b_{R}\), in \(N \cdot s / m\). Block uses the parameter to estimate the linear velocity-dependent acceleration or braking effort.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

\section*{Aerodynamic drag coefficient, cR — Drag}

\section*{scalar}

Aerodynamic drag coefficient, \(c_{R}\), in \(\mathrm{N} \cdot \mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2\). Block uses the parameter to estimate the quadratic velocity-dependent acceleration or braking effort.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

\section*{Gravitational constant, g-Gravitational constant scalar}

Gravitational constant, g , in \(\mathrm{m} / \mathrm{s}^{\wedge} 2\).

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

\section*{Shift}

Reverse, Neutral, Drive
Initial gear, GearInit - Initial gear
scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

Dependencies
To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0 , or 1 .

\section*{Time required to shift, tShift - Time scalar}

Time required to shift, \(t\) Shift, in s. The block uses the time required to shift to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, and drive gear shift scheduling.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive.

\section*{Scheduled}

\section*{Initial gear, GearInit - Initial gear}
scalar
Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0 , or 1 .

\section*{Up and down shift accelerator pedal positions, pdlVec - Pedal position breakpoints}
```

[1-by-m] vector

```

Pedal position breakpoints for lookup tables when calculating upshift and downshift velocities, dimensionless. Vector dimensions are 1 by the number of pedal position breakpoints, m.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.
```

Upshift velocity data table, upShftTbl - Table
[m-by-n] array

```

Upshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Upshift velocities indicate the vehicle velocity at which the gear should increase by 1.

The array dimensions are \(m\) pedal positions by \(n\) gears. The first column of data, when \(n\) equals 1 , is the upshift velocity for the neutral gear.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.
Downshift velocity data table, dwnShftTbl - Table [m-by-n] array

Downshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Downshift velocities indicate the vehicle velocity at which the gear should decrease by 1.

The array dimensions are \(m\) pedal positions by \(n\) gears. The first column of data, when \(n\) equals 1 , is the downshift velocity for the neutral gear.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{Time required to shift, tClutch - Time scalar}

Time required to shift, \(t_{\text {Clutch }}\), in s.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{Time required to engage reverse from neutral, tRev - Time scalar}

Time required to engage reverse from neutral, \(t_{\text {Rev }}\), in s .

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{Time required to engage park from neutral, tPark - Time scalar}

Time required to engage park from neutral, \(t_{\text {Park }}\), in s .

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{References}
[1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". Journal of Dynamic Systems, Measurement, and Control. Vol. 102, Number 3, Sept. 1980.
[2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of ClosedLoop Automobile Driving ". IEEE Transactions on Systems, Man, and Cybernetics. Vol. 11, Issue 6, June 1981.

\title{
[3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.
}

\author{
See Also \\ Drive Cycle Source | Vehicle Body Total Road Load \\ Introduced in R2017a
}

\section*{Transmission Blocks - Alphabetical List}

\section*{Automated Manual Transmission}

Ideal automated manual transmission
Library: Powertrain Blockset / Transmission / Transmission Systems


\section*{Description}

The Automated Manual Transmission block implements an ideal automated transmission (AMT). An AMT is a manual transmission with additional actuators and an electronic control unit (ECU) to regulate clutch and gear selection based on commands from a controller. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable.

Use the block for:
- Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Automated Manual Transmission block calculates:
- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Setting & Block Implementation \\
\hline Gear, input torque, input speed, and temperature & \begin{tabular}{l}
Efficiency determined from a 4D lookup table that is a function of: \\
- Gear \\
- Input torque \\
- Input speed \\
- Oil temperature
\end{tabular} \\
\hline
\end{tabular}

\section*{Clutch Control}

The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select Control type parameter Ideal integrated controller, the block generates idealized clutch pressure signals. To use your own clutch control signals, select Control type parameter External control.

\section*{Clutch Lock-Up and Clutch Friction}

Based on the clutch lock-up condition, the block implements one of these friction models.
\begin{tabular}{|c|c|c|}
\hline If & Clutch Condition & Friction Model \\
\hline \begin{tabular}{l}
\[
\omega_{i} \neq N \omega_{d}
\] \\
or
\[
\left|T_{S}<\left|T_{f}-N w_{i} b_{i}\right|\right.
\]
\end{tabular} & Unlocked & \begin{tabular}{l}
\[
T_{f}=T_{k}
\] \\
where,
\[
T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(\frac{w_{i}}{N}-w_{d}\right)\right]
\]
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\omega_{i}=N \omega_{t}
\] \\
and
\end{tabular} & Locked & \[
\begin{aligned}
& T_{f}=T_{s} F_{c} \mu_{e f f} \mu_{s} \\
& R_{\text {eff }}=\frac{2\left(R_{o}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{o}{ }^{2}-R_{i}{ }^{2}\right)}
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{\(T_{S} \geq\left|T_{f}-N b_{i} \omega_{i}\right|\)} \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{t}\) & Output drive shaft speed \\
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(b_{i}\) & Viscous damping \\
\(F_{c}\) & Applied clutch force \\
\(N\) & Engaged gear \\
\(T_{f}\) & Frictional torque \\
\(T_{k}\) & Kinetic frictional torque \\
\(T_{s}\) & Static frictional torque \\
\(R_{e f f}\) & Effective clutch radius \\
\(R_{o}\) & Annular disk outer radius \\
\(R_{i}\) & Annular disk inner radius \\
\(\mu_{s}\) & Coefficient of static friction \\
\(\mu_{k}\) & Coefficient of kinetic friction
\end{tabular}

\section*{Locked Rotational Dynamics}

To model the rotational dynamics when the clutch is locked, the block implements these equations.
\[
\begin{aligned}
& \dot{\omega}_{d} J_{N}=\eta_{N} T_{d}-\frac{\omega_{i}}{N} b_{N}+N T_{i} \\
& \omega_{i}=N \omega_{d}
\end{aligned}
\]

The block determines the input torque, \(T_{i}\), through differentiation.
The equations use these variables.
\begin{tabular}{ll}
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Unlocked Rotational Dynamics}

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.
\[
\dot{\omega}_{d} J_{N}=N T_{f}-\omega_{d} b_{N}+T_{d}
\]
where:
\begin{tabular}{ll}
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Gear - Gear number to engage \\ scalar}

Integer value of gear number to engage.

\section*{CltchCmd - Clutch command scalar}

Clutch pressure command.

\section*{Dependencies}

To create this port, select Control type parameter External control.

\section*{EngTrq - Applied input torque}
scalar
Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Applied load torque scalar}

Applied load torque, \(T_{d}\), typically from the differential or driveshaft, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Temp - Oil temperature}
scalar
Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:
- Gear
- Input torque
- Input speed
- Oil temperature

\section*{Dependencies}

To create this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal contains these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal} & Description & Variable & Units \\
\hline \multirow[t]{2}{*}{Eng} & EngTrq & Input applied torque & \(T_{i}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & EngSpd & Input drive shaft speed & \(\omega_{i}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{Diff} & DiffTrq & Output drive shaft torque & \(T_{t}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & DiffSpd & Output drive shaft speed & \(\omega_{t}\) & rad/s \\
\hline \multirow[t]{2}{*}{Cltch} & CltchForce & Applied clutch force & \(F_{c}\) & N \\
\hline & CltchLocked & \begin{tabular}{l}
Clutch lock status, Boolean: \\
- Locked - 0 \\
- Unlocked - 1
\end{tabular} & N/A & N/A \\
\hline \multirow[t]{4}{*}{Trans} & TransSpdRatio & Speed ratio at time \(t\) & \(\phi(t)\) & N/A \\
\hline & TransEta & Ratio of output power to input power & \(\eta\) & N/A \\
\hline & TransGearCmd & Commanded gear & \(N_{\text {cmd }}\) & N/A \\
\hline & TransGear & Engaged gear & \(N\) & N/A \\
\hline
\end{tabular}

\section*{EngSpd - Angular speed \\ scalar}

Applied drive shaft angular speed input, \(\omega_{i}\), in rad/s.

\section*{DiffSpd - Angular speed}
scalar
Drive shaft angular speed output, \(\omega_{d}\), in rad/s.

\section*{Parameters}

\section*{Control type - Specify control type}

Ideal integrated controller (default)|External control
The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select Control type parameter Ideal integrated controller, the
block generates idealized clutch pressure signals. To use your own clutch control signals, select Control type parameter External control.

\section*{Dependencies}

This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Control Mode & Creates Ports \\
\hline External control & CltchCmd \\
\hline
\end{tabular}

\section*{Efficiency factors - Specify efficiency calculation}

Gear only (default)|Gear, input torque, input speed, and temperature
To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency determined from a 4D lookup table that is a \\
function of:
\end{tabular} \\
& \begin{tabular}{l} 
-
\end{tabular} \\
& Gear \\
& - \\
& - Input torque speed \\
& Oil temperature \\
\hline
\end{tabular}

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline Setting Parameter To & Enables \\
\hline \begin{tabular}{l} 
Gear only \\
input speed, and \\
temperature
\end{tabular} & Efficiency vector, eta \\
\hline & Efficiency torque breakpoints, Trq_bpts \\
& Efficiency temperature breakpoints, Temp_bpts \\
Efficiency lookup table, eta_tbl \\
\hline
\end{tabular}

\section*{Transmission}

\section*{Input shaft inertia, Jin - Inertia scalar}

Input shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\).
```

Input shaft damping, bin - Damping
scalar

```

Input shaft damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Initial input velocity, omegain_o - Angular velocity scalar

Angular velocity, in rad/s.
Gear number vector, G - Specify number of transmission speeds vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G To \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} \\
\hline \begin{tabular}{l} 
Three transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

Efficiency torque breakpoints, Trq_bpts - Breakpoints vector

Torque breakpoints for efficiency table, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts - Breakpoints vector

Speed breakpoints for efficiency table, rad/s.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts - Breakpoints vector

Temperature breakpoints for efficiency table, in K.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear ratio vector, \(N\) - Ratio of input speed to output speed vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
To Specify Gear Ratios \\
For
\end{tabular} & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Gear ratio, N To \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([1,4.47,2.47,1.47,1]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and \\
reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([-4.47,1,4.47,2.47,1.47,1,0\)} \\
\(.8]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

\section*{Transmission inertia vector, Jout - Gear rotational inertia} vector

Vector of gear rotational inertias, with indices corresponding to the inertias specified in Gear number, G, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia For & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Inertia, J To \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.01,2.28,2.04,0.32,0.028]\)} \\
\hline \begin{tabular}{l} 
Inertia for five gears, \\
including reverse and \\
neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([2.28,0.01,2.28,2.04,0.32,0\)} \\
\(.028,0.01]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

\section*{Transmission damping vector, bout - Gear viscous damping coefficient} vector

Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in Gear number, G, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Damping For & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Damping, b To \\
\hline Four gears, including & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.001,0.003,0.0025\),} \\
neutral
\end{tabular} \\
\hline Five gears, including & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.003,0.001]\)} \\
reverse and neutral
\end{tabular} \\
& & \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

\footnotetext{
Efficiency vector, eta - Gear efficiency vector
}

Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Efficiency For & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Efficiency, eta To \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.9,0.9,0.9,0.9,0.95]\)} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.9,0.9,0.9\),} \\
\(0.9,0.9,0.95,0.95]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear only.

\section*{Efficiency lookup table, eta_tbl - Gear efficiency array}

Table of gear mechanical efficiency, \(\eta_{N}\) as a function of gear, input torque, input speed, and temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Initial output velocity, omega_o - Transmission scalar}

Transmission initial output rotational velocity, \(\omega_{t o}\), in rad/s. If you select Clutch initially locked, the block ignores the Initial output velocity, omega_o parameter value.
```

Initial gear, G_o - Engaged gear
scalar

```

Initial gear to engage, \(G_{0}\).

\section*{Clutch and Synchronizer}

Clutch pressure time constant, tauc - Time scalar

Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Sychronization time, ts - Time} scalar

Time required for gear selection and synchronization, \(t_{s}\), in s .

\section*{Clutch time, tc - Time \\ scalar}

Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Dependencies}

To create this parameter, select Control type parameter Ideal integrated controller.

Effective clutch radius, R - Radius
scalar

The effective radius, \(R_{\text {eff }}\), used with the applied clutch friction force to determine the friction force, in m . The effective radius is defined as:
\[
R_{e f f}=\frac{2\left(R_{o}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{o}{ }^{2}-R_{i}{ }^{2}\right)}
\]

The equation uses these variables.
\(R_{o} \quad\) Annular disk outer radius
\(R_{i} \quad\) Annular disk inner radius

\section*{Clutch force gain, K_c - Force scalar}

Open loop lock-up clutch gain, \(K_{c}\), in N .

\section*{Clutch static friction coefficient, mus - Coefficient scalar}

Dimensionless clutch disc coefficient of static friction, \(\mu_{s}\).

\section*{Clutch kinematic friction coefficient, muk - Coefficient scalar}

Dimensionless clutch disc coefficient of kinetic friction, \(\mu_{k}\).

\section*{Clutch initially locked - Select to initially lock clutch off (default)}

Select to lock clutch initially.

\section*{Dependencies}

To create this parameter, select Control type parameter Ideal integrated controller.

\section*{Synchronizer initially locked - Select to initially lock synchronizer off (default)}

Select to initially lock synchronizer.

\author{
See Also \\ AMT Controller | Continuously Variable Transmission | Dual Clutch Transmission | Ideal Fixed Gear Transmission \\ Introduced in R2017a
}

\section*{AMT Controller}

Automated manual transmission controller with clutch open, close, and synchronization timing
Library: Powertrain Blockset / Transmission / Transmission Controllers


\section*{Description}

The AMT Controller block implements an automated manual transmission (AMT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

\section*{Ports}

\section*{Inputs}

\section*{GearReq - Gear number to engage}
scalar
Gear number request, \(G_{\text {req }}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Variable \\
\hline GearReq & Gear number request & \(G_{\text {req }}\) \\
\hline GearEngd & Nominal gear commanded by the controller & \(G_{o}\) \\
\hline Cltch & \begin{tabular}{l} 
Clutch pressure command for gears, between 0 \\
and 1
\end{tabular} & NA \\
\hline
\end{tabular}

\section*{GearEffct - Effective gear for shifting}
scalar
Effective gear for shifting. The block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

\section*{Cltch - Command for clutch pressure \\ scalar}

Clutch pressure command, between 0 and 1 .

\section*{Parameters}

Initial gear, G_o - Engaged gear
scalar
Initial gear to engage, \(G_{0}\).

\section*{Clutch actuation time, tc - Time scalar}

Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Synchronizer time, ts - Time}
scalar
Time required for gear selection and synchronization, \(t_{s}\), in s .

\section*{Sample period, dt - Time}
scalar
Sample period, \(d t\), in s.

\section*{Clutch initially locked - Select to initially lock clutch off (default)}

Selecting this parameter initially locks the clutch.
Synchronizer initially locked - Select to initially lock synchronizer off (default)

Selecting this parameter initially locks the synchronizer.

\section*{See Also}

Automated Manual Transmission

\section*{Introduced in R2017a}

\section*{Continuously Variable Transmission}

Push belt continuously variable transmission with independent radii control
Library: Powertrain Blockset / Transmission / Transmission Systems


\section*{Description}

The Continuously Variable Transmission block implements a push belt continuously variable transmission (CVT) with independent radii control. Use the block for control system design, powertrain matching, and fuel economy studies. You can configure the block for internal or external control:
- Internal - Input direction and pulley ratio requests
- External - Input direction and pulley displacement requests

The table summarizes the pulley kinematic, speed reduction, and dynamic calculations made by the Continuously Variable Transmission block.
\begin{tabular}{|l|c|c|c|}
\hline Calculation & \begin{tabular}{c} 
Pulley \\
Kinematics
\end{tabular} & \begin{tabular}{c} 
Reverse and \\
Final Speed \\
Reduction
\end{tabular} & Dynamics \\
\hline Final angular speed ratio & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \begin{tabular}{l} 
Belt torque applied to the \\
secondary and primary \\
pulleys
\end{tabular} & & & \(\checkmark\) \\
\hline \begin{tabular}{l} 
Torque applied to the \\
secondary and primary \\
pulleys
\end{tabular} & & \(\checkmark\) & \\
\hline \begin{tabular}{l} 
Angular velocity of \\
secondary and primary \\
pulleys
\end{tabular} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline Calculation & \begin{tabular}{c} 
Pulley \\
Kinematics
\end{tabular} & \begin{tabular}{c} 
Reverse and \\
Final Speed \\
Reduction
\end{tabular} & Dynamics \\
\hline Belt and pulley geometry & \(\checkmark\) & & \(\checkmark\) \\
\hline Belt linear speed & & & \\
\hline \begin{tabular}{l} 
Wrap angle on secondary \\
and primary pulley
\end{tabular} & \(\checkmark\) & & \\
\hline \begin{tabular}{l} 
Primary and secondary \\
pulley radii
\end{tabular} & \(\checkmark\) & & \\
\hline
\end{tabular}

The figure shows the CVT variator with two configurations. In the first configuration, which illustrates speed reduction, the variator is set to decrease the primary pulley radius and increase the secondary pulley radius. In the second configuration, which illustrates overdrive, the variator is set to increase the primary pulley radius and decrease the secondary pulley radius.


\section*{Pulley Kinematics}

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.


The equations use these variables.
\begin{tabular}{ll} 
ratio \(_{\text {request }}\) & Pulley gear ratio request \\
ratio \(_{\text {command }}\) & Pulley gear ratio command, based on request and physical limitations \\
\(r_{g a p}\) & Gap distance between variator pulleys \\
\(C_{\text {dist }}\) & Distance between variator pulley centers \\
\(r p_{\text {max }}\) & Maximum variator primary pulley radius \\
\(r s_{\max }\) & Maximum variator secondary pulley radius \\
\(r p_{\text {min }}\) & Minimum variator primary pulley radius \\
\(r s_{\min }\) & Minimum variator secondary pulley radius \\
\(r_{o}\) & Initial pulley radii with gear ratio of 1 \\
\(L_{o}\) & Initial belt length, resulting from variator specification \\
\(\chi_{p r i}\) & Variator primary pulley displacement, resulting from controller request \\
\(\chi_{s e c}\) & Variator secondary pulley displacement, resulting from controller request \\
\(r_{p r i}\) & Variator primary pulley radius, resulting from controller request \\
\(r_{s e c}\) & Variator secondary pulley radius, resulting from controller request \\
\(\Theta_{\text {wedge }}\) & Variator wedge angle \\
\(\Phi\) & Angle of belt to pulley contact point \\
\(L\) & Belt length, resulting from variator position
\end{tabular}

\section*{Reverse and Final Speed Reduction}

The CVT input shaft connects to a planetary gear set that drives the primary pulley. The shift direction determines the input gear inertia, efficiency, and gear ratio. The shift direction is the filtered commanded direction:
\[
\frac{\text { Dir }_{\text {shift }}}{\text { Dir }}(s)=\frac{1}{\tau_{s} s+1}
\]

For forward motion ( Dir \(_{\text {shift }}=1\) ):
\[
\begin{aligned}
& N_{i}=1 \\
& \eta_{i}=\eta_{f w d} \\
& J_{i}=J_{f w d}
\end{aligned}
\]

For reverse motion ( Dir \(_{\text {shift }}=-1\) ):
\[
\begin{aligned}
& N_{i}=-N_{\text {rev }} \\
& \eta_{i}=\eta_{\text {rev }} \\
& J_{i}=J_{\text {rev }}
\end{aligned}
\]

The gear ratio and efficiency determine the input drive shaft speed and torque applied to the primary pulley:
\[
T_{a p p_{-} p r i}=\eta_{i} N_{i} T_{i}
\]

The block reduces the secondary pulley speed and applied torque using a fixed gear ratio.
\[
\begin{aligned}
& T_{a p p_{-} s e c}=\frac{T_{o}}{\eta_{o} N_{o}} \\
& \omega_{o}=\frac{\omega_{\text {sec }}}{N_{o}}
\end{aligned}
\]

The final gear ratio, without slip, is given by:
\[
N_{\text {final }}=\frac{\omega_{i}}{\omega_{o}}=N_{i} N_{o} \frac{r_{s e c}}{r_{p r i}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(N_{i}\) & Input planetary gear ratio \\
Dir & CVT direction command \\
Dir \(r_{\text {shift }}\) & Direction used to determine planetary inertia, efficiency, and ratio \\
\(\tau_{s}\) & Direction shift time constant \\
\(\eta_{f w d}, \eta_{\text {rev }}\) & Forward and reverse gear efficiency, respectively \\
\(J_{f w d} J_{\text {rev }}\) & Forward and reverse gear inertia, respectively \\
\(N_{\text {rev }}\) & Reverse gear ratio \\
\(T_{\text {app_pri }}, T_{\text {app_sec }}\) & Torque applied to primary and secondary pulleys, respectively
\end{tabular}
\begin{tabular}{ll}
\(T_{i}\) & Input drive shaft torque \\
\(\omega_{i}, \omega_{o}\) & Input and output drive shaft speed, respectively \\
\(\omega_{\text {pri }}, \omega_{\text {sec }}\) & Primary and secondary pulley speed, respectively \\
\(N_{\text {final }}\) & Total no-slip gear ratio
\end{tabular}

\section*{Dynamics}

The maximum torque that the CVT can transmit depends on the friction between the pulleys and belt. According to Prediction of Friction Drive Limit of Metal V-Belt, the torque friction is defined as:
\[
T_{\text {fric }}\left(r_{p}, \mu\right)=\frac{2 \mu F_{a x} r_{p}}{\cos \left(\vartheta_{\text {wedge }}\right)}
\]

Without macro slip, the tangential acceleration of the pulley is assumed to be equal to the belt acceleration. Once the torque reaches the static friction limit, the belt begins to slip, and the pulley and belt acceleration are independent. During slip, the torque transmitted by the belt is a function of the kinetic friction factor. During the transition from slip to non-slip conditions, the belt and tangential pulley velocities are equal.

The block implements these equations for four different slip conditions.
\begin{tabular}{|l|l|}
\hline Condition & Equations \\
\hline \begin{tabular}{l|l|} 
Belt slips on both \\
secondary and primary \\
pulleys
\end{tabular} & \(\left(J_{p r i}+J_{i}\right) \dot{\omega}_{p r i}=T_{a p p \_p r i}-T_{B o P \_p r i}-b_{p r i} \omega_{p r i}\) \\
& \(J_{s e c} \dot{\omega}_{\text {sec }}=T_{a p p_{-} s e c}-T_{B o P_{\_} s e c}-b_{s e c} \omega_{s e c}\) \\
& \(m_{b} \dot{v}_{b}=\frac{T_{B o P_{-} p r i}}{r_{p r i}}+\frac{T_{B o P_{\_} s e c}}{r_{s e c}}-b_{b} v_{b}\) \\
& \(r_{p r i} \omega_{p r i} \neq v_{b}\) \\
& \(r_{s e c} \omega_{s e c} \neq v_{b}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Condition & Equations \\
\hline Belt slips on only the primary pulley &  \\
\hline Belt slips on only the secondary pulley & \[
\begin{aligned}
& \left(m_{b}+\frac{J_{p r i}+J_{i}}{r^{2}{ }_{p r i}}\right) \dot{v}_{b}=\frac{T_{\text {app_pri}}}{r_{p r i}}+\frac{T_{\text {BoP_sec }}}{r_{s e c}}-\left(b_{b}+\frac{b_{p r i}}{r_{p r i}^{2}}\right) v_{b} \\
& J_{s e c} \dot{\omega}_{b}=T_{a p p \_s e c}+T_{B o P_{\_} s e c}-b_{s e c} \omega_{s e c} \\
& \omega_{p r i}=\frac{v_{b}}{r_{p r i}} \\
& r_{s e c} \omega_{s e c} \neq v_{b} \\
& T_{B o P_{\_} s e c}=\operatorname{sgn}\left(r_{\text {sec }} \omega_{\text {sec }}-v_{b}\right) T_{\text {fric }}\left(r_{\text {sec }}, \mu_{\text {kin }}\right) \\
& \left|T_{B o P \_p r i}\right|<T_{\text {fric }}\left(r_{p r i}, \mu_{\text {static }}\right)
\end{aligned}
\] \\
\hline Belt does not slip & \[
\begin{aligned}
& \left(m_{b}+\frac{J_{s e c}}{r^{2}}+\frac{J_{\text {sec }}}{r^{2}+J_{i}}\right) \dot{v}_{b}=\frac{T_{\text {app_pri }}}{r_{p r i}}+\frac{T_{\text {app_sec }}}{r_{\text {sec }}}-\left(b_{b}+\frac{b_{s e c}}{r^{2}{ }_{s e c}}\right. \\
& \omega_{\text {pri }}=\frac{v_{b}}{r_{p r i}} \\
& \omega_{\text {sec }}=\frac{v_{b}}{r_{\text {sec }}} \\
& \left|T_{\text {BoP_pri }}\right|<T_{\text {fric }}\left(r_{\text {pri }}, \mu_{\text {static }}\right) \\
& \left|T_{\text {BoP_sec }}\right|<T_{\text {fric }}\left(r_{\text {sec }}, \mu_{\text {static }}\right)
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Condition & Equations \\
\hline Slip direction & PriSlipDir \(=\left\{\begin{array}{ll|}0 & r_{p r i} \omega_{p r i}=v_{b} \\
1 & r_{p r i} \omega_{p r i}>v_{b} \\
-1 & r_{p r i} \omega_{p r i}<v_{b}\end{array}\right.\) \\
& SecSlipDir \(= \begin{cases}0 & r_{\text {sec }} \omega_{\text {sec }}=v_{b} \\
1 & r_{s e c} \omega_{s e c}>v_{b} \\
-1 & r_{s e c} \omega_{s e c}<v_{b}\end{cases}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{\text {BoP_pri, }}, T_{\text {BoP_sec }}\) & \begin{tabular}{l} 
Belt torque acting on the primary and secondary pulleys, \\
respectively
\end{tabular} \\
\(T_{\text {app_pri, }} T_{\text {app_sec }}\) & \begin{tabular}{l} 
Torque applied to primary and secondary pulleys, respectively \\
\(J_{p r i} J_{s e c}\)
\end{tabular} \\
\(b_{\text {pri }}, b_{\text {sec }}\) & \begin{tabular}{l} 
Primary and secondary pulley rotational inertias, respectively \\
Primary and secondary pulley rotational viscous damping,
\end{tabular} \\
\(F_{a x}\) & \begin{tabular}{l} 
Pulley clamp force
\end{tabular} \\
\(\mu\) & Coefficient of friction \\
\(\mu_{k i n}, \mu_{\text {static }}\) & \begin{tabular}{l} 
Coefficient of kinetic and static friction
\end{tabular} \\
\(v_{b}, a_{b}\) & Linear speed and acceleration of the belt, respectively \\
\(m_{b}\) & Total belt mass \\
\(r_{\text {pri }}, r_{\text {sec }}\) & Radii of the primary and secondary pulleys, respectively \\
\(\Phi_{\text {wrap }}\) & Wrap angle of belt to pulley contact point \\
\(\Phi_{\text {wrap_pri, }} \Phi_{\text {wrap_sec }}\) & Primary and secondary pulley wrap angles, respectively
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{Dir - Direction request}
scalar

Direction request, \(D i r_{r e q}\), controlling the direction. The block filters the request to determine the direction, forward or reverse. Dir equals 1 for forward motion. Dir equals - 1 for reverse.
\[
\text { Dir }=\left\{\begin{array}{c}
1 \text { when } \text { Dir } r_{r e q} \geq 0 \\
-1 \text { when } D i r_{r e q}<0
\end{array}\right.
\]

\section*{PllyRatioReq - Pulley ratio request scalar}

CVT pulley ratio request, ratio \(_{\text {request }}\).

\section*{Dependencies}

To create this port, for the Control mode parameter, select Ideal integrated controller.

\section*{PriDisp - Primary pulley displacement scalar}

Variator primary pulley displacement, \(\chi_{\text {pri }}\) in \(m\).

\section*{Dependencies}

To create this port, for the Control mode parameter, select External control.

\section*{SecDisp - Secondary pulley displacement scalar}

Variator secondary pulley displacement, \(\chi_{\text {sec }}\), in m.

\section*{Dependencies}

To create this port, for the Control mode parameter, select External control.

\section*{EngTrq - Input drive shaft torque}
scalar
External torque applied to the input drive shaft, \(T_{i}\), in \(N \cdot m\).

\section*{DiffTrq - Output drive shaft torque scalar}

External torque applied to the output drive shaft, \(T_{o}\), in \(N \cdot m\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline EngTrq & Input shaft torque & \(T_{i}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline DiffTrq & Output shaft torque & \(T_{o}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline EngSpd & Input shaft speed & \(\omega_{i}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline DiffSpd & Output shaft speed & \(\omega_{o}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline PriRadius & Primary pulley radius & \(r_{\text {pri }}\) & m \\
\hline PriPhi & Primary pulley wrap angle & \(\Phi_{\text {pri }}\) & rad \\
\hline SecRadius & Secondary pulley radius & \(r_{\text {sec }}\) & m \\
\hline SecPhi & Secondary pulley wrap angle & \(\Phi_{\text {sec }}\) & rad \\
\hline BltLngthDelta & Change in belt length & \(\Delta L\) & m \\
\hline BltLngth & Belt length & L & m \\
\hline BltLngthInit & Initial belt length & \(L_{o}\) & m \\
\hline BltOnPriTrq & \begin{tabular}{l} 
Belt torque acting on the \\
primary pulley
\end{tabular} & \(T_{\text {BoP_pri }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline BltOnSecTrq & \begin{tabular}{l} 
Belt torque acting on the \\
secondary pulley
\end{tabular} & \(T_{\text {BoP_sec }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline BltVel & Linear speed of the belt & \(v_{b}\) & \(\mathrm{~m} / \mathrm{s}\) \\
\hline PriAngVel & Primary pulley speed & \(\omega_{\text {pri }}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline SecAngVel & Secondary pulley speed & \(\omega_{\text {sec }}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline PriSlipDir & \begin{tabular}{l} 
Primary pulley slip direction \\
indicator
\end{tabular} & PriSlipDir & \(\mathrm{N} / \mathrm{A}\) \\
\hline SecSlipDir & \begin{tabular}{l} 
Secondary pulley slip \\
direction indicator
\end{tabular} & SecSlipDir & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline TransSpdRatio & Total no-slip gear ratio & \(N_{\text {final }}\) & N/A \\
\hline
\end{tabular}

\section*{EngSpd - Input drive shaft speed \\ scalar}

Input drive shaft angular speed, \(\omega_{i}\), in rad/sec.

\section*{DiffSpd — Output drive shaft speed}
scalar
Output drive shaft angular speed, \(\omega_{0}\), in rad/sec.

\section*{Parameters}

\section*{Control mode - External or internal}

Ideal integrated controller (default)|External control
Specify the control method, either internal or external.

\section*{Dependencies}

This table summarizes the port and input model configurations.
\begin{tabular}{|l|l|}
\hline Control Mode & Creates Ports \\
\hline Ideal integrated controller & PllyRatioReq \\
\hline External control & PriDisp \\
& SecDisp \\
\hline
\end{tabular}

\section*{Kinematics}

\section*{Maximum variator primary pulley radius, rp_max - Radius} scalar

Maximum variator primary pulley radius, \(r p_{\max }\), in \(m\).
Maximum variator secondary pulley radius, rs_max - Radius scalar

Maximum variator secondary pulley radius, \(r s_{\text {max }}\), in \(m\).

\section*{Minimum variator primary pulley radius, rp_min - Radius scalar}

Minimum variator primary pulley radius, \(r p_{\text {min }}\), in \(m\).
Minimum variator secondary pulley radius, rs_min - Radius scalar

Minimum variator secondary pulley radius, \(r s_{\text {min }}\), in \(m\).

\section*{Gap distance between variator pulleys, rgap - Specify crown wheel connection}

\section*{scalar}

The gap between the secondary and primary pulleys, \(r_{\text {gap }}\), in m . The figure shows the pulley geometry.


\section*{Variator wedge angle, thetawedge - Specify crown wheel connection scalar}

Variator wedge angle, \(\Theta_{\text {wedge }}\), in deg.


\section*{Dynamics}

Primary pulley inertia, J_pri - Inertia
scalar
Primary pulley inertia, \(J_{p r i}\) in \(\mathrm{kg} \cdot \mathrm{m}{ }^{\wedge} 2\).

\section*{Secondary pulley inertia, J_sec - Inertia}
scalar
Secondary pulley inertia, \(J_{\text {sec }}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Primary pulley damping coefficient, b_pri - Damping scalar

Primary pulley damping coefficient, \(b_{\text {pri, }}\) in \(N \cdot m \cdot s / r a d\).

\section*{Secondary pulley damping coefficient, b_sec - Damping} scalar

Secondary pulley damping coefficient, \(b_{\text {sec }}\), in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Belt damping coefficient, b_b - Damping
scalar
Belt damping coefficient, \(b_{b}\), in \(\mathrm{kg} / \mathrm{s}\).

\section*{Static friction coefficient, mu_static - Friction scalar}

Static friction coefficient between the belt and primary pulley, \(\mu_{\text {static }}\), dimensionless.

\section*{Kinetic friction coefficient, mu_kin - Friction scalar}

Kinetic friction coefficient between the belt and primary pulley, \(\mu_{k i n}\), dimensionless.

\section*{Belt mass, m_b - Mass}

\section*{scalar}

Belt mass, \(m_{b}\), in kg.

\section*{Pulley clamp force, F_ax - Pulley clamp force}

\section*{scalar}

Pulley clamp force, \(F_{a x}\), in N .

\section*{Reverse and Output Ratio}

\section*{Forward inertia, J_fwd - Inertia}
scalar
Forward inertia, \(J_{f w d}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Reverse inertia, J_rev - Inertia scalar

Reverse inertia, \(J_{\text {rev }}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Forward efficiency, eta_fwd - Efficiency scalar

Forward efficiency, \(\eta_{f w d}\), dimensionless.
Reverse efficiency, eta_rev - Efficiency
scalar
Reverse efficiency, \(\eta_{\text {rev }}\), dimensionless.
Reverse gear ratio, N_rev - Ratio
scalar

Reverse gear ratio, \(N_{\text {rev }}\), dimensionless.

\section*{Shift time constant, tau_s - Constant scalar}

Shift time constant, \(\tau_{s}\), in s .
Output gear ratio, N_o - Ratio scalar

Output gear ratio, \(N_{o}\), dimensionless.
Output gear efficiency, eta_o - Efficiency scalar

Output gear efficiency, \(\eta_{o}\), dimensionless.

\section*{References}
[1] Ambekar, Ashok G. Mechanism and Machine Theory. New Delhi: Prentice-Hall of India, 2007.
[2] Bonsen, B. Efficiency optimization of the push-belt CVT by variator slip control. Ph.D. Thesis. Eindhoven University of Technology, 2006.
[3] CVT How Does It Work. CVT New Zealand 2010 Ltd, 10 Feb. 2011. Web. 25 Apr. 2016. http://www.cvt.co.nz/cvt_how_does_it_work.htm
[4] Klaassen, T. W. G. L. The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT. Ph.D. Thesis. Eindhoven University of Technology, 2007.
[5] Sakagami, K. Prediction of Friction Drive Limit of Metal V-Belt. Warrendale, PA: SAE International Journal of Engines 8(3):1408-1416, 2015.

\author{
See Also
}

CVT Controller

Introduced in R2017a

\section*{CVT Controller}

Continuously variable transmission controller
Library: Powertrain Blockset / Transmission / Transmission Controllers


\section*{Description}

The CVT Controller block implements a push belt continuously variable transmission (CVT) controller. The block uses standard pulley and geometric equations to calculate the kinematic setpoints for the CVT variator. You can use the block to control a CVT.

\section*{Pulley Kinematics}

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.


The equations use these variables.
ratio \(_{\text {request }} \quad\) Pulley gear ratio request
ratio \(_{\text {command }}\) Pulley gear ratio command, based on request and physical limitations
\(r_{g a p} \quad\) Gap distance between variator pulleys
\(C_{\text {dist }} \quad\) Distance between variator pulley centers
\(r p_{\max } \quad\) Maximum variator primary pulley radius
\begin{tabular}{ll}
\(r s_{\max }\) & Maximum variator secondary pulley radius \\
\(r p_{\min }\) & Minimum variator primary pulley radius \\
\(r s_{\min }\) & Minimum variator secondary pulley radius \\
\(r_{o}\) & Initial pulley radii with gear ratio of 1 \\
\(L_{o}\) & Initial belt length, resulting from variator specification \\
\(x_{p r i}\) & Variator primary pulley displacement, resulting from controller request \\
\(\chi_{\text {sec }}\) & Variator secondary pulley displacement, resulting from controller request \\
\(r_{p r i}\) & Variator primary pulley radius, resulting from controller request \\
\(r_{s e c}\) & Variator secondary pulley radius, resulting from controller request \\
\(\Theta_{\text {wedge }}\) & Variator wedge angle \\
\(\Phi\) & Angle of belt to pulley contact point \\
\(L\) & Belt length, resulting from variator position
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{DirReq - Direction request}
scalar
Direction request, Dir \(_{\text {req }}\), controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.

Dir \(=\left\{\begin{array}{c}1 \text { when Dir } r_{r e q} \geq 0 \\ -1 \text { when } \text { Dir }_{r e q}<0\end{array}\right.\)

\section*{PllyRatioReq - Pulley ratio request scalar}

CVT pulley ratio request, ratio \(_{\text {request }}\).

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Variable & Units \\
\hline Radius & PriRadius & \begin{tabular}{l} 
Variator primary pulley \\
radius, resulting from \\
controller request
\end{tabular} & \(r_{\text {pri }}\) & m \\
\cline { 2 - 5 } & SecRadius & \begin{tabular}{l} 
Variator secondary \\
pulley radius, resulting \\
from controller request
\end{tabular} & \(r_{\text {sec }}\) & m \\
\cline { 2 - 4 } & \begin{tabular}{l} 
InitPllyRadiu \\
s
\end{tabular} & \begin{tabular}{l} 
Initial pulley radii with \\
gear ratio of 1
\end{tabular} & \(r_{o}\) & m \\
\hline RatioAdj & \begin{tabular}{l} 
Pulley gear ratio \\
command, based on \\
request and physical \\
limitations
\end{tabular} & ratio \(_{\text {command }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline RatioMax & Maximum pulley ratio & ratio \(_{\text {max }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline RatioMin & Minimum pulley ratio & ratio \(_{\text {min }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline PriDispCmd & \begin{tabular}{l} 
Variator primary pulley \\
displacement, resulting \\
from controller request
\end{tabular} & \(x_{\text {pri }}\) & m \\
\hline SecDispCmd & \begin{tabular}{l} 
Variator secondary \\
pulley displacement, \\
resulting from \\
controller request
\end{tabular} & \(x_{\text {sec }}\) & m \\
\hline
\end{tabular}

\section*{Dir - Direction request}

\section*{scalar}

Direction request, Dir \(_{\text {req }}\), controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.
\[
\text { Dir }=\left\{\begin{array}{c}
1 \text { when } D i r_{r e q} \geq 0 \\
-1 \text { when } D i r_{r e q}<0
\end{array}\right.
\]

\section*{PriDispCmd - Primary pulley displacement scalar}

Variator primary pulley displacement, \(x_{\text {pri }}\) in \(m\).

\section*{SecDispCmd - Secondary pulley displacement scalar}

Variator secondary pulley displacement, \(\chi_{\text {sec }}\), in m.

\section*{Parameters}

\section*{Kinematics}

Maximum variator primary pulley radius, rp_max - Radius scalar

Maximum variator primary pulley radius, \(r p_{\max }\), in \(m\).
Maximum variator secondary pulley radius, rs_max - Radius scalar

Maximum variator secondary pulley radius, \(r s_{\max }\), in \(m\).
Minimum variator primary pulley radius, rp_min - Radius scalar

Minimum variator primary pulley radius, \(r p_{\text {min }}\), in \(m\).
Minimum variator secondary pulley radius, rs_min - Radius scalar

Minimum variator secondary pulley radius, \(r s_{\text {min }}\), in m .

\section*{Gap distance between variator pulleys, rgap - Specify crown wheel connection}

The gap between the secondary and primary pulleys, \(r_{\text {gap }}\), in \(m\). The figure shows the pulley geometry.

\section*{Primary}


\section*{Variator wedge angle, thetawedge - Specify crown wheel connection scalar}

Variator wedge angle, \(\Theta_{\text {wedge }}\), in deg.


\section*{References}
[1] Ambekar, Ashok G. Mechanism and Machine Theory. New Delhi: Prentice-Hall of India, 2007.
[2] Bonsen, B. Efficiency optimization of the push-belt CVT by variator slip control. Ph.D. Thesis. Eindhoven University of Technology, 2006.
[3] CVT How Does It Work. CVT New Zealand 2010 Ltd. February 10, 2011. Accessed April 25, 2016. http://www.cvt.co.nz/cvt_how_does_it_work.htm
[4] Klaassen, T. W. G. L. The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT. Ph.D. Thesis. Eindhoven University of Technology, 2007.

\section*{See Also}

Continuously Variable Transmission

\section*{Introduced in R2017a}

\section*{Dual Clutch Transmission}

Dual clutch transmission that applies torque to the drive shaft
Library: Powertrain Blockset / Transmission / Transmission Systems


\section*{Description}

The Dual Clutch Transmission block implements a dual clutch transmission (DCT). In a DCT, two clutches apply mechanical torque to the drive shaft. Odd gears engage one clutch, while even gears engage the secondary clutch. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable. You can provide external clutch signals or configure the block to generate idealized internal clutch signals. The block implements the transmission model with minimal parameterization or computational cost.

Use the block to model a simplified automated manual transmission (AMT) for:
- Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Dual Clutch Transmission block calculates:
- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency determined from a 4D lookup table that is a \\
function of:
\end{tabular} \\
& \begin{tabular}{ll} 
- & Gear \\
& - Input torque \\
& - \begin{tabular}{l} 
Input speed \\
\\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Clutch Control}

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select Control mode parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select Control mode parameter External control.

\section*{Clutch Lock-Up and Clutch Friction}

Based on the clutch lock-up condition, the block implements one of these friction models.
\begin{tabular}{|l|l|l|}
\hline If & \begin{tabular}{l} 
Clutch \\
Condition
\end{tabular} & Friction Model \\
\(\omega_{i} \neq N \omega_{d}\) & Unlocked & \\
or \\
\(T_{S}<\left|T_{f}-N w_{i} b_{i}\right|\) & & \begin{tabular}{l} 
\\
\hline
\end{tabular} \\
& & \begin{tabular}{l} 
where, \\
\(T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(\frac{w_{i}}{N}-w_{d}\right)\right]\)
\end{tabular} \\
& & \(T_{s}=F_{c} R_{e f f} \mu_{s}\) \\
& \(R_{\text {eff }}=\frac{2\left(R_{o}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{o}{ }^{2}-R_{i}{ }^{2}\right)}\)
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline If & \begin{tabular}{l} 
Clutch \\
Condition
\end{tabular} & Friction Model \\
\hline \begin{tabular}{l}
\(\omega_{i}=N \omega_{t}\) \\
and
\end{tabular} & Locked & \(T_{f}=T_{s}\) \\
\hline
\end{tabular}
\(T_{S} \geq T_{f}-N b_{i} \omega_{i}\)
The equations \({ }^{\text {und }}\) se these variables.
\begin{tabular}{cl}
\(\omega_{t}\) & Output drive shaft speed \\
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(b_{i}\) & Viscous damping \\
\(F_{c}\) & Applied clutch force \\
\(N\) & Engaged gear \\
& Frictional torque \\
\(T_{f}\) &
\end{tabular}

Static frictional torque
Effective clutch radius
\(R_{\text {eff }}\)
\(R_{o}\)
Annular disk outer radius
\(R_{i}\)
\(\mu_{s} \quad\) Coefficient of static friction
\(\mu_{k} \quad\) Coefficient of kinetic friction

\section*{Locked Rotational Dynamics}

To model the rotational dynamics when the clutch is locked, the block implements these equations.
\[
\begin{aligned}
& \dot{\omega}_{d} J_{N}=\eta_{N} T_{d}-\frac{\omega_{i}}{N} b_{N}+N T_{i} \\
& \omega_{i}=N \omega_{d}
\end{aligned}
\]

The block determines the input torque, \(T_{i}\), through differentiation.
The equations use these variables.
\begin{tabular}{ll}
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Unlocked Rotational Dynamics}

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.
\[
\dot{\omega}_{d} J_{N}=N T_{f}-\omega_{d} b_{N}+T_{d}
\]
where:
\begin{tabular}{ll}
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{Gear - Gear number to engage \\ scalar}

Integer value of gear number to engage.

\section*{CltchACmd - Command for odd-numbered gears} scalar

Clutch pressure command for odd-numbered gears, between 0 and 1 .

\section*{Dependencies}

To create this port, select Control mode parameter External control.

\section*{CltchBCmd - Command for even-numbered gears scalar}

Clutch pressure command for even-numbered gears, between 0 and 1.

\section*{Dependencies}

To create this port, select Control mode parameter External control.

\section*{EngTrq - Applied torque}
scalar
Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Applied torque}
scalar
Applied load torque, \(T_{d}\), typically from the drive shaft, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Temp - Oil temperature scalar}

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:
- Gear
- Input torque
- Input speed
- Oil temperature

\section*{Dependencies}

To create this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal} & Description & Variable & Units \\
\hline \multirow[t]{2}{*}{Eng} & EngTrq & Applied input torque, typically from the engine crankshaft or dual mass flywheel damper & \(T_{i}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & EngSpd & Applied drive shaft angular speed input & \(\omega_{i}\) & rad/s \\
\hline \multirow[t]{2}{*}{Diff} & DiffTrq & Applied load torque, typically from the differential & \(T_{d}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & DiffSpd & Drive shaft angular speed output & \(\omega_{d}\) & rad/s \\
\hline \multirow[t]{2}{*}{Cltch} & CltchFor ce & Applied clutch force & \(F_{c}\) & N \\
\hline & CltchLoc ked & Clutch state & NA & NA \\
\hline \multirow[t]{2}{*}{Trans} & TransSpd Ratio & Input to output speed ratio at time t & \(\Phi(t)\) & NA \\
\hline & TransEta & Ratio of output power to input power & \(\eta_{N}\) & NA \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline \multirow{4}{*}{} & \begin{tabular}{l} 
TransGea \\
rCmd
\end{tabular} & Commanded gear & \(N_{c m d}\) & NA \\
\cline { 2 - 5 } & \begin{tabular}{l} 
TransGea \\
\(r\)
\end{tabular} & Engaged gear & \(N\) & NA \\
\hline
\end{tabular}

\section*{EngSpd - Angular speed \\ scalar}

Drive shaft angular speed, \(\omega_{d}\), in rad/s.

\section*{DiffSpd - Angular speed}
scalar
Drive shaft angular speed, \(\omega_{d}\), in rad/s.

\section*{Parameters}

\section*{Control mode - Specify control mode}

\section*{External control (default)|Ideal integrated controller}

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select Control mode parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select Control mode parameter External control.

\section*{Dependencies}

This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Control Mode & Creates Ports \\
\hline External control & CltchACmd \\
\cline { 2 - 2 } & CltchBCmd \\
\hline
\end{tabular}

Efficiency factors - Specify efficiency calculation
Gear only (default)|Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency determined from a 4D lookup table that is a \\
function of:
\end{tabular} \\
& \begin{tabular}{ll} 
- Gear \\
- Input torque \\
& - Input speed \\
& - Oil temperature \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline Setting Parameter To & Enables \\
\hline Gear only & Efficiency vector, eta \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & Efficiency torque breakpoints, Trq_bpts \\
& Efficiency speed breakpoints, omega_bpts \\
& Efficiency temperature breakpoints, Temp_bpts \\
& Efficiency lookup table, eta_tbl \\
\hline
\end{tabular}

\section*{Transmission}

\section*{Input shaft inertia, Jin - Inertia}
scalar
Input shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\).
Input shaft damping, bin - Damping
scalar
Input shaft damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).

\section*{Initial input velocity, omegain_o - Angular velocity} scalar

Angular velocity, in rad/s.

\section*{Efficiency torque breakpoints, Trq_bpts - Breakpoints vector}

Torque breakpoints for efficiency table, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Efficiency speed breakpoints, omega_bpts - Breakpoints} vector

Speed breakpoints for efficiency table, in rad/s.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts - Breakpoints vector

Temperature breakpoints for efficiency table, in K.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear number vector, G - Specify number of transmission speeds vector

Vector of integers used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G to \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G to \\
\hline \begin{tabular}{l} 
Three transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Gear ratio vector, \(N\) - Ratio of input speed to output speed} vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
To Specify Gear Ratios \\
for
\end{tabular} & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Gear ratio, N to \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([1,4.47,2.47,1.47,1]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and \\
reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & {\([-4.47,1,4.47,2.47,1.47,1,0\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Transmission inertia vector, Jout - Gear rotational inertia vector}

Vector of gear rotational inertias, with indices corresponding to the inertias specified in Gear number, G, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Inertia, J to \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.01,2.28,2.04,0.32,0.028]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Inertia, J to \\
\hline \begin{tabular}{ll} 
Inertia for five gears, \\
including reverse and \\
neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & {\([2.28,0.01,2.28,2.04,0.32,0\)} \\
\(.028,0.01]\)
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Damping vector, bout - Gear viscous damping coefficient}
vector
Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in Gear number, G, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Damping for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Damping, b to \\
\hline Four gears, including & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.001,0.003,0.0025\),} \\
neutral
\end{tabular} \\
\hline Five gears, including & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.003,0.001]\)} \\
reverse and neutral
\end{tabular} \\
& & \begin{tabular}{l} 
0.002,0.001,0.003,0.0.002, 0025, \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Efficiency vector, eta - Gear efficiency
vector
Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Efficiency for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Efficiency, eta to \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.9,0.9,0.9,0.9,0.95]\)} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.9,0.9,0.9\),} \\
\(0.9,0.9,0.95,0.95]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear only.

\section*{Efficiency lookup table, eta_tbl - Gear efficiency} array

Table of gear mechanical efficiency, \(\eta_{N}\) as a function of gear, input torque, input speed, and temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Initial output velocity, omegaout_o - Transmission scalar}

Transmission initial output rotational velocity, \(\omega_{\text {to }}\), in rad/s. If you select Clutch initially locked, the block ignores the Initial output velocity, omega_o parameter value.
```

Initial gear, G_o - Engaged gear
scalar

```

Initial gear to engage, \(G_{0}\).
Clutch and Synchronizer
Clutch pressure time constant, tauc - Time scalar

Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Synchronization time, ts - Time scalar}

Time required for gear selection and synchronization, \(t_{s}\), in s .

\section*{Clutch time, tc - Time}
scalar

Time required to engage clutch, \(t_{c}\), in s.

\section*{Dependencies}

To create this parameter, select Control mode parameter Ideal integrated controller.

\section*{Effective clutch radius, R - Radius}
scalar

The effective radius, \(R_{\text {eff }}\), used with the applied clutch friction force to determine the friction force, in m . The effective radius is defined as:
\[
R_{e f f}=\frac{2\left(R_{o}^{3}-R_{i}^{3}\right)}{3\left(R_{o}{ }^{2}-R_{i}^{2}\right)}
\]

The equation uses these variables.
\(R_{o} \quad\) Annular disk outer radius
\(R_{i}\)
Annular disk inner radius

\section*{Clutch force gain, K_c - Force \\ scalar}

Open loop lock-up clutch gain, \(K_{C}\), in N .

\section*{Clutch static friction coefficient, mus - Coefficient scalar}

Dimensionless clutch disc coefficient of static friction, \(\mu_{s}\).
Clutch kinematic friction coefficient, muk - Coefficient scalar

Dimensionless clutch disc coefficient of kinetic friction, \(\mu_{k}\).
Clutch initially locked - Select to initially lock clutch off (default)

Selecting this parameter initially locks the clutch.

\section*{Dependencies}

To create this parameter, select Control mode parameter Ideal integrated controller.

\section*{Synchronizer initially locked - Select to initially lock synchronizer off (default)}

Selecting this parameter initially locks the synchronizer.

\section*{See Also}

Automated Manual Transmission | DCT Controller

\section*{Introduced in R2017a}

\section*{DCT Controller}

Dual clutch transmission controller
Library: Powertrain Blockset / Transmission / Transmission Controllers


\section*{Description}

The DCT Controller block implements a dual clutch transmission (DCT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

\section*{Ports}

\section*{Inputs}

\section*{GearReq - Gear number to engage}
scalar
Gear number request, \(G_{\text {req }}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Variable \\
\hline GearReq & Gear number request & \(G_{\text {req }}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Variable \\
\hline GearEngd & Nominal gear commanded by the controller & \(G_{o}\) \\
\hline GearEffct & Effective gear & NA \\
\hline CltchACmd & \begin{tabular}{l} 
Clutch pressure command for odd-numbered \\
gears, between 0 and 1
\end{tabular} & NA \\
\hline CltchBCmd & \begin{tabular}{l} 
Clutch pressure command for even-numbered \\
gears, between 0 and 1
\end{tabular} & NA \\
\hline
\end{tabular}

\section*{NomGear - Nominal gear for shifting scalar}

Nominal gear for shifting. The Dual Clutch Transmission block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

\section*{CltchACmd - Command for odd-numbered gears \\ scalar}

Clutch pressure command for odd-numbered gears, between 0 and 1 .

\section*{CltchBCmd - Command for even-numbered gears}
scalar
Clutch pressure command for even-numbered gears, between 0 and 1.

\section*{Parameters}
```

Initial gear, G_o - Engaged gear

```
scalar

Initial gear to engage, \(G_{o}\).

\section*{Clutch actuation time, tc - Time} scalar

Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Synchronizer time, ts - Time \\ scalar}

Time required for gear selection and synchronization, \(t_{s}\), in \(s\).

\section*{Sample period, dt - Time}
scalar
Sample period, \(d t\), in s.

\section*{Clutch initially locked - Select to initially lock clutch off (default)}

Selecting this parameter initially locks the clutch.

\section*{Synchronizer initially locked - Select to initially lock synchronizer off (default)}

Selecting this parameter initially locks the synchronizer.

\author{
See Also \\ AMT Controller | Dual Clutch Transmission \\ Introduced in R2017a
}

\section*{Ideal Fixed Gear Transmission}

Ideal fixed gear transmission without clutch or synchronization


\section*{Description}

The Ideal Fixed Gear Transmission implements an idealized fixed-gear transmission without a clutch or synchronization. Use the block to model the overall gear ratio and power loss when you do not need a detailed transmission model, for example, in component-sizing, fuel economy, and emission studies. The block implements a transmission model with minimal parameterization or computational cost.

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency determined from a 4D lookup table that is a \\
function of:
\end{tabular} \\
& \begin{tabular}{ll} 
- & Gear \\
& - \\
& Input torque \\
& Input speed \\
& Oil temperature \\
\hline
\end{tabular} \\
\hline
\end{tabular}

The block uses this equation to determine the transmission dynamics:
\[
\begin{aligned}
& \dot{\omega}_{i} \frac{J_{N}}{N}=\eta_{N}\left(\frac{T_{o}}{N}+T_{i}\right)-\frac{\omega_{i}}{N^{2}} b_{N} \\
& \omega_{i}=N \omega_{o}
\end{aligned}
\]

The block filters the gear command signal:
\[
\frac{G}{G_{c m d}}(s)=\frac{1}{\tau_{s} s+1}
\]

The equations use these variables.
\(b_{N} \quad\) Engaged gear viscous damping
\(J_{N} \quad\) Engaged gear rotational inertia
\(\eta_{N} \quad\) Engaged gear efficiency
\(G \quad\) Engaged gear number
\(G_{c m d} \quad\) Gear number to engage
\(N \quad\) Engaged gear ratio
\(T_{i} \quad\) Applied input torque, typically from the engine crankshaft or dual mass flywheel damper
\(T_{o} \quad\) Applied load torque, typically from the differential or drive shaft
\(\omega_{o} \quad\) Output drive shaft angular speed
\(\omega_{i}, \omega_{i} \quad\) Applied drive shaft angular speed and acceleration
\(\tau_{s} \quad\) Shift time constant

\section*{Ports}

\section*{Inputs}

\section*{Gear - Gear number to engage}
scalar
Integer value of gear number to engage, \(G_{c m d}\).

\section*{EngTrq - Applied input torque}
scalar
Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Applied load torque}
scalar
Applied load torque, \(T_{o}\), typically from the differential, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Temp - Oil temperature}

\section*{scalar}

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:
- Gear
- Input torque
- Input speed
- Oil temperature

\section*{Dependencies}

To create this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Variable & Units \\
\hline Eng & EngTrq & \begin{tabular}{l} 
Applied input torque, typically \\
from the engine crankshaft or \\
dual mass flywheel damper
\end{tabular} & \(T_{i}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\cline { 2 - 5 } & EngSpd & \begin{tabular}{l} 
Applied drive shaft angular \\
speed input
\end{tabular} & \(\omega_{i}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline \multirow{3}{*}{ Diff } & DiffTrq & \begin{tabular}{l} 
Applied load torque, typically \\
from the differential
\end{tabular} & \(T_{o}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\cline { 2 - 5 } & DiffSpd & \begin{tabular}{l} 
Drive shaft angular speed \\
output
\end{tabular} & \(\omega_{o}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Signal } & Description & Variable & Units \\
\hline \multirow{5}{*}{ Trans } & \begin{tabular}{l} 
TransSpd \\
Ratio
\end{tabular} & \begin{tabular}{l} 
Input to output speed ratio at \\
time t
\end{tabular} & \(\Phi(t)\) & N/A \\
\cline { 2 - 6 } & TransEta & \begin{tabular}{l} 
Ratio of output power to input \\
power
\end{tabular} & \(\eta_{N}\) & N/A \\
\cline { 2 - 5 } & \begin{tabular}{l} 
TransGea \\
rCmd
\end{tabular} & Commanded gear & \(N_{c m d}\) & N/A \\
\cline { 2 - 5 } & \begin{tabular}{l} 
TransGea \\
r
\end{tabular} & Engaged gear & \(N\) & N/A \\
\hline
\end{tabular}

\section*{EngSpd - Angular speed \\ scalar}

Applied drive shaft angular speed input, \(\omega_{i}\), in rad/s.

\section*{DiffSpd - Angular speed}
scalar
Drive shaft angular speed output, \(\omega_{o}\), in rad/s.

\section*{Parameters}

Efficiency factors - Specify efficiency calculation
Gear only (default)|Gear, input torque, input speed, and temperature
To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Setting & Block Implementation \\
\hline Gear, input torque, input speed, and temperature & \begin{tabular}{l}
Efficiency determined from a 4D lookup table that is a function of: \\
- Gear \\
- Input torque \\
- Input speed \\
- Oil temperature
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline Setting Parameter To & Enables \\
\hline Gear only & Efficiency vector, eta \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & Efficiency torque breakpoints, Trq_bpts \\
& Efficiency speed breakpoints, omega_bpts \\
& Efficiency temperature breakpoints, Temp_bpts \\
& Efficiency lookup table, eta_tbl \\
\hline
\end{tabular}

\section*{Gear property interpolation method - Interpolation \\ Nearest (default)|Linear|Flat|Cubic spline}

Method that the block uses to switch the gear ratio during gear shifting.

\section*{Transmission}

\section*{Gear number vector, G - Specify number of transmission speeds} vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G to \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G to \\
\hline \begin{tabular}{l} 
Three transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Efficiency torque breakpoints, Trq_bpts - Breakpoints
vector
Torque breakpoints for efficiency table.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts - Breakpoints vector

Speed breakpoints for efficiency table.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts - Breakpoints vector

Temperature breakpoints for efficiency table.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear ratio vector, \(N\) - Ratio of input speed to output speed vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
To Specify Gear Ratios \\
for
\end{tabular} & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Gear ratio, N to \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([1,4.47,2.47,1.47,1]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and \\
reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([-4.47,1,4.47,2.47\),} \\
\(1.47,1,0.8]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Inertia vector, Jout - Gear rotational inertia \\ vector}

Vector of gear rotational inertias, \(J_{N}\), with indices corresponding to the inertias specified in Gear number, G, in \(\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Inertia, J to \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.01,2.28,2.04\),} \\
\(0.32,0.028]\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Inertia for five gears, \\
including reverse and \\
neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & {\([2.28,0.01,2.28\),} \\
\(2.04,0.32,0.028,0.01]\)
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Damping vector, bout - Gear viscous damping coefficient} vector

Vector of gear viscous damping coefficients, \(b_{N}\), with indices corresponding to the coefficients specified in Gear number, G, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Damping for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Damping, b to \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.001,0.003\),} \\
\(0.0025,0.002,0.001]\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.003,0.001,0.003,0.0025\),} \\
\(0.002,0.001,0.001]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Efficiency vector, eta - Gear efficiency
vector
Vector of gear mechanical efficiency, \(\eta_{N}\), with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Efficiency for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Efficiency, eta to \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.9,0.9,0.9,0.9,0.95]\)} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.9,0.9,0.9\),} \\
\(0.9,0.9,0.95,0.95]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear only.

\section*{Efficiency lookup table, eta_tbl - Gear efficiency array}

Table of gear mechanical efficiency, \(\eta_{N}\) as a function of gear, input torque, input speed, and temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Initial output velocity, omega_o - Transmission scalar}

Transmission initial output rotational velocity, \(\omega_{\text {to }}\), in rad/s. If you select Clutch initially locked, the block ignores the Initial output velocity, omega_o parameter value.

\section*{Shift time constant, tau_s - Time}
scalar
Shift time constant, \(\tau_{s}\), in s.

\author{
See Also \\ Automated Manual Transmission | Continuously Variable Transmission | Dual Clutch Transmission
}

Introduced in R2017a

\section*{Torque Converter}

Three-part torque converter consisting of an impeller, turbine, and stator Library: Powertrain Blockset / Transmission / Torque Converters


\section*{Description}

The Torque Converter block implements a three-part torque converter consisting of an impeller, turbine, and stator with an optional clutch lock-up capability. The block can simulate driving (power flowing from impeller to turbine) and coasting (power flowing from turbine to impeller).

You can specify torque converter characteristics:
- Speed ratio - Ratio of turbine angular speed to impeller angular speed
- Torque ratio - Ratio of turbine torque to impeller torque
- Capacity factor parameterization - Function of input speed or input torque

Optional clutch lock-up configurations include:
- No lock-up - Model fluid-coupling only
- Lock-up - Model automatic clutch engagement
- External lock-up - Model clutch pressure as input from an external signal


\section*{Equations}

The block implements equations that use these variables.
\(T_{f} \quad\) Frictional torque
\(T_{k} \quad\) Kinetic frictional torque
\(T_{s} \quad\) Static frictional torque
\(T_{i} \quad\) Applied input torque
\(T_{p} \quad\) Impeller reaction torque
\(T_{e x t} \quad\) Externally applied turbine torque
\(\psi(\phi) \quad\) Torque conversion capacity factor
\(\zeta(\phi) \quad\) Torque ratio
\(\omega_{i} \quad\) Impeller rotational shaft speed
\(\omega_{i}\)
\begin{tabular}{ll}
\(\omega_{t}\) & Turbine rotational shaft speed \\
\(J_{i}\) & Impeller rotational inertia \\
\(J_{t}\) & Turbine rotational inertia \\
\(b_{i}\) & Impeller rotational viscous damping \\
\(b_{t}\) & Turbine rotational viscous damping \\
\(R_{e f f}\) & Effective clutch radius \\
\(R_{o}\) & Annular disk outer radius \\
\(R_{i}\) & Annular disk inner radius
\end{tabular}

Based on the clutch lock-up condition, the block implements these friction models.
\begin{tabular}{|c|c|c|}
\hline If & Clutch Condition & Friction Model \\
\hline \begin{tabular}{l}
\[
\omega_{i} \neq \omega_{t}
\] \\
or
\[
T_{S}<\left\lvert\, \frac{J_{t}}{\left(J_{i}+J_{t}\right)}\left[T_{i}+T_{f}-\omega_{i}( \rangle\right.\right.
\]
\end{tabular} & Unlocked
\[
\left.\left(b_{t}+b_{i}\right)\right]
\] & \begin{tabular}{l}
\[
T_{f}=T_{k}
\] \\
where:
\[
T_{k}=F_{c} R_{e f f} m_{k} \tanh \left[4\left(\omega_{i}-\omega_{t}\right)\right]
\]
\end{tabular} \\
\hline \[
\begin{aligned}
& \omega_{i}=\omega_{t} \\
& \text { and }
\end{aligned}
\] & Locked & \[
\begin{aligned}
& \mathbb{T}_{f_{s}}=\mathbb{T}_{s_{c}} R_{\text {eff }} m_{s} \\
& R_{\text {eff }}=\frac{2\left(R_{o}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{o}{ }^{2}-R_{i}{ }^{2}\right)}
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{} & h is locked, the block impleme \\
\hline
\end{tabular}
\[
\begin{aligned}
& \dot{\omega}\left(J_{i}+J_{t}\right)=T_{i}-\omega\left(b_{i}+b_{t}\right)+T_{e x t} \\
& \omega=\omega_{i}=\omega_{t}
\end{aligned}
\]

The rotational velocity represents both the impeller and turbine rotational velocities.

To model the rotational dynamics if the clutch is unlocked, the block implements equations.
\[
\begin{aligned}
& \dot{\omega}_{i} J_{i}=\mathrm{T}_{i}-\omega_{i} b_{i}-T_{f}-T_{p} \\
& \dot{\omega}_{t} J_{t}=\mathrm{T}_{\text {ext }}-\omega_{t} b_{t}+T_{f}+T_{t} \\
& T_{p}=\omega_{i}^{2} \psi(\phi) \\
& T_{t}=T_{p} \zeta(\phi)
\end{aligned}
\]

To approximate the torque multiplication lag between the impeller and turbine, you can specify the parameter Fluid torque response time constant (set to 0 to disable), tauc [s].

\section*{Ports}

\section*{Inputs}

\section*{ImpTrq - Applied impeller torque \\ scalar}

Applied input torque, typically from the engine crankshaft or dual mass flywheel, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{TurbTrq - Applied turbine torque \\ scalar}

Applied turbine torque, typically from the transmission, in \(N \cdot m\).

\section*{Clutch Force - Applied clutch force scalar}

Applied clutch force, typically from a hydraulic actuator, in N.

\section*{Dependencies}

To create this port, select External lock-up input for the Lock-up clutch configuration parameter.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline \multirow{3}{*}{ Imp } & ImpTrq & Applied input torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\cline { 2 - 4 } & ImpSpd & \begin{tabular}{l} 
Impeller rotational shaft \\
speed
\end{tabular} & \(\mathrm{rad} / \mathrm{s}\) \\
\hline Turb & TurbTrq & Applied turbine torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\cline { 2 - 4 } & TurbSpd & \begin{tabular}{l} 
Turbine rotational shaft \\
speed
\end{tabular} & \(\mathrm{rad} / \mathrm{s}\) \\
\hline Cltch & CltchForce & Applied clutch force & N \\
\cline { 2 - 4 } & CltchLocked & \begin{tabular}{l} 
Clutch locked or unlocked \\
state
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline TrqConv & TrqConvSpdRatio & \begin{tabular}{l} 
Turbine to impeller speed \\
ratio
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\cline { 2 - 5 } & TrqConvEta & \begin{tabular}{l} 
Torque conversion \\
efficiency
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}

\section*{ImpSpd - Impeller speed \\ scalar}

Impeller rotational shaft speed, \(\omega_{i}\), in rad/s.

\section*{TrbSpd - Turbine speed}
scalar

Turbine rotational shaft speed, \(\omega_{t}\), in rad/s.

\section*{Parameters}

\section*{Configuration}

Lock-up clutch configuration - Select lock-up clutch configuration
Lock-up (default)|No lock-up|External lock-up input
\begin{tabular}{|l|l|}
\hline To Model & Select \\
\hline Fluid-coupling only & No lock-up \\
\hline Automatic clutch engagement & Lock-up \\
\hline \begin{tabular}{l} 
Clutch pressure as input from an \\
external signal
\end{tabular} & External lock-up input \\
\hline
\end{tabular}

\section*{Dependencies}

To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

\section*{Torque Converter}

Impeller shaft inertia, Ji - Inertia
scalar
Impeller shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}{ }^{\wedge} 2\).
Impeller shaft viscous damping, bi - Viscous damping coefficient scalar

Impeller shaft viscous damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).

\section*{Turbine shaft inertia, Jt - Inertia \\ scalar}

Turbine shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\).

\section*{Turbine shaft viscous damping, bi - Viscous damping coefficient scalar}

Turbine shaft viscous damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).

\section*{Initial impeller shaft velocity, omegaio - Angular velocity} scalar

Initial impeller shaft velocity, in rad/s.

\section*{Initial turbine shaft velocity, omegato - Angular velocity scalar}

Initial turbine shaft velocity, in rad/s.
```

Speed ratio vector, phi - Ratio
vector

```

Vector of turbine speed to impeller speed ratios. Breakpoints for the capacity and torque multiplication vectors.

\section*{Capacity factor parameterization - Select factor ratio type}

Input speed / sqrt(input torque) (default)|Absorbed torque / input speed^2
\begin{tabular}{|l|l|}
\hline To Set Factor Ratio to & Select \\
\hline \begin{tabular}{l} 
Impeller angular velocity to square \\
root impeller torque
\end{tabular} & Input speed / sqrt (input torque) \\
\hline \begin{tabular}{l} 
Impeller absorbed torque to square of \\
impeller angular velocity
\end{tabular} & Absorbed torque / input speed^2 \\
\begin{tabular}{l} 
Capacity vector, psi - Vector \\
vector
\end{tabular}
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Capacity factor parameterization \\
Setting
\end{tabular} & Capacity Vector Units \\
\hline \begin{tabular}{l} 
Input speed / sqrt (input \\
torque)
\end{tabular} & \((\mathrm{rad} / \mathrm{s}) /(\mathrm{N} \cdot \mathrm{m})^{\wedge} 0.5\) \\
\hline \begin{tabular}{l} 
Absorbed torque / input \\
speed^2
\end{tabular} & \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})^{\wedge} 2\) \\
\hline
\end{tabular}

\section*{Torque ratio vector, zeta - Vector \\ vector}

Vector of turbine torque to impeller speed ratios.

\section*{Fluid torque response time constant (set to 0 to disable), tauTC Time constant \\ scalar}

To account for the delay in torque calculations due to changing input torque, specify the fluid torque transfer time constant, in s.

\section*{Interpolation method - Select interpolation method Linear (default) | Flat | Nearest}

Interpolates the torque ratio and capacity factor functions between the discrete relative velocity values.

\section*{Clutch}

\section*{Clutch force equivalent net radius, Reff - Effective radius scalar}

The effective radius, \(R_{\text {eff }}\), used with the applied clutch friction force to determine the friction force, in m . The effective radius is defined as:
\[
R_{e f f}=\frac{2\left(R_{o}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{o}{ }^{2}-R_{i}{ }^{2}\right)}
\]

The equation uses these variables.

\section*{\(R_{o}\) \\ Annular disk outer radius}
\(R_{i}\)

\section*{Dependencies}

To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

\section*{Static friction coefficient, mus - Coefficient scalar}

Dimensionless clutch disc coefficient of static friction.

\section*{Dependencies}

To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

\section*{Kinetic friction coefficient, muk - Coefficient scalar}

Dimensionless clutch disc coefficient of kinetic friction.
To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

\section*{Initially lock clutch - Select to initially lock clutch off (default)}

\section*{Dependencies}

To enable this parameter, select Lock-up or External lock-up input for the Lockup clutch configuration parameter.

\section*{Lock-up speed ratio threshold, philu - Threshold scalar}

Set speed ratio threshold that engages clutch lock-up.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

\section*{Minimum lock-up engagement speed, omegalmin - Angular velocity} scalar

Set the minimum impeller speed that engages clutch lock-up, in rad/s.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

\section*{Lock-up disengagement speed, omegau - Angular velocity scalar}

Set the minimum impeller speed that disengages clutch lock-up, in rad/s.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Lock-up clutch force gain, Kclutch - Gain scalar

Open loop clutch lock-up force gain, in N.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Lock-up clutch time constant, taulu - Time constant scalar

Open loop clutch lock-up time constant, in s.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

\section*{See Also}

CI Core Engine | SI Core Engine

\section*{Introduced in R2017a}

\section*{mdf}

Access information contained in MDF file

\section*{Syntax}
```

mdfObj = mdf(mdfFileName)

```

\section*{Description}
mdf0bj \(=\mathrm{mdf}(m d f F i l e N a m e)\) identifies a measurement data format (MDF) file and returns an MDF file object, which you can use to access information and data contained in the file. You can specify a full or partial path to the file.

Note This function is supported only on 64 -bit Windows \({ }^{\circledR}\) operating systems.

\section*{Examples}

\section*{Create MDF File Object for Specified MDF File}

Create an MDF object for a given file, and view the object display.
```

mdfObj = mdf('MDFFile.mf4')
MDF with properties:
File Details
Name: 'MDFFile.mf4'
Path: 'c:\temp\MDFFile.mf4'
Author: 'HOK'
Department: 'Research'
Project: 'MDF'
Subject: 'CAN bus'
Comment: 'This file contains CAN messages'
Version: '4.10'

```
```

 DataSize: 32100
 InitialTimestamp: 2016-02-27 12:09:02
 Creator Details
ProgramIdentifier: 'mmddff.04'
Creator: [1×1 struct]
File Contents
Attachment: [1\times1 struct]
ChannelNames: {6\times1 cell}
ChannelGroup: [1\times6 struct]

```

\section*{Input Arguments}

\section*{mdfFileName - MDF file name}
char vector | string
MDF file name, specified as a character vector or string, including the necessary full or relative path.
Example: 'MDFFile.mf4'
Data Types: char|string

\section*{Output Arguments}

\section*{mdfObj - MDF file}

MDF file object
MDF file, returned as an MDF file object. The object provides access to the MDF file information contained in the following properties.
\begin{tabular}{|l|l|}
\hline Property & Description \\
\hline Name & Name of the MDF file, including extension \\
\hline Path & Full path to the MDF file, including file name \\
\hline Author & Author who originated the MDF file \\
\hline Department & Department that originated the MDF file \\
\hline Project & Project that originated the MDF file \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Property & Description \\
\hline Subject & Subject matter in the MDF file \\
\hline Comment & Open comment field from the MDF file \\
\hline Version & MDF standard version of the file \\
\hline DataSize & Total size of the data in the MDF file, in bytes \\
\hline InitialTimestamp & Time when file data acquisition began in UTC or local time \\
\hline ProgramIdentifier & Originating program of the MDF file \\
\hline Creator & \begin{tabular}{l} 
Structure containing details about creator of the MDF file, with \\
these fields: VendorName, ToolName, ToolVersion, \\
UserName, and Comment
\end{tabular} \\
\hline Attachment & \begin{tabular}{l} 
Structure of information about attachments contained within the \\
MDF file, with these fields: Name, Path, Comment, Type, \\
MIMEType, Size, EmbeddedSize, and MD5CheckSum
\end{tabular} \\
\hline ChannelNames & Cell array of the channel names in each channel group \\
\hline ChannelGroup & \begin{tabular}{l} 
Structure of information about channel groups contained within \\
the MDF file, with these fields: AcquisitionName, Comment, \\
NumSamples, DataSize, Sorted, and Channel
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

\section*{Functions}
read | saveAttachment
Introduced in R2016b

\section*{read}

Read channel data from MDF file

\section*{Syntax}
```

data = read(mdf0bj)
data = read(mdfObj,chanGroupIndex,chanName)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType)
[data,time] = read(mdfObj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector')

```

\section*{Description}
data \(=\) read \((m d f 0 b j)\) reads all data for all channels from the MDF file identified by the MDF file object mdf0bj, and assigns the output to data. If the file data is one channel group, the output is a timetable; multiple channel groups are returned as a cell array of timetables, where the cell array index corresponds to the channel group number.

Note This function is supported only on 64-bit Windows operating systems.
data \(=\) read \((m d f 0 b j\), chanGroupIndex, chanName) reads all data for the specified channel from the MDF file identified by the MDF file object mdf0bj.
data \(=\) read(mdf0bj,chanGroupIndex,chanName,startPosition) reads data from the position specified by startPosition.
data \(=\) read(mdf0bj,chanGroupIndex, chanName,startPosition, endPosition) reads data for the range specified from startPosition to endPosition.
```

data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType) returns data with the specified output
format.
[data,time] = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector') returns two vectors of channel data and
corresponding timestamps.

```

\section*{Examples}

\section*{Read All Data from MDF File}

Read all available data from the MDF file.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj);

```

\section*{Read All Data from Multiple Channels}

Read all available data from the MDF file for specified channels.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,{'Channel1','Channel2'});

```

\section*{Read Range of Data from Specified Index Values}

Read a range of data from the MDF file using indexing for startPosition and endPosition to specify the data range.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'},1,10);

```

\section*{Read Range of Data from Specified Time Values}

Read a range of data from the MDF file using time values for startPosition and endPosition to specify the data range.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,{'Channel1','Channel2'},seconds(5.5),seconds(7.3));

```

\section*{Read All Data in Vector Format}

Read all available data from the MDF file, returning data and time vectors.
```

mdfObj = mdf('MDFFile.mf4');
[data,time] = read(mdf0bj,1,'Channel1','OutputFormat','Vector');

```

\section*{Read All Data in Time Series Format}

Read all available data from the MDF file, returning time series data.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,'Channel1','OutputFormat','TimeSeries');

```

\section*{Read Data from Channel List Entry}

Read data from a channel identified by the channelList function.
Get list of channels and display their names and group numbers.
```

mdf0bj = mdf('File05.mf4');
chlist = channelList(mdfObj);
chlist(:,1:2)
4*2 table

```

Read data from the first channel in the list.
```

data = read(mdfObj,chlist{1,2},chlist{1,1});
data(1:5,:)

```
```

5x1 timetable

```
\(0.03 \mathrm{sec} \quad 5.3\)
\(0.04 \mathrm{sec} \quad 5.4\)

\section*{Input Arguments}
```

mdfObj - MDF file

```

MDF file object
MDF file, specified as an MDF file object.
Example: mdf('MDFFile.mf4')

\section*{chanGroupIndex - Index of the channel group}
numeric value
Index of channel group, specified as a numeric value that identifies the channel group from which to read.

\section*{Example: 1}

Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64

\section*{chanName - Name of channel}
char vector | string
Name of channel, specified as a character vector, string, or array. chanName identifies the name of a channel in the channel group. Use a cell array of character vectors or array of string to identify multiple channels.

\section*{Example: 'Channel1'}

Data Types: char|string|cell

\section*{startPosition - First position of channel data}
numeric value | duration

First position of channel data, specified as a numeric value or duration. The startPosition option specifies the first position from which to read channel data. Provide a numeric value to specify an index position; use a duration to specify a time position. If only startPosition is provided without the endPosition option, the data value at that location is returned. When used with endPosition to specify a range, the function returns data from the startPosition (inclusive) to the endPosition (noninclusive).

Example: 1
Data Types: single|double |int8|int16|int32|int64|uint8|uint16| uint32 |uint64|duration

\section*{endPosition - Last position of channel data range}
numeric value | duration
Last position of channel data range, specified as a numeric value or duration. The endPosition option specifies the last position for reading a range of channel data. Provide both the startPosition and endPosition to specify retrieval of a range of data. The function returns up to but not including endPosition when reading a range. Provide a numeric value to specify an index position; use a duration to specify a time position.

\section*{Example: 1000}

Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64 | duration

\section*{fmtType - Format for output data}
'Timetable' (default)| 'Vector'|'TimeSeries'
Format for output data, specified as a character vector or string. This option formats the output according to the following table.
\begin{tabular}{|l|l|}
\hline OutputFormat & Description \\
\hline 'Timetable' & \begin{tabular}{l} 
Return a timetable from one or more channels into one output \\
variable. This is the only format allowed when reading from \\
multiple channels at the same time. (Default.)
\end{tabular} \\
\begin{tabular}{l} 
Note: The timetable format includes columns for the MDF \\
channels. Because the column titles must be valid MATLAB \\
identifiers, they might not be exactly the same as those values in \\
the MDF object ChannelNames property. The column headers are \\
derived from the property using the function \\
matlab. lang. makeValidName. The original channel names are \\
available in the VariableDescriptions property of the \\
timetable object.
\end{tabular} \\
\hline 'Vector' & \begin{tabular}{l} 
Return a vector of numeric data values, and optionally a vector of \\
time values from one channel. Use one output variable to return \\
only data, or two output variables to return both data and time \\
vectors.
\end{tabular} \\
\hline 'TimeSeries ' & \begin{tabular}{l} 
Return a time series of data from one channel.
\end{tabular} \\
\hline
\end{tabular}

Example: 'Vector'
Data Types: char|string

\section*{Output Arguments}

\section*{data - Channel data}
timetable (default) | double | time series | cell array
Channel data, returned as vector of doubles, a time series, a timetable, or cell array of timetables, according to the 'OutputFormat' option setting and the number of channel groups.

\section*{time - Channel data times}
double
Channel data times, returned as a vector of double elements. The time vector is returned only when the 'OutputFormat' is set to 'Vector'.

\section*{See Also}

\section*{Functions}
mdf | saveAttachment

\section*{Topics}
"Time Series" (MATLAB)
"Represent Dates and Times in MATLAB" (MATLAB) "Tables" (MATLAB)

\section*{Introduced in R2016b}

\title{
saveAttachment
}

Save attachment from MDF file

\section*{Syntax}
```

saveAttachment(mdf0bj,AttachmentName)
saveAttachment(mdf0bj,AttachmentName,DestFile)

```

\section*{Description}
saveAttachment (mdf0bj, AttachmentName) saves the specified attachment from the MDF file to the current MATLAB working folder. The attachment is saved with its existing name.

Note This function is supported only on 64-bit Windows operating systems.
saveAttachment(mdfObj,AttachmentName, DestFile) saves the specified attachment from the MDF file to the given destination. You can specify relative or absolute paths to place the attachment in a specific folder.

\section*{Examples}

\section*{Save Attachment with Original Name}

Save an MDF file attachment with its original name in the current folder.
```

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext')

```

\section*{Save Attachment with New Name}

Save an MDF file attachment with a new name in the current folder.
```

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','MyFile.ext')

```

\section*{Save Attachment in Parent Folder}

Save an MDF file attachment in a folder specified with a relative path name, in this case in the parent of the current folder.
```

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','..\MyFile.ext')

```

\section*{Save Attachment in Specified Folder}

This example saves an MDF file attachment using an absolute path name.
```

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','C:\MyDir\MyFile.ext')

```

\section*{Input Arguments}

\section*{mdfObj - MDF file}

\section*{MDF file object}

MDF file, specified as an MDF file object.
Example: mdf('MDFFile.mf4')

\section*{AttachmentName - MDF file attachment name}
char vector | string
MDF file attachment name, specified as a character vector or string. The name of the attachment is available in the Name field of the MDF file object Attachment property.

Example: 'file1.dbc'
Data Types: char|string

\section*{DestFile - Destination file name for the saved attachment}
existing attachment name (default) | char vector | string
Destination file name for the saved attachment, specified as a character vector or string. The specified destination can include an absolute or relative path, otherwise the attachment is saved in the current folder.

Example: 'MyFile.ext'
Data Types: char|string

\section*{See Also}

\section*{Functions}
mdf | read

Introduced in R2016b

\section*{mdfDatastore}

Datastore for collection of MDF files

\section*{Description}

Use the MDF datastore object to access data from a collection of MDF files.

\section*{Creation}

\section*{Syntax}
```

mdfds = mdfDatastore(location)
mdfds = mdfDatastore(,'Name1',Value1,'Name2',Value2,...)

```

\section*{Description}
mdfds = mdfDatastore(location) creates an MDFDatastore based on an MDF file or a collection of files in the folder specified by location. All files in the folder with extensions .mdf, .dat, or .mf4 are included.
mdfds = mdfDatastore(__,'Name1',Value1,'Name2',Value2,...) specifies function options and properties of mdfds using optional name-value pairs.

\section*{Input Arguments}

\section*{location - Location of MDF datastore files}
character vector | cell array
Location of MDF datastore files, specified as a character vector or cell array of character vectors, identifying either files or folders. The path can be relative or absolute, and can contain the wildcard character *. If location specifies a folder, by default the datastore includes all files in that folder with the extensions .mdf, .dat, or .mf4.

Example: 'CANape.MF4'
```

Data Types: char |cell

```

Specify optional comma-separated pairs of Name,Value arguments to set file information or object "Properties" on page 7-16. Allowed options are IncludeSubfolders, FileExtensions, and the properties ReadSize, SelectedChannelGroupNumber, and SelectedChannelNames.

Example: 'SelectedChannelNames', 'Counter_B4'

\section*{IncludeSubfolders - Include files in subfolders}
false (default) |true
Include files in subfolders, specified as a logical. Specify true to include files in each folder and recursively in subfolders.

Example: 'IncludeSubfolders', true
Data Types: logical
FileExtensions - Custom extensions for filenames to include in MDF datastore \{'.mdf','.dat','.mf4'\} (default)| char | cell

Custom extensions for filenames to include in the MDF datastore, specified as a character vector or cell array of character vectors. By default, the supported extensions include .mdf, .dat, and .mf4. If your files have custom or nonstandard extensions, use this Name-Value setting to include files with those extensions.
Example: 'FileExtensions', \{'.myformat1','.myformat2'\}
Data Types: char \| cell

\section*{Properties}

\section*{ChannelGroups - All channel groups present in first MDF file (read-only) table}

All channel groups present in first MDF file, returned as a table.
Data Types: table

\section*{Channels - All channels present in first MDF file (read-only) table}

All channels present in first MDF file, returned as a table.
Data Types: table

\section*{Files - Files included in datastore}
char | string | cell
Files included in the datastore, specified as a character vector, string, or cell array.
Example: \{'file1.mf4','file2.mf4'\}
Data Types: char|string|cell

\section*{ReadSize - Size of data returned by read}

\section*{'file' (default)| numeric | duration}

Size of data returned by the read function, specified as 'file', a numeric value, or a duration. A character vector value of 'file' causes the entire file to be read; a numeric double value specifies the number of records to read; and a duration value specifies a time range to read.

If you later change the ReadSize property value type, the datastore resets.
Example: 50
Data Types: double | char | duration

\section*{SelectedChannelGroupNumber - Channel group to read numeric scalar}

Channel group to read, specified as a numeric scalar value.
Example: 1
Data Types: single|double | int8|int16|int32|int64|uint8|uint16| uint32|uint64

\section*{SelectedChannelNames - Names of channels to read char | string | cell}

Names of channels to read, specified as a character vector, string, or cell array.
Example: 'Counter_B4'
Data Types: char|string|cell

\author{
Object Functions \\ read \\ Read data in MDF datastore \\ readall Read all data in MDF datastore \\ preview Subset of data from MDF datastore \\ reset \(\quad\) Reset MDF datastore to initial state \\ hasdata Determine if data is available to read from MDF datastore \\ partition Partition MDF datastore \\ numpartitions Number of partitions for MDF datastore
}

\section*{Examples}

\section*{Create an MDF Datastore}

Create an MDF datastore from the sample file CANape. MF4, and read it into a timetable.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
while hasdata(mdfds)
m = read(mdfds);
end

```

\section*{See Also}

\section*{Introduced in R2017b}

\section*{hasdata (MDFDatastore)}

Determine if data is available to read from MDF datastore

\section*{Syntax}
\(t f=\) hasdata(mdfds)

\section*{Description}
tf \(=\) hasdata(mdfds) returns logical 1 (true) if there is data available to read from the MDF datastore specified by mdfds. Otherwise, it returns logical 0 (false).

\section*{Examples}

\section*{Check MDF Datastore for Readable Data}

Use hasdata in a loop to control read iterations.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
while hasdata(mdfds)
m = read(mdfds);
end

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{Output Arguments}
tf - Indicator of data to read
1 | 0
Indicator of data to read, returned as a logical 1 (true) or false (0).

\section*{See Also}

\author{
Functions \\ mdfDatastore | read|readall| reset \\ Introduced in R2017b
}

\section*{numpartitions (MDFDatastore)}

Number of partitions for MDF datastore

\section*{Syntax}
\(N\) = numpartitions(mdfds)
\(\mathrm{N}=\) numpartitions(mdfds,pool)

\section*{Description}
\(N\) = numpartitions(mdfds) returns the recommended number of partitions for the MDF datastore mdfds. Use the result as an input to the partition function.
\(\mathrm{N}=\) numpartitions(mdfds, pool) returns a reasonable number of partitions to parallelize mdfds over the parallel pool, pool, based on the number of files in the datastore and the number of workers in the pool.

\section*{Examples}

\section*{Find Recommended Number of Partitions for MDF Datastore}

Determine the number of partitions you should use for your MDF datastore.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
N = numpartitions(mdfds);

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.

\section*{Example: mdfds = mdfDatastore('CANape.MF4')}

\section*{pool - Parallel pool}
parallel pool object
Parallel pool specified as a parallel pool object.

\section*{Example: gcp}

\section*{Output Arguments}

\section*{N - Number of partitions}
double
Number of partitions, returned as a double. This number is the calculated recommendation for the number of partitions for your MDF datastore. Use this when partitioning your datastore with the partition function.

\section*{See Also}

\section*{Functions}
mdfDatastore | partition| read|reset

Introduced in R2017b

\section*{partition (MDFDatastore)}

\author{
Partition MDF datastore
}

\section*{Syntax}
```

subds = partition(mdfds,N,index)
subds = partition(mdfds,'Files',index)
subds = partition(mdfds,'Files',filename)

```

\section*{Description}
subds = partition(mdfds, \(N\),index) partitions the MDF datastore mdfds into the number of parts specified by \(N\), and returns the partition corresponding to the index index.
subds = partition(mdfds,'Files',index) partitions the MDF datastore by files and returns the partition corresponding to the file of index index in the Files property.
subds = partition(mdfds, 'Files', filename) partitions the datastore by files and returns the partition corresponding to the specified filename.

\section*{Examples}

\section*{Partition an MDF Datastore into Default Parts}

Partition an MDF datastore from the sample file CANape. MF4, and return the first part.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
N = numpartitions(mdfds);
subds1 = partition(mdfds,N,1);

```

\section*{Partition an MDF Datastore by Its Files}

Partition an MDF datastore according to its files, and return partitions by index and file name.
```

cd c:\temp
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.Files
ans =
3\times1 cell array
'c:\temp\CANape1.MF4'
'c:\temp\CANape2.MF4'
'c:\temp\CANape3.MF4'
subds2 = partition(mdfds,'files',2);
subds3 = partition(mdfds,'files','c:\temp\CANape3.MF4');

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{N - Number of partitions}
positive integer
Number of partitions, specified as a double of positive integer value. Use the numpartitions function for the recommended number or partitions.

\section*{Example: numpartitions(mdfds)}

Data Types: double

\section*{index - Index}
positive integer
Index, specified as a double of positive integer value. When using the 'files ' partition scheme, this value corresponds to the index of the MDF datastore object Files property.

Example: 1

\section*{Data Types: double}

\section*{filename - File name \\ character vector}

File name, specified as a character vector. The argument can specify a relative or absolute path.

Example: 'CANape.MF4'
Data Types: char

\section*{Output Arguments}

\section*{subds - MDF datastore partition}

MDF datastore object
MDF datastore partition, returned as an MDF datastore object. This output datastore is of the same type as the input datastore mdfds.

\section*{See Also}

\section*{Functions}
mdfDatastore|numpartitions|read|reset

Introduced in R2017b

\section*{preview (MDFDatastore)}

Subset of data from MDF datastore

\section*{Syntax}
```

data = preview(mdfds)

```

\section*{Description}
data \(=\) preview (mdfds) returns a subset of data from MDF datastore mdfds without changing the current position in the datastore.

\section*{Examples}

\section*{Examine Preview of MDF Datastore}
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
data = preview(mdfds)
data2 =
10\times74 timetable
Time Counter_B4 Counter_B5 Counter_B6 Counter_B7 PWM

0.00082554 sec	0	0	1	0	100
0.010826 sec	0	0	1	0	100
0.020826 sec	0	0	1	0	100
0.030826 sec	0	0	1	0	100
0.040826 sec	0	0	1	0	100
0.050826 sec	0	0	1	0	100

```
\(0.060826 \mathrm{sec} \quad 0\)
0.070826 sec 0
0
0
100
0
1
100

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{Output Arguments}

\section*{data - Subset of data}
timetable
Subset of data, returned as a timetable of MDF records.

\section*{See Also}

\section*{Functions}
hasdata|mdfDatastore|read

Introduced in R2017b

\section*{read (MDFDatastore)}

\author{
Read data in MDF datastore
}

\section*{Syntax}
```

data = read(mdfds)
[data,info] = read(mdfds)

```

\section*{Description}
data \(=\) read \((m d f d s)\) returns data from the MDF datastore mdfds into the timetable data.

The read function returns a subset of data from the datastore. The size of the subset is determined by the ReadSize property of the datastore object. On the first call, read starts reading from the beginning of the datastore, and subsequent calls continue reading from the endpoint of the previous call. Use reset to read from the beginning again.
[data,info] = read(mdfds) also returns to the output argument info information, including metadata, about the extracted data.

\section*{Examples}

\section*{Read Datastore by Files}

Read data from an MDF datastore one file at a time.
```

mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.ReadSize = 'file';
data = read(mdfds);

```

Read the second file and view information about the data.
```

[data2,info2] = read(mdfds);
info2

```
```

struct with fields:

```
    Filename: 'CANape2.MF4'
    FileSize: 57592
    MDFFileProperties: [1×1 struct]

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{Output Arguments}

\section*{data - Output data}
timetable
Output data, returned as a timetable of MDF records.

\section*{info - Information about data}
structure array
Information about data, returned as a structure array with the following fields:
Filename
FileSize
MDFFileProperties

\section*{See Also}
```

Functions
hasdata|mdfDatastore|preview|readall|reset

```

Introduced in R2017b

\section*{readall (MDFDatastore)}

Read all data in MDF datastore

\section*{Syntax}
data \(=\) readall(mdfds)

\section*{Description}
data \(=\) readall (mdfds) reads all the data in the datastore specified by mdfds and returns it to timetable data.

After the readall function returns all the data, it resets mdfds to point to the beginning of the datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

\section*{Examples}

\section*{Read All Data in Datastore}

Read all the data from a multiple file MDF datastore into a timetable.
```

mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
data = readall(mdfds);

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{Output Arguments}
data - Output data
timetable
Output data, returned as a timetable of MDF records.

\section*{See Also}

\author{
Functions \\ hasdata|mdfDatastore|preview| read|reset \\ Introduced in R2017b
}

\section*{reset (MDFDatastore)}

Reset MDF datastore to initial state

\section*{Syntax}
```

reset(mdfds)

```

\section*{Description}
reset (mdfds) resets the MDF datastore specified by mdfds to its initial read state, where no data has been read from it. Resetting allows your to reread from the same datastore.

\section*{Examples}

\section*{Reset MDF Datastore}

Reset an MDF datastore so that you can read from it again.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
data = read(mdfds);
reset(mdfds);
data = read(mdfds);

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{See Also}

\author{
Functions \\ hasdata|mdfDatastore|read \\ Introduced in R2017b
}

\section*{channelList}

Information on available MDF groups and channels

\section*{Syntax}
```

chans = channelList(mdfobj)
channelList(mdf0bj,chanName)
channelList(mdf0bj,chanName,'ExactMatch',true)

```

\section*{Description}
chans \(=\) channelList(mdfobj) returns a table of information about channels and groups in the specified MDF file.
channelList(mdf0bj, chanName) searches the MDF file to generate a list of channels matching the specified channel name. The search by default is case-insensitive and identifies partial matches. A table is returned containing information about the matched channels and the containing channel groups. If no matches are found, an empty table is returned.
channelList(mdf0bj, chanName, 'ExactMatch',true) searches the channels for an exact match, including case sensitivity. This is useful if a channel name is a substring of other channel names.

\section*{Examples}

\section*{View Available MDF Channels}

View all available MDF channels.
```

mdfObj = mdf('File01.mf4');
chans = channelList(mdfObj)

```
"Float_32_LE_Offset_64"
"Float_64_LE_Master_Offset 0"
"Sigen \(\bar{d}\) Intī \(\overline{6}\) LE Of \(\bar{f}\) set 32 "
"Unsigend_UInt 32 _LE_Master_Offset_0"

\section*{2
2}

1
1

10000
10000
10000
10000

\section*{View Specific MDF Channels}

Filter on channel names.
chans = channelList(mdf0bj,'Float')
chans \(=\)
\(2 \times 9\) table
ChannelName
ChannelGroupNumber ChannelGroupNumSamples
```

"Float_32_LE_Offset_64" 2 10000

```
"Float 64 LE Master Offset 0" 2 10000
chans \(=\) channelList(mdf0bj,'Float','ExactMatch',true)
chans =
    \(0 \times 9\) empty table

\section*{Input Arguments}

\section*{mdf0bj - MDF file}

MDF file object
MDF file, specified as an MDF file object.
Example: mdf('File01.mf4')

\section*{chanName - Name of channel}
char vector | string
Name of channel, specified as a character vector or string. By default, case-insensitive and partial matches are returned.

\section*{Example: 'Channel1' \\ Data Types: char|string}

\section*{Output Arguments}

\section*{chans - Information on available MDF channels table}

Information on available MDF channels, returned as a table. To access specific elements, you can index into the table.

\section*{See Also}

\section*{Functions}
mdf

Introduced in R2018b```


[^0]:    Output battery voltage time constant, Tc - Filter time constant scalar

    Output battery voltage time constant, $T_{c}$, in s . Used in a first-order voltage filter.

    ## Dependencies

[^1]:    Turbocharger pressure ratio standard flow breakpoints, f_turbo_pr_stdflow_bpt - Breakpoints
    vector

[^2]:    Torque Breakpoints, T_mtpa - Derived vector

[^3]:    Breakpoints for commanded fuel mass input, f_tbrake_f_bpt Breakpoints
    vector

